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Simple Perceptrons for Classification

Objectives for today:

- understand classification as a geometrical problem

- discriminant function of classification

- linear versus nonlinear discriminant function

- perceptron algorithm

- gradient descent for simple perceptrons



Wulfram Gerstner

EPFL, Lausanne, Switzerland

Artificial Neural Networks
1. Simple perceptrons for classification 

2. Backprop and multilayer perceptron 

3. Statistical Classification by deep networks

4. Deep learning:  regularization and tricks of the trade

5. Error landscape and optimization methods for deep networks

6. Sequence predictions and Recurrent networks

7. Convolutional networks

8. Reinforcement learning1: Bellman and SARSA

9. Reinforcement learning2: variants of SARSA

10. Reinforcement learning3: Policy Gradient

11. Deep Reinforcement learning

12. Reinforcement learning and the Brain 

Miniproject1

Miniproject2a

Miniproject2b

Miniproject1: handout March 15; 

submission April 29

Miniproject 2a/2b: handout April 29;

submission: choose May27 or June 3 



Weakly sessions as follows:
- 10:15 in lecture hall: Discussions with TA

- 1 Exercise of previous week discussed from 10:15 -10:40 

in separate Exercise room

- break 5 min

- Lecture 1 from 10:45-11:35 (approximately)

- Break 8 min

- Lecture 2 from 11:43-12:35

- Break 5 min

- Discussion of miniproject from 12:40-12:55

Each lecture typically includes one ‘in-class’ exercise

TA’s this year:  Berfin Simsek, Nicolas El Maalouly, 

Chiara Gastaldi, Florian Colombo, Bernd Illing



Previous 3 slides.

Every week the first two slides contain the contents and main objectives of the day.

Normally, the teaching term at EPFL has fourteen weeks.

However, Friday before the Easter break (Holy Friday) is a holiday.

Moreover, the class on Friday after ‘Ascension’ is dropped and replaced by somewhat 

longer sessions each week.

In total there will therefore be 12 lectures in this class. Each Friday we

- Start with exercises (exercise room)/ Discussion with TAs (main lecture hall)

- There will be two lectures of about 50 minutes each, first one starts at 10h45

- Break in between is 8 minutes (duration based on feedback from students)

- On average, one exercise is ‘integrated’ in the lecture (sometimes zero or two)
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Miniproject1: handout March 15; 

submission April 29

Miniproject 2a/2b: handout April 15;

submission: choose May27 or June 3 



Previous slide.

Results with artificial neural networks are discussed in newspaper articles and 

have inspired people around the world.

These years we experience the third wave of neural networks.

The first wave happened in the 1950s with the first simple computer models of 

neural networks, with McCulloch and Pitt and Rosenblatt’s Perceptron.  There 

was a lot of enthusiasm, and then  it died.

The second wave happened in the 1980, around the Hopfield model, the 

BackPropagation algorithm, and the ideas of ‘parallel distributed processing’. It 

died in the mid-nineties when statistical methods and Support Vector Machines 

took over. 

The third wave started around 2012 with larger neural networks trained on GPUs 

using data from big image data bases.  These neural networks were able to beat 

the benchmarks of Computer vision and have been called ‘deep networks’.

Artificial Neural Networks, how they work, and what they can do, will be in the 

focus of this lecture series.



The brain: Cortical Areas

visual

cortex

motor 

cortex

frontal cortex

to 

muscles



Previous slide.

During all these waves, during 60 years of research, artificial neural networks 

researchers worked on building intelligent machines that learn, the way humans

learn. And for that they took inspiration from the brain.

Suppose you look at an image. Information enters through the eye and then goes

to the cortex.



The brain: Cortical Areas



Previous slide.

Cortex is divided into different  areas:

Information from the eye will first arrive at visual cortex (at the back of the head), 

and from there it goes on to other areas. Comparison of the input with memory is 

thought to happen in the frontal area (above the eyes). Movements of the arms a 

re controlled by motor cortex somewhere above your ears.

Talking about cortical areas provides a macroscopic view of the brain.



10 000 neurons

3 km of wire
1mm

The Brain: zooming in

1mm

Ramon y Cajal



Previous slide.

If we zoom in and look at one cubic millimeter of cortical material under the 

microscope, we see a network of cells.

Each cell has long wire-like extensions.

If we counted all the cells in one cubic millimeter, we would get numbers in the 

range of ten thousand.

Researchers have estimated that, if you put all the wires you find in one cubic 

millimeter together you would find several kilometers of wire.

Thus, the neural network of the brain is a densely connected and densely packed 

network of cells.



10 000 neurons

3km of wire

Signal:

Action potential (short pulse)

electrical

pulse

Ramon y Cajal

The brain: a network of neurons

1mm



Previous slide.

These cells are called neurons and communicated by short electrical pulses, 

called action potentials, or ‘spikes’.



