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Session 2 Outline

● Part 1: Basics of Programming
● via a brief “crash course” in the Python language

● Part 2: Basics of Algorithms and Complexity
● searching, sorting, organizing data, big-O notation



  

Part 1: Basics of Programming

1 Hour :)

https://www.amazon.com/Python-Beginners-programming-web-programming-programmer-ebook/dp/B075JGW5YK


  

Introducing Python

A popular high-level language that hides many 
details in order to be simple to learn and use
● But powerful due to rich ecosystem of add-ons
● Especially popular for statistics & data science

But principles we cover are not specific to Python

We will use a web-based Python interpreter:
● Go to https://repl.it/ and search for ‘Python3’
● Or just click: https://repl.it/languages/python3

https://repl.it/
https://repl.it/languages/python3


  

You should see something like… 

Its output 
appears here

Your program 
goes here



  

Hello World in Python

In computer science tradition, your first program in 
any language should print “Hello World”

Enter this program in the ‘main.py’ window at left:

…then click the
“Play button”:

print("Hello World")



  

Data Types: Integers, Strings, …

Python and other high-level languages help by 
distinguishing between different data types
● Example: “Hello World” (with quotes) is a string
● Example: 1234 (with no quotes) is an integer

You can print most any data type:

But they have important differences as we’ll see!

print(3, "blind mice")



  

Arithmetic Expressions

Python (like most high-level languages) lets you 
use expressions to convey complex calculations.

Example:

Python breaks this code into simpler operations:

1) Multiply the integer 2 by the integer 3

2) Add the result of step 1 to the integer 4

3) Print the result of step 2

print(2*3+4)



  

Arithmetic Operators

You do integer arithmetic by combining integers 
using a variety of standard operators…

…but some use
funny symbols
because math
operators like
divide (÷)
aren’t on most
keyboards

https://www.tes.com/teaching-resource/python-arithmetic-operators-11508930


  

Strings

Anything in single- or double-quotes is a string
● Example: “Hello World” in our first program

The quotes are critical: they tell Python not to treat 
their contents like code and try to compute them!

Example:

We’re printing 3 things: 2 strings and an integer

print("2*3+4", "is", 2*3+4)



  

Strings

Anything in single- or double-quotes is a string
● Example: “Hello World” in our first program

The quotes are critical: they tell Python not to treat 
their contents like code and try to compute them!

Example:

We’re printing 3 things: 2 strings and an integer

print("2*3+4", "is", 2*3+4)

strings integer



  

String Operators

Arithmetic isn’t just for numbers!
● You can concatenate strings with ‘+’ operator

Notice the difference in this example:

Python uses different operators on different types

print(1+2,'is integer arithmetic')
print('1'+'2','is string arithmetic')



  

Bit Isn’t Data “Just Bits and Bytes”?

Yes.  Computer memory is just an array of bytes:

But languages like Python organize memory using 
metadata to distinguish high-level data types...

32 57 1 4 1 2 3 4 98 13 2 5 72 101 108 108 111 69 …

1

tag: means
“this is an 

integer”

4 1 2 3 4

number of 
digits in the 

integer

the actual 
integer

2

tag
“this is a 
string”

5 H e l l

length of 
the string

ASCII
encoded

characters

o



  

All is encoded into bits and bytes

Example: characters encoded via the ASCII table

…or international-friendly Unicode and UTF8

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg


  

Abstracting Data with Variables

We need a way to make program code abstract,
so we can rerun the same code on different data.

Variables are the most basic abstraction tool
● Act as “holes” for data to be filled in elsewhere

For example, try:

‘num’ is a variable we can refer to several times
● Change in one place to process different data

num = 5
print(num, 'plus', num, 'is', num+num)



  

Abstracting Code with Functions

We need to reuse program code as well as data.

Functions let us name a fragment of code once, 
then reuse it multiple times by invoking that name:

def eeny():
  print("Eeny, meeny, miny, moe")

eeny()
print("Catch a tiger by the toe")
print("If he hollers let him go")
eeny()



  

Abstracting Code with Functions

We need to reuse program code as well as data.

