Quelques exercices supplémentaires

Exercice 15.1. Let M be an oriented manifold with boundary. Show that M has a natural orientation.

Solution 15.1. Let $F: U \subset \overline{\mathbb{H}}^n \to V \subset \overline{\mathbb{H}}^n$ be a diffeomorphism. which sends $U \cap \mathbb{R}^{n-1} \times \{0\} \to \mathbb{R}^{n-1} \times \{0\}$. Then let $F_{\partial} := F|_{\mathbb{R}^{n-1} \times 0}$. It follows that $\partial_j|_q F^n = 0$ for any $q \in \mathbb{R}^{n-1} \times \{0\}$. So it follows that $\det DF(q) = (\partial_n|_q F^n) \det DF_{\partial}(q)$. Finally ∂_n cannot be negative, as then F(U) would not be contained in the upper half plane. Now let $\varphi : U \to \overline{\mathbb{H}}^n$ and $\psi : V \to \overline{\mathbb{H}}^n$, and let $\varphi_{\partial} = \varphi|_{\partial M \cap U}$. Let $\Phi_{\partial UV}$ be the restriction of Φ_{UV} to $\varphi(\partial M \cap U \cap V)$. Then by the previouse

$$0 < \det D\Phi_{UV}(\varphi_V(q)) = \partial_n|_{\varphi_V(q)} \Phi_{UV}^n \det D\Phi_{\partial UV}(\varphi_V(q))$$

But as before $\partial_n \Phi_{UV}^n \ge 0$, and so $\partial_n \Phi_{UV}^n$ and det $D \Phi_{\partial UV}$ are strictly positive. Consequently ∂M has a transition maps with positive Jacobian determinant (det $D \Phi_{\partial UV}$).

Exercice 15.2. Show that for k-form α and n - k - 1 form β

$$\int_{M} \alpha \wedge d\beta = (-1)^{k} \left[\int_{M} \alpha \wedge \beta - \int_{M} d\alpha \wedge \beta \right].$$

This is the *integration by parts* formula for differential forms.

Solution 15.2. Recall that $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^{k(n-k-1)}\alpha \wedge d\beta$. If we apply Stokes' theorem to both sides, we get

$$\int_{M} \alpha \wedge \beta = \int_{M} d\alpha \wedge \beta + (-1)^{k} \int_{M} \alpha \wedge d\beta,$$

which yields the result after rearranging and multiplying by $(-1)^k$

Exercice 15.3. Consider the form $\omega \in \Omega^{n-1}(\mathbb{R}^n \setminus \{0\})$

$$\omega = \sum_{i=1}^{n} (-1)^{i+1} \frac{x^{i}}{r^{n}} dx^{N \setminus \{i\}},$$

where

$$r = \sqrt{\sum_{i} (x^i)^2},$$

and $N = \{1, \ldots, n\}$. Show that $d\omega = 0$ Show using Stokes' theorem that $H^{n-1}(\mathbb{R}^n \setminus \{0\})$ is non-zero.

Hint. First recall that if $\omega = d\xi$ then $i^*(\omega) = i^*(d\xi) = di^*(d\xi)$, where $i : S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ is the inclusion map. In words: if the form is exact then it's restriction is exact. Now let

$$\tilde{\omega} = \sum_i (-1)^{i+1} x^i dx^{N \setminus \{i\}}$$

Then $i^*(\omega) = i^*(\tilde{\omega})$ because $r \circ i \equiv 1$. Apply Stokes' theorem to $\tilde{\omega}$.

Solution 15.3. First

$$d\omega = \sum_{i} (-1)^{i+1} \frac{1}{r^n} dx^i \wedge dx^{N \setminus \{i\}} - (-1)^{i+1} (n) \frac{x^i}{r^{n+2}} dr \wedge dx^{N \setminus \{i\}}$$
$$= \frac{n}{r^n} dx^N - n \sum_{i=1}^n (-1)^{n+1} \frac{(x^i)^2}{r^{n+2}} dx^i \wedge dx^{N \setminus \{i\}}$$
$$= (\frac{n}{r^n} - \frac{nr^2}{r^{n+2}}) dx^N = 0.$$

Now consider the the restriction of ω to S^{n-1} . If we can show the integral is non-zero, then we are done. But for r = 1 this is the integral of the form $\Omega = \sum_{i} (-1)^{i+1} x^{i} dx^{N \setminus \{i\}}$:

$$\int_{S^{n-1}} \omega = \int_{S^{n-1}} \Omega$$
$$= \int_{B^n} \Omega$$
$$= \int_{B^n} d\Omega.$$

But $d\Omega = ndx^N$, so $\int_{S^{n-1}} \omega = n \operatorname{Vol}(B^n) \neq 0$. And so ω cannot be exact.

Exercice 15.4. Recall Green's theorem

$$\iint_{\Omega} \left(\frac{\partial F^1}{\partial x^2} - \frac{\partial F^2}{\partial x^1} \right) \, dx^1 \, dx^2 = \oint_{\partial \Omega} F \cdot dl$$

Gauss' theorem

$$\iiint_{\Omega} \nabla \cdot F \, dx^1 \, dx^2 \, dx^3 = \oiint_{\partial \Omega} F \cdot \nu dS$$

and Stoke's theorem (from vector calculus)

$$\iint_{\Sigma} \nabla \times F \cdot \nu dS = \oint_{\Sigma} F \cdot dl.$$

See Analyse avancée pour ingénieurs Chap. 4,6,7. Identify how each of these is Stokes' theorem for manifolds by identifying F with a differential form, what are the manifolds of integration and what are the boundaries. Calculate dF in each case.

Solution 15.4. For Green's theorem, Ω is a two dimensional manifold and F is a one form

$$F = F^1 dx^1 + F^2 dx^2.$$

Then

$$dF = \left(-\frac{\partial F^1}{\partial x^2} + \frac{\partial F^2}{\partial x^1}\right) dx^1 \wedge dx^2.$$

And so this is

$$\int_{\Omega} dF = \int_{\partial \Omega} F$$

for F a one-form and Ω a 2-manifold. For Gauss' theorem

$$F = F^1 dx^2 \wedge dx^3 - F^2 dx^1 \wedge dx^3 + F^3 dx^1 \wedge dx^2.$$

From Exercise 12.5, we recall that $dF = \nabla \cdot F$, and so Gauss' theorem corresponds to

$$\int_{\Omega} dF = \int_{\partial \Omega} F,$$

for F a 2 form and Ω a 3-manifold. For Stokes' theorem let

$$F = F^1 dx^1 + F^2 dx^2 + F^3 dx^3,$$

then dF corresponds to $\nabla \times F$, and it corresponds to Stokes' theorem on a 2-manifold for a one form F.