The brain: signal transmission

Signal:

action potential (short pulse)

action

potential 

More than 1000 inputs 



Previous slide.

Signals are transmitted along the wires (axons). These wires branch out to make 

contacts with many other neurons.

Each neuron in cortex receives several thousands of wires from other neurons 

that end in ‘synapses’ (contact points) on the dendritic tree.



u


pulse

synapse t

The brain: neurons sum their inputs



Previous slide.

If a spike arrives at one of the synapses, it causes a measurable response in the 

receiving neuron.

If several spikes arrive shortly after each other onto the same receiving neuron, 

the responses add up.

If the summed response reaches a threshold value, this neuron in turn sends out 

a spike to yet other neurons (and sometimes back to the neurons from which it 

received a spike).



Summary: the brain is a large network of neurons

Active neuron



Previous slide.

Thus, signals travel along the connections in a densely connected network of 

neurons.

Sometimes I draw an active neuron (that is a neuron that currently sends out a 

spike) with a filled red circle, and an inactive one with a filled yellow circle.



Synapse

Neurons

learning = change of connection

Learning in the brain: changes between connections



Previous slide.

Synapses are not jut simple contact points between neurons, but they are crucial 

for learning.

Any change in the behavior of an animal (or a human, or an artificial neural 

network) is thought to be linked to a change in one or several synapses.

Synapses have a ‘weight’.  Spike arrival at a synapse with a large weight causes 

a strong response; while the same spike arriving at a synapses with a small 

weight would cause a low-amplitude response.

All Learning corresponds to a change of synaptic weights. For example, forming 

new memories corresponds to a change of weights. Learning new skills such as 

table tennis corresponds to a change of weights. 
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1. The brain

2. Artificial Neural Networks



Previous slide.

After this super-short overview of the brain, we now turn to artificial neural 

networks: highly simplified models of neurons and synapses.



Modeling: artificial neurons

u


pulse

-responses are added

-pulses created at threshold

-transmitted to other

response

synapse t

Mathematical description



Previous slide.

In the previous part we have seen that response are added and compared with a 

threshold.

This is the essential ideal that we keep for the abstract mathematical model in the 

following.

We drop the notion of pulses or spikes and just talk of neurons as active or 

inactive.



Modeling: artificial neurons

forget spikes: continuous activity x

forget time: discrete updates

𝑥𝑖 = 𝑔  

𝑘

𝑤𝑖𝑘 𝑥𝑘

𝑤𝑖𝑘

𝑥𝑘



weights =

adaptive

parameters
activity of inputs

activity of output

nonlinearity/threshold



Previous slide.

The activity of inputs (or input neurons) is denoted by 𝑥𝑘

The weight of a synapse is denoted by  𝑤𝑖𝑘

The nonlinearity (or threshold function) is denoted by 𝑔

The output of the receiving neuron is given by

𝑥𝑖 = 𝑔  

𝑘

𝑤𝑖𝑘 𝑥𝑘



Hebbian Learning

pre               

j

post
i

ijw

When an axon of cell j repeatedly or persistently 

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased  
Hebb, 1949

k

- local rule

- simultaneously active neurons

Where do the connection weights come from?

Learning of connections in biology



Previous slide.

As mentioned earlier, weights can by weak or strong – but which ‘rule’ sets the 

weights?

In biology a basic idea is that joint activity of two neurons can change the weight 

that connects those two neurons (Hebb rule).



Hebbian Learning of Associations



Previous slide.

Why is the Hebb rule useful?

Suppose you see (for the first time in your life!) an apple.

Some neurons will be activated because the apple is red, others because it has a 

round shape, or because it has a certain odor.

If the brain implements the Hebb rule, the result of this co-activation of different 

neurons is that the connections between the active neurons are strengthened.



item memorized by change of synaptic weights

Hebbian Learning of Associations



Previous slide.

We claim that this change of weights is important to ‘memorize’ the item ‘apple’.



item recalled

Recall:

Partial info

Hebbian Learning: Associative Recall



Previous slide.

To check this claim, we now show a partial picture of an apple. Only part of the 

visual information is available, and no odor information.

But because the stimulus is sufficient to reactivate some of the same neurons as 

during the first exposure to the apple, the strong connections now enable the 

neurons that encode the missing information to also become active.

The item is recalled and the missing information is associated with the partical

stimulus: Ah, I remember how this apple smelled.



Brain 

Distributed Architecture

10 billions neurons

memory in the connections

10 000   connexions/neurons

10 000 neurons

3 km of wire
1mm

1mm

Neurons and Synapses form a big network

No separation of 

processing and memory



Previous slide.

Even though we are not going to work with the Hebb rule during this class, the 

above example still shows that 

- Memory is located in the connections 

- Memory is largely distributed

- Memory is not separated from processing  

(as opposed to classical computing architectures such as the van Neumann 

architecture or the Turing machine)



Quiz: biological neural networks 

[ ] Neurons in the brain have a threshold.