Functions let us name a fragment of code once, 
then reuse it multiple times by invoking that name:

def eeny():
  print("Eeny, meeny, miny, moe")

eeny()
print("Catch a tiger by the toe")
print("If he hollers let him go")
eeny()

function name
function 

definition

function 
calls



  

Reusing Code with Different Data

Functions wouldn’t be so useful if they always had 
to repeat exactly the same code on the same data

Parameters are special variables allowing us to 
give a function different input data at each call:

We can now reuse ‘avg’ on any pair of numbers 

def avg(a,b):
  print("The average of",a,
        "and",b,"is",(a+b)/2)

avg(2,4)
avg(5,10)



  

Reusing Code with Different Data

Functions wouldn’t be so useful if they always had 
to repeat exactly the same code on the same data

Parameters are special variables allowing us to 
give a function different input data at each call:

We can now reuse ‘avg’ on any pair of numbers 

def avg(a,b):
  print("The average of",a,
        "and",b,"is",(a+b)/2)

avg(2,4)
avg(5,10)

parameters (‘holes’)

Actual data values
to ‘fill the holes’ with



  

Returning Data from Functions

Functions can not only take but also produce data
● By ‘return’ing it for use in the calling code

Example: ‘avg’ is more generic and useful if it lets 
the caller decide how to use the computed result.
● Assign to variable, use in further calculation…

def avg(a,b):
  return (a+b)/2

toms_age = 20; bobs_age = 40
avg_age = avg(toms_age,bobs_age)
print("avg_age:", avg_age)



  

Flow Control: Conditionals

Sometimes we need to run different code paths 
depending on the data a function is given.

Example: to compute the maximum of two 
numbers, we need a way to compare them!

def max(a,b):
  if a > b:
    return a
  else:
    return b

print(max(1,2),"is",max(2,1))



  

Flow Control: Conditionals

Sometimes we need to run different code paths 
depending on the data a function is given.

Example: to compute the maximum of two 
numbers, we need a way to compare them!

def max(a,b):
  if a > b:
    return a
  else:
    return b

print(max(1,2),"is",max(2,1))

The condition to test
executes only if

the condition is true
Executes only if

the condition is false



  

Boolean Predicates

‘if’ can calculate complex conditional predicates 
by combining relational and logical operators
● Relational: compare things, yield true or false
● Logical: take true or false, yield true or false

Relational Operators Logical Operators



  

Boolean Predicate Example

Example: who is and isn’t legally of (unrestricted) 
working age in Switzerland?

def is_working_age(name,age):
  if (age >= 18) and (age <= 65):
    return name + " is working age"
  else:
    return name + " isn't working age"

print(is_working_age("Alice", 15))
print(is_working_age("Bob", 30))
print(is_working_age("Charlie", 68))



  

Boolean Predicate Example

Example: who is and isn’t legally of (unrestricted) 
working age in Switzerland?

def is_working_age(name,age):
  if (age >= 18) and (age <= 65):
    return name + " is working age"
  else:
    return name + " isn't working age"

print(is_working_age("Alice", 15))
print(is_working_age("Bob", 30))
print(is_working_age("Charlie", 68))



  

Data Collections: Lists

We need programs to process many data items, 
without having to write code to handle each item!

Collection data types such as Python lists allow 
us to gather many small items into one composite

Example: a list of the members of a group

group = ["Alice", "Bob", "Charlie"]
print("the group contains", group)
print("there are", len(group), "members")
print("the first member is", group[0])



  

Data Collections: Lists

We need programs to process many data items, 
without having to write code to handle each item!

Collection data types such as Python lists allow 
us to gather many small items into one composite

Example: a list of the members of a group

group = ["Alice", "Bob", "Charlie"]
print("the group contains", group)
print("there are", len(group), "members")
print("the first member is", group[0])

Built-in function returning 
the length of a list Returns a particular item 

from a list by position



  

Flow Control: Loops

Loops allow us to process all the items in a list,
in sequence, without caring how many there are

Example: a function listing all members of a group

def list_members(group):
  for name in group:
    print(name, "is a member")

list_members(["Alice", "Bob", "Charlie"])



  

Flow Control: Loops

Loops allow us to process all the items in a list,
in sequence, without caring how many there are

Example: a function listing all members of a group

def list_members(group):
  for name in group:
    print(name, "is a member")

list_members(["Alice", "Bob", "Charlie"])

The list to loop over

Temporary variable that refers to each  element in turn

The code to run repeatedly, once for each list element



  

Lists of Anything and Everything

Lists can hold any data type, even other lists!