[ ] Learning means a change in the threshold.

[ ] Learning means a change of the connection weights

[ ] The total input to a neuron is the weighted sum of individual inputs

[ ] The neuronal network in the brain is feedforward: it has no 

recurrent connections

[ x]

[ ]

[x]

[x]

[ ]



Your notes.
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1. The brain

2. Artificial Neural Networks

- artificial neurons

- artificial neural networks for classification



Previous slide.

Now that we know about artificial neurons and synaptic weights, let us construct a 

useful network.

The first task we study is classification



Artificial Neural Networks for classification

input

output

car

feedforward network



Previous slide.

An input is presented at the bottom of the network.

It passes through several layers of neurons.

All connections are directed from the bottom to the next layer further up: this 

architecture is called a feedforward network.

The output is a set of neurons that correspond to different ‘classes’.

An ideal network should respond with activating the neuron corresponding to 

‘car’, if the input image shows a car.



Artificial Neural Networks for classification

input

output

car dog

Aim of learning:

Adjust connections such

that output class is correct

(for each input)



Previous slide.

The aim of learning is to adjust the connection weights such that, for each input, 

the output class is correct.

If the input is a dog, the ‘dog’-neuron should respond.

If the input is a car, the ‘car’-neuron should respond.

In the first half of the semester, we focus on the task of building and 

training artificial neural networks for classification.
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1. The brain

2. Artificial Neural Networks

- artificial neurons

- Neural networks for classification

- Neural networks for action learning



Previous slide.

However, classification is not the only task we are interested in.



Even the mistakes?

Coactivation of 2 neurons:

- strengthens connection

- Facilitates to repeat same action

Artificial Neural Networks for action learning

Missing:

Value of action

- ‘goodie’ for dog

- ‘success’

- ‘compliment’



Previous slide.

Let us go back for a moment to the brain, and how humans or animals learn.

We learn actions by trial and error exploiting rather general feedback: reward or 

praise on one side, pleasure and pain on the other side.

In other words, the mere co-activation of two neurons (Hebb rule) is not enough to 

explain human learning. Important is the notion of value of an action.

Learning actions or sequences of actions is very different from classification.



Modeling – the role of reward

i

j

Barto 1985, Schultz et al. 1997; Waelti et al., 2001; 

Reynolds and Wickens 2002; 

Lisman et al. 2011

success

Three factors for changing a connection

- activity of neuron j

- activity of neurone i

- success

Reinforcement learning = learning based on reward



Previous slide.

Reward-based learning has been studied in psychology and biology.

At the level of synapses, reward-based learning can be seen as a generalization 

of the Hebb rule: 

To implement a change of synaptic weights, three factors are needed:

- the activity of the sending neuron;

- the activity of the receiving neuron;

- and a broadcast signal that transmit the information: this was successful 

(because it led to a reward).

Learning based on rewards is at the center of reinforcement learning.



Chess Artificial neural network 

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

Deep reinforcement learning



Previous slide.

The same kind of ideas have also been implemented in artificial neural networks 

that are trained by reinforcement learning.

In a game such a Chess or Go, the reward signal is only given once at the very 

end of the game: positive reward if the game is won, and negative reward if it is 

lost.

This rather sparse reward information is sufficient to train an artificial neural 

network to a level where it can win against grand masters in chess or Go.

To improve performance, each network plays against a copy of itself. By doing so 

it discovers good strategies (such as openings in chess).



Deep reinforcement learning

Network for choosing action

2e output for value of action:

probability to win

input

output

action:
Advance king

learning:

- change connections

aim:

- Predict value of position  

- Choose next action to win



Previous slide.

Schematically, the artificial neural network takes the position of chess as input.

There are two types of outputs:

- The main outputs are the actions such as ‘move king to the right’

- An auxiliary output predicts the ‘value’ of each state. It can be used to explore 

possible next positions so as to pick the one with the highest value.

- The value can be interpreted as the probability to win (given the position)

In the theory of reinforcement learning, positions are also called ‘states’.



Deep reinforcement learning (alpha zero)

input: 64x6x2x8 neuronss

(about 10 000)

output: 4672 actions

advance king

Training 44Mio 

games (9 hours)

Planning:

potential sequences

(during 1s before playing

next action)

Silver et al. (2017) , Deep Mind



Previous slide.

Since there are many different positions, the number of input neurons is in the 

range of ten thousand:

On each of 64 positions there can be one of 6 different ‘figures’ (king, horse) of 2 

different colors. 

To avoid repetitions the 8 last time steps are used as input.

Training is done by playing against itself in 44 million games.

The allotted computer time for planning the next action is 1s.



Deep reinforcement learning (alpha zero)

Chess: 

-discovers classic

openings

-beats best human

players

-bets best classic AI  

algorithms

Silver et al. (2017) 



Previous slide.

After training for 44 Milllion self-play games, the algorithm  matches or beats 

classical AI algorithms for chess.

Interestingly, it ‘discovers’ well-known strategies for openings, corresponding 

closely to well known openings in textbooks on chess.

When trained on go it beats the world champions.



Self-driving cars

advance and accerate Value: security, 

duration of travel

Lex Friedman, MIThttps://selfdrivingcars.mit.edu/



Previous slide.

Similar reinforcement learning algorithms are also used to train selfdriving cars. 

There is a nice series of video lectures by Lex Friedman on the WEB.

Inputs are video images as well as distance sensors.

The value is security (top priority) combined with duration of travel.
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- for classification

- for action learning

- for sequences (music, translation, speech)



Previous slide.

The third task we will consider in this class is sequence learning.



Deep networks with recurrent connections 

Network desribes the 

image with the words:

‘a man sitting on a couch with a dog’

‘a man sitting on a couch with a dog’

(Fang et al. 2015)



Previous slide.

An amazing example is this network which looks at  static image and outputs the 

spoken sentence:

‘A man is sitting on a couch with a dog’.

Sequence learning requires recurrent connections (feedback connections), in 

contrast to the feedforward architecture that we have seen so far.



Quiz: Classification versus Reinforcement Learning 

[ ] Classification aims at predicting the correct category 

such as ‘car’ or ‘dog’

[ ] Classification is based on rewards

[ ] Reinforcement learning is based on rewards

[ ] Reinforcement learning aims at optimal action choices

[x]

[ ]

[x]

[x]



Your notes.



Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

1. The brain

2. Artificial Neural Networks
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- for action learning

- for sequences

3. Overview of class



Previous slide/next slide

All three tasks:

-classification (5 lessons)

-sequence learning (1 lesson)

-reinforcement learning (5 lessons)

will be covered.

Plus an extra session for convolutional networks. 
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1. Simple perceptrons for classification 

2. Backprop and multilayer perceptron 

3. Statistical Classification by deep networks

4. Deep learning:  regularization and tricks of the trade

5. Error landscape and optimization methods for deep networks

6. Sequence predictions and Recurrent networks

7. Convolutional networks

8. Reinforcement learning1: Bellman and SARSA

9. Reinforcement learning2: variants of SARSA

10. Reinforcement learning3: Policy Gradient

11. Deep Reinforcement learning

12. Reinforcement learning and the Brain 

miniproject1

miniproject2a

miniproject2b



Previous slide.

Overall there will be 12 sessions for 14 weeks.

Friday after ascension is no class.

Instead each week there will be 97 minutes of lectures.

Every student has to do two miniprojects.



Miniprojects (MPs): we use software package ‘Keras’ 

- hand in 2 (not 3) out of 3 projects

- graded on a scale of 1-6

- average grade of MPs counts 30% toward final grade

- we do fraud detection interviews

- you get 4 weeks for each MP

- MP done in groups of two students (not alone) 

- interview for final MP is in first week  after end of classes 

 plan ahead!!

Written exam:

- counts 70 percent toward final grade

- no tools allowed (no calculator, no cell phone, no paper, no book)

- ‘mathy’, similar to exercises



Previous slide.

Everybody does the first miniproject.

For the second miniproject you choose between 2a (sequences) or 2b 

(reinforcement learning).

The average grade of the 2 miniprojects counts 30 percent toward the final grade.



Exercise sessions as follows:
- hand-out of exercise sheet n Friday of week n

- You work on it at home on your own

- Solutions posted at noon, Monday, week n+1

- Friday week n+1 by 10:15 am: the most difficult

exercise is explained by a TA on the blackboard

- Friday week n+1 at 10:15am. Main lecture hall for  

discussions with Tas. 

- Friday week n+1  at 10:45 am class/lecture

- Friday week n+1 at  12:40 individual Q&A to miniprojects



Previous slide.

Exercise sessions follow a special model, very different from the standard EPFL 

way of doing it.



Weakly sessions as follows:
- Meet at 10:15 in lecture hall

- Exercise discussed from 10:15 -10:40

- break 5 min

- Lecture 1 from 10:45-11:35

- Break 8 min

- Lecture 2 from 11:43-12:35

- Break 5 min

- Discussion of miniproject from 12:40-12:55

Each lecture typically includes one ‘in-class’ exercise 



Previous slide.

For the in-class exercises it is important that you really try to solve them. No 

problem if you fail (some are harder than others). But important is that you start to 

think about how you would solve them.

The results of in-class exercises are needed so as to understand the rest of the 

lecture.
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- The math is developed on the blackboard

- There are no written course notes!!

- All of the contents are standard textbook material

Choose a textbook that you like! I recommend

For first half of class:

- Pattern Recognition and Machine Learning, C.M Bishop, 2006

- Neural Networks for Pattern Recognition, C.M. Bishop, 1995

- Deep Learning, Ian Goodfellow et al., 2017 (also online)

For second half of class:

- Reinforcement learning, R. Sutton+ A. Barto (2nd ed, online)

Also good: Neural networks and learning machines, S. Haykin



Previous slide.