Example:

Question: before running the above code,
how many items total will the last line report?

Why?

weird_list = [1, 2, "three", [4, "five"]]

for item in weird_list:
  print("next item:", item)
print(len(weird_list), "items total")



  

Calculating Aggregates over Lists

We can now calculate statistics over many 
integers without caring how many there are.

Example 1: find the average of a list of numbers

def avg_list(list):
  sum = 0
  for value in list:
    sum = sum + value
  return sum / len(list)
  
print("avg", avg_list([10, 30, 20]))



  

Calculating Aggregates over Lists

We can now calculate statistics over many 
integers without caring how many there are.

Example 1: find the average of a list of numbers

def avg_list(list):
  sum = 0
  for value in list:
    sum = sum + value
  return sum / len(list)
  
print("avg", avg_list([10, 30, 20]))

Temporary variable 
holding the running sum

Repeat for each value 
to add them up

Calculate the average



  

Calculating Aggregates over Lists

We can now calculate statistics over many integers 
without caring how many there are.

Example 2: find the maximum number in a list

Can you change this into a ‘min_list’ quickly?

def max_list(list):
  largest = 0
  for value in list:
    if value > largest:
      largest = value
  return largest
  
print("max", max_list([10, 30, 20]))



  

Calculating Aggregates over Lists

We can now calculate statistics over many integers 
without caring how many there are.

Example 2: find the maximum number in a list

Can you change this into a ‘min_list’ quickly?

def max_list(list):
  largest = 0
  for value in list:
    if value > largest:
      largest = value
  return largest
  
print("max", max_list([10, 30, 20]))

Temporary variable 
holding the largest value 

we’ve seen so far

We repeat this for each 
value to find the largest



  

Computing New Collections

We’re not constrained to aggregation, but can 
transform existing collections into new collections.

Example: reverse the order of items in a list.

def reverse(list):
  newlist = []
  for item in list:
    newlist = [item] + newlist
  return newlist

print(reverse([1,2,3,4,5]))



  

Computing New Collections

We’re not constrained to aggregation, but can 
transform existing collections into new collections.

Example: reverse the order of items in a list.

def reverse(list):
  newlist = []
  for item in list:
    newlist = [item] + newlist
  return newlist

print(reverse([1,2,3,4,5]))

Temporary variable we’ll 
use to build the new list

prepend each item to
new list successively



  

Associative Dictionaries

We often need to associate data items:
e.g., names of people with attributes such as age.

Dictionaries are collections of key/value pairs,
each relating a key (e.g., name) to a value (age).

Now we can find values by key instead of position:

ages = {
  "Alice":15, "Bob":30, "Charlie":68}

print("Bob's age is", ages["Bob"])



  

Loops over Dictionaries

We can use ‘for’ to loop over all the keys present 
in a dictionary and do something with their values.

Example: print name and age of each person

ages = {
  "Alice":15, "Bob":30, "Charlie":68}

for name in ages:
  print(name + "'s age is", ages[name])
print(len(ages), "total members")



  

Loops over Dictionaries

We can use ‘for’ to loop over all the keys present 
in a dictionary and do something with their values.

Example: print name and age of each person

ages = {
  "Alice":15, "Bob":30, "Charlie":68}

for name in ages:
  print(name + "'s age is", ages[name])
print(len(ages), "total members")

The dictionary 
to loop over

Temporary variable referring to each key in turn

The code to run once for each key in the dictionary



  

Example: Pseudonymizer

As with lists, we can transform whole dictionaries.
● Example: replace names with pseudonyms†

def pseudonymize(dict):
  newdict = {}
  nextnym = 1
  for name in dict:
    nym = "user" + str(nextnym)
    newdict[nym] = dict[name]
    nextnym = nextnym + 1
  return newdict

ages = {
  "Alice":15, "Bob":30, "Charlie":68}
print(pseudonymize(ages))

† A rather naive way to protect privacy of course, as we’ll explore later



  

Divide-and-Conquer via Recursion

We often want to break a large, hard problem into 
smaller, easier subproblems, using the same code
to process the main problem and its subproblems. 