Work with a textbook that you like.

The books of 

Goodfellow et al. 

Sutton and Barto

are the basis of the class. Both are available online in pdf format as preprints for 

free.



Artificial Neural Networks

Prerequisits:

CS433, Machine Learning

(Profs Jaggi+Urbanke)

Rules:

If you have taken this class: please ask many questions

If you have not taken this class: please do not complain



Previous slide.

The overlap with the class of Jaggi+Urbanke is minimal (main overlap for 

‘regularization’). But we need quite a few of their results as a basis!

Some students have taken a very similar class and then this is also fine. 

Students who did not take the above class (or something very similar) are not 

admitted to the class ‘Artificial Neural Networks’. If they attend, it is at their own 

risk; they should not ask questions, but fill the knowledge gaps on their own. 

They should not complain if they find the class too hard.



Artificial Neural Networks

Learning outcomes:

- apply learning in deep networks to real data

- assess/evaluate performance of learning algorithms

- Elaborate relations between different mathematical 

concepts of learning

- judge limitations of learning algorithms

- propose models for learning in deep networks

Transversal skills:

Access and evaluate appropriate sources of information

Manage priorities

work through difficulties, write a technical report



Previous slide.

Access and evaluate appropriate sources of information

 this means: you should learn to read textbooks. It is not sufficient to just look 

at slides. 

Manage priorities

 this means: the two miniprojects together only count 30 percent. Don’t write a 

program with bells and whistles, but really focus on the things you are asked to 

do.

work through difficulties, 

 this means: some things will look hard at the beginning, be it in the miniproject

or in the mathematical calculations. That’s normal, but you have to work 

through this.

write a technical report

 this means: we would like to receive a readable technical report for the 

miniprojects. Concise,  to the point, not too long.



Artificial Neural Networks

Work load:

4 credit course  6 hours per week for 18 weeks

(1 ECTS = 27 hours of work)



Previous slide.

18 weeks for 12 weeks of lectures:

The week of ascension, and easter, and exam preparation time counts as well.



A: Self-paced self-study

1. Read slides 1+2

(objectives and reading)

2. Start exercise n.

3. If stuck, read book chapter

Return to 2.

4. nn+1

5. Compare with solutions

6. Do quizzes in slides

(yellow pages)

Hand-in two miniprojects.
Note: Slides are not meant for 

self-study. Use textbook!

Two ways to study for this class

B: Lecture-based weekly 

1. Follow lecture

- annotate slides

- participate in quizzes

- try to solve in-class

exercises

2. At home do other exercises 

3. Compare with solutions.

4.  If stuck, vote for this  

exercise to be explained. 

Hand-in two miniprojects.
Note: Do not forget to annotate 

slides so that you can use them. 



Previous slide.

You don’t need to come to class, since all material is textbook material. But then 

you really have to study the textbooks!

Slides are not meant to replace textbooks.



Questions?

… before we start 

TA’s this year:

- Berfin Simsek

- Nicolas El Maalouly

- Chiara Gastaldi

- Florian Colombo

- Bernd Illing



Previous slide.
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Your Semester planning

The course ‘Deep Learning’ (Fleuret)

and the course ‘Artificial Neural Networks’ (Gerstner)

have about 20-30 percent overlap.

You can take either one or the other or both (OR),

students consider the course of Prof. Fleuret as 

‘more practical coding-oriented’ than this one here.

The course ‘Unsupervised and Reinforcement L.’ (not given)

and the course ‘Artificial Neural Networks’ (Gerstner)

have about 20-30 percent overlap (three weeks)

I suggest to take either one or the other or both;

The other course is more ‘biological’ than this one here



Previous slide.

The class ‘Deep learning’ also treats backpropagation, tricks of the trade, 

convolutional networks. It does not contain any reinforcement learning.

The class ‘Unsupervised and Reinforcement learning’ also treats Reinforcement 

learning. It does not contain any supervised learning for classification, no 

backpropagation. Reinforcement learning is discussed with a biological focus.

The class is not given in 2019. 

The class ‘Artificial Neural Networks’ is planned for IC students who have already 

taken the class ‘Machine Learning’ by Jaggi-Urbanke.

The class ‘Deep Learning’ is planned for STI students and does not have any 

prerequisits (except engineering bachelor)
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Your semester planning

The course ‘Deep Learning’ (Fleuret)

and the course ‘Unsupervised and Reinforcemnt L.’ (Gewaltig)

have less than 5 percent overlap.

You can take one or the other or both (OR).

+The course ‘Unsupervised and Reinforcement L.’ (Gewaltig)

is oriented towards biological questions, aimed at SV students

+The course ‘Deep Learning’ (Fleuret) is an applied course.

It has no prerequisits and does not cover reinforcement learning.

Aimed at STI students

+ The course ‘Artificial Neural Networks’ (Gerstner) is a course

aimed at IC students. Prerequisit: Machine Learning (Jaggi)



Previous slide.

The course starting now is aimed for IC students.
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Simple Perceptrons for Classification

Objectives for today:

- understand classification as a geometrical problem

- discriminant function of classification

- linear versus nonlinear discriminant function

- perceptron algorithm

- gradient descent for simple perceptrons



Previous slide.

… and now we really start.



1. The problem of Classification

input

car (yes or no)

output

the classifier



Previous slide.

We focus on the class of classification.

To be concrete we consider images. The task of the classifier is to say: yes or no.

In the concrete example: yes means, there is a car on the image



1. The problem of Classification

input

car (yes or no)

output

Blackboard 1:

from images to vector



Previous slide.

Even though we visualize the input as a two-dimensional image, the input to the 

networks really just is a vector x 

of pixel values.



Blackboard 1:

from images to vector



Your notes.



1. The problem of Classification

input

+1 yes (or 0 for no)

output

the classifier

f(x)

vector x



Previous slide.

The input is a vector x

The classifier is a function f(x) 

that maps the input to the output

The output is binary: +1 or 0.



1.  Classification as a geometric problem

x
x

x
x

x
x

x

o
oo
o

o

o o
o

Blackboard 2:

from  vectors to classification

x

x
o



Previous slide.

Classification means: assigning a +1 to some inputs (e.g. cars) and 0 to other 

inputs (not cars).

Classification corresponds to a separating (by some surface) the positive 

examples (green crosses) from the negative ones (red circles).

The space is the space of input vectors x



Blackboard 2:

from  vectors to classification
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1.  Classification as a geometric problem

Task of Classification 

= find a separating surface in the high-dimensional input space

Classification by discriminant function d(x)

 d(x)=0 on this surface; d(x)>0 for all positive examples x

d(x)<0 for all counter examples x

x
x

xx

x
xx

ooo
o o
o o o

x

x
o

d(x)=0 

x
x

xx

x
xx

ooo
o o
o

o

o
x

x

o

linearly

separable

problem

d(x)=0 

𝑑 𝒙𝜇 > 0



Previous slide.

The discriminant function d(x) takes inputs x and maps these to:

d(x)>0 for all positive examples x

d(x)<0 for all counter examples x

d(x)=0 on the separating surface

Solving a classification problem therefore is equivalent to finding a discriminant 

function.



2.  Data base for Supervised learning 

input

car (yes)

Classifier

output

Techerteacher

𝒙𝜇

 

 𝑦𝜇 = 1𝑡𝜇 = 1target output classifier output



Previous slide.

To construct such a discriminant function we need a data base for supervised 

learning. 

The problem is called supervise learning because we assume that a teacher has 

previously looked at the examples and assigned labels.

A label 𝑡𝜇 = 1 for an input vector 𝒙𝜇 means that this input pattern belongs to the 

class (positive example)

A label 𝑡𝜇 = 0 for an input vector 𝒙𝜇 means that this input pattern does not belong

to the class (counter-example)



2.  Data base for Supervised learning 

input

car =yes

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

target output

𝑡𝜇 = 1

P data points

𝑡𝜇 = 0 car =no



Previous slide.

The data base for supervised learning contains P data points, each consisting of a 

pair of input and target output.



2.  Data base for Supervised learning 

input

car (no)

Classifier

output

Techerteacher

𝒙7

𝑡7 = 1target output classifier output
error!

 𝑦7 = 0



Previous slide and next slide.

The basic idea of supervised learning is that the actual output of the classifier is 

compared with the target output. If there is a mismatch, then the error can be 

used to optimize the function f(x) of the classifier.



2.  Data base for Supervised learning 

input

 

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

target output

P data points

for each data point      , the classifier gives an output 𝑦𝜇

 𝑦𝜇 ≠ 𝑡𝜇

𝒙𝜇

 use errors                 for optimization of classifier 

Remark: for multi-class problems y and t are vectors



Previous slide.

A single-class classifier has a single binary target output 𝑡𝜇 = 0 𝑜𝑟 1.

For a multi-class classifier the target output is a vector.



3.  Single-Layer networks: simple perceptron 

Blackboard 3:

hyperplane

output

the classifier

f(x)

vector x

 𝑦 = 𝑔  

𝑘

𝑤𝑘 𝑥𝑘

𝑤𝑘

𝑥𝑘

+1 if  

0  if

 𝑦 = 𝑓(𝒙)

 𝑦 = 𝑔 𝑎′ =
𝑎′ > 𝜗
𝑎′ < 𝜗



Previous slide.

So far we have not specified the function f(x) of the classifier.

Now we assume that the classifier consists of a single artificial model neuron.

Each component 𝑥𝑘of the input vector is multiplied by a weight  𝑤𝑘 .

The function g( ) is some nonlinear function.



Blackboard 3:

hyperplane
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3.  Single-Layer networks: simple perceptron 

input

output

vector x

 𝑦
𝜇

= 𝑔  

𝑘

𝑤𝑘 𝑥𝑘

𝑤𝑖𝑘

𝑥𝑘



 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛  𝑘 𝑤𝑘 𝑥𝑘 − 𝜗 ]

a

a’
a’

g(a’)

g(a’)=
1    if a’> 




0.5 if a’=
0 if a’>



Previous slide.

Top line: Often we choose for g a step  function with threshold 𝜗 .

The total effective input activation of the neuron is called a (including the 

threshold) or a’ (before the threshold is subtracted).



x
x

xx

x
xx

ooo
o o
o

o

o
x

x

o

imposes a linear

separation

3.  Single-Layer networks: simple perceptron 

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑠𝑔𝑛  𝑘 𝑤𝑘 𝑥𝑘 − 𝜗 ]

𝑑 𝒙 =  

𝑘

𝑤𝑘 𝑥𝑘 − 𝜗 = 0



Previous slide.

A single artificial model neuron implements a linear separation of the positive and 

negative examples. Thus the discriminant function is a hyperplane.



x
x

x
x

o
o

o

o

3.  remove threshold: add a constant input 

𝑤𝑖𝑘

𝑥𝑘

𝑑 𝒙 =  

𝑘=1

𝑁

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

𝒙 ∈ 𝑅𝑁

x

x
x

o
o

o
o

x

-1

0

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝑑 𝒙 =  

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 0



Previous slide.

The hyperplane has a distance 𝜗 /|w| from the origin.

Formally, we can represent the threshold by an additional weight 𝑤𝑁+1 = 𝜗
which is multiplied with a constant input 𝑥𝑁+1 = −1.

In this (N+1)-dimensional space, the hyperplane passes through the origin.



3.  Single-Layer networks: simple perceptron 

a simple perceptron 

- can only solve linearly separable 

problems

- imposes a separating hyperplane

- for               hyperplane goes through 

origin

- threshold parameter       can be removed 

by adding an input dimension 

 in N+1 dimensions hyperplane always

goes through origin

- We can adapt the weight vector to the

problem

𝜗

𝜗 = 0



Previous slide.

Thus, a simple perceptron can only solve linearly separable problems. Important 

for the following is that the positioning of the hyperplane in the high-dimensional 

space can be changed by adapting the weight vector to the data base.



4. Perceptron algorithm: turn weight vector (in N+1 dim. )

ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒: 𝑑 𝒙 =  

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 𝒘𝑇𝒙 = 0

x

x x
x

o

o

o
o

x

x x
x

o

o

o
o

𝒘 𝒘



Previous slide.

In the following we always work in N+1 dimensions and exploit that the 

hyperplane goes through the origin.

Left: one of the examples is misclassified.

Right: all examples are correctly classified.

Idea: Turn weight vector in appropriate direction to go from the situation on the left 

to the situation on the right.



4. Perceptron algorithm: turn weight vector 

Blackboard 4:

geometry of perceptron algo
∆𝒘~𝒙𝜇

Perceptron algo (in N+1 dimensions): 

- set 𝜇 = 1
(1) cycle many times through patterns

- choose pattern 𝜇
- calculate output

- update by 

- iterate 𝜇 ← (𝜇 + 1)𝑚𝑜𝑑𝑷, back to (1)

(2) stop if no changes for all P patterns

∆𝒘 = 𝛾[𝑡𝜇 −  𝑦
𝜇
]𝒙𝜇

 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛(𝒘𝑇𝒙𝜇)]



Previous slide.

A change of the weight vector (during the update step) happens only if the actual 

output  𝑦
𝜇

for pattern  𝒙𝜇 is not equal to the target output 𝑡
𝜇



Blackboard 4:

geometry of the perc. algo
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4. Perceptron algorithm: theoreom

x

x x
x

o

o

o
o

𝒘

If the problem is linearly separable, the perceptron 

algorithm converges in a finite number of steps.

Proof: in many books, e.g.,

Bishop, 1995,
Neural Networks for Pattern Recognition



Previous slide.

Important: Convergence is only guaranteed if the problem is linearly separable.



Quiz: Perceptron algorithm 

The input vector has N dimensions and we apply a perceptron algorithm.

[ ] A change of parameters corresponds always to a rotation of the separating

hyperplane in N dimensions.

[ ] A change of the separating hyperplane implies a rotation of the hyperplane 

in N+1 dimensions.

[ ] An increase of  the length of the weight vector implies an increase of the

distance of the hyperplane from the origin in N dimensions.

[ ] An increase of the length of the weight vector implies that the hyperplane

does not change in N dimensions

[ ] An increase of the length of the weight vector implies that the hyperplane

does not change in N+1 dimensions

[ ]

[x]

[ ]

[ ]

[x]
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5.  Sigmoidal output unit

x

x
x

o
o

o
o

x

-1

0

𝑤𝑖𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇 = 𝑔( 𝑘=1
𝑁+1 𝑤𝑘 𝑥𝑘

𝜇
)

𝑔 𝑎 =
exp(𝑎)

1 + exp(𝑎)
=

1

1 + exp(−𝑎)

𝑎

1

0



Previous slide. 

We return to our choice of the nonlinear function g().

Instead of a threshold function, we can also work with a sigmoidal function.

The definition of the total input activation a is the same as before.

Instead of a step we now have a smooth transition from zero to one.



5.  Supervised learning with sigmoidal output 

input

output

Techerteacher

𝒙7

 

 𝑦7 = 0.2𝑡7 = 1target output classifier output
error!

𝜗
Classifier

𝒇(𝒙7) = 𝑔 𝒘𝑇𝒙𝜇



Previous slide.

The notion of mismatch in the output works for the smooth output noe

analogously to the case of the binary one that we have studied before



𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇

𝑎

1

0

𝐸(𝒘) =
1

2
 

𝜇=1

𝑃

𝑡
𝜇

−  𝑦𝜇 2
define error

gradient descent

5.  Supervised learning with sigmoidal output 

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘



Previous slide.

Since an error measure has to be always positive, we square the difference 

between actual output and target output.

The error function is this squared difference summed over all patterns in the data 

base. This error function is called the squared error or the quadratic error 

function. We will see other error functions in later weeks.

Most of the learning rules that we consider in this class are based on gradient 

descent:

The weight 𝑤𝑘 is updated by an amount  ∆𝑤𝑘 proportional to the gradient 
𝑑𝐸

𝑑𝑤𝑘

The amplitude of the update is given by the learning rate gamma.

There is a negative sign because the aim is the REDUCE the error in each step.

With small enough learning rate, the gradient descent algorithm will end up close 

to a minimum of the error function. It jitters around the minimum because of the 

finite learning step gamma.

There is no reason that it should end up in a global minimum.



𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝐸(𝒘) =
1

2
 

𝜇=1

𝑃

𝑡
𝜇

− 𝑦
𝜇 2

Quadratic error

gradient descent

6. gradient descent 

𝑤𝑘

𝐸
𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Exercise 1.1 now: 
- calculate gradient (1 pattern)

- geometrical interpretation?

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇



Your notes.



Exercise 1.1 now: 
- calculate gradient (1 pattern)

- geometrical interpretation?

Lecture continues 

at 12:02



Your notes.



6. Gradient descent algorithm

x

x x
x

o

o

o
o

𝒘

∆𝒘 = 𝛾𝛿(𝜇)𝒙𝜇

- stepsize depends on

(signed) output mismatch

for this data point

- change implemented 

even if ‘correctly’ classified

- compare with perceptron 

algorithm

𝛿(𝜇)



Previous slide.

Gradient descent can be done in two different modes:

Batch algorithm: we keep the sum over all patterns 

one update step after all patterns have been seen.

updates are repeated several times.

Online algorithm: one update step after each single pattern.

(patterns can be chosen stochastically or cyclically:

the online algo is also called stochastic gradient descent)

one ‘epoche’ = all patterns seen once. 

repeated for many epochs until convergence

Structure of online algorithm similar to perceptron algorithm.

Main difference: the mismatch                is smooth here

Similar to perceptron, if a positive example is misclassified, the weight vector 

turns in direction of this input pattern. 

The geometric picture is hence the same as for the Perceptron algorithm.

𝛿(𝜇)



Learning outcome and conclusions for today:

- understand classification as a geometrical problem

- discriminant function of classification

- linear versus nonlinear discriminant function

- perceptron algorithm

- gradient descent for simple perceptrons

Install software NOW! (Exercise Session)



Previous slide.

- Classification is equivalent to finding a separating surface in the high-

dimensional input space

- This surface can be defined by the condition d(x)=0 where d is the discriminant 

function

- A generic data base for supervised learning requires a nonlinear discriminant 

function

- A simple perceptron can only implement a linear discriminant function: the 

separating hyperplane

- The perceptron algorithm turns the separating hyperplane in N+1 dimensions

- A quadratic error function gives rise to a stochastic gradient descent algorithm

- Geometrically the stochastic gradient descent algorithm also turns the 

hyperplane in N+1 dimensions, very similar to the perceptron algorithm



The 

END

Reading for this week:

Bishop, Ch. 4.1.7 of

Pattern recognition and Machine Learning

or

Bishop, Ch. 3.1-3.5 of

Neural networks for pattern recognition

Motivational background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Goodfellow et al., Ch. 1 of

Deep Learning



Previous slide.

The suggested reading is important, in particular if you are not able to attend the 

class in a given week.

In all the following weeks, the suggested reading will always be listed on slide 2, 

at the beginning of the lecture, so that it is easy to find.