We do this via recursion: a function calling itself.

Example: factorial(n) multiplies all integers 1…n.



  

Example: Recursive Factorial

Example: factorial(n) multiplies all integers 1…n.
● factorial(3) is 1×2×3 = 6
● factorial(5) is 1×2×3×4×5 = 120

To compute factorial(n), let’s first solve the smaller 
problem of factorial(n-1), then just multiply by n:

def factorial(n):
  if n > 1:
    return n * factorial(n-1)
  return 1

print(factorial(3), factorial(5))



  

Example: Recursive Factorial

Example: factorial(n) multiplies all integers 1…n.
● factorial(3) is 1×2×3 = 6
● factorial(5) is 1×2×3×4×5 = 120

To compute factorial(n), let’s first solve the smaller 
problem of factorial(n-1), then just multiply by n:

def factorial(n):
  if n > 1:
    return n * factorial(n-1)
  return 1

print(factorial(3), factorial(5))

Recursive function call



  

How Recursive Functions Work

The computer keeps track of multiple partially 
executed instances of factorial function at once.

Call factorial(3) from main program: n = 3
Is n (3) greater than 1?  Yes.

Call factorial(2) from factorial(3): n = 2
Is n (2) greater than 1? Yes.

Call factorial(1) from factorial(2)
Is n (1) greater than 1?  No.
Return 1.

Return 2 times factorial(1)’s result (1)
Result of factorial(2) = 2

Return 3 times factorial(2)’s result (2)
Result of factorial(3) = 6



  

Pitfalls of Recursion (1)

Infinite recursion: what happens if you forget the 
condition that stops subdividing the problem.

Example: factorial(n) without the ‘if’ condition:

What happens?

def factorial(n):
  return n * factorial(n-1)

print(factorial(3), factorial(5))



  

Example: Fibonacci Numbers

Fibonacci numbers are extremely simple but 
fundamental in both mathematics and nature:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Notice that all but the first two are simply the
sum of the previous two numbers in the series.

They relate to golden spirals and flower petals…



  

Fibonacci Numbers via Recursion

We can compute fibonacci(n) just like factorial(n),
breaking it down into the smaller sub-problems
of computing fibonacci(n-1) and fibonacci(n-2):

def fibonacci(n):
  if n > 2:
    return fibonacci(n-1) + fibonacci(n-2)
  return 1

for n in range(1, 10):
  print(fibonacci(n))



  

Fibonacci Numbers via Recursion

We can compute fibonacci(n) just like factorial(n),
breaking it down into the smaller sub-problems
of computing fibonacci(n-1) and fibonacci(n-2):

def fibonacci(n):
  if n > 2:
    return fibonacci(n-1) + fibonacci(n-2)
  return 1

for n in range(1, 10):
  print(fibonacci(n))

Recursive function calls

https://en.wikipedia.org/wiki/Fibonacci_number


  

Pitfalls of Recursion (2)

What happens if you try to use the above program 
to print all the Fibonacci numbers up to 100?

Try it!

Why do you think it behaves this way?



  

Part 2: Algorithms and Complexity



  

Algorithmic Complexity

Just because an algorithm works in principle 
doesn’t necessarily make it practical to use.

Algorithmic complexity is the analysis of
the performance costs of running an algorithm
on an input data set or problem of a given size.
● The focus is not on predicting costs precisely, 

but on categorizing algorithms by how quickly 
their costs grow as the problem size grows.

● Helps us distinguish algorithms that “may be” 
practical from those that are wildly impractical.



  

Kinds of Complexity Costs

We care about multiple kinds of costs, e.g.:
● Computation: how many “steps” or units of 

work a processor must perform to complete it
● Storage: how many bytes of memory or disk 

space it requires to store intermediate results.
● Communication: how many messages or 

bytes a distributed algorithm must transmit.

We will focus on computation, but the fundamental 
principles are the same for analyzing other costs.

https://www.codebyamir.com/blog/how-algorithms-shape-our-world


  

Complexity Example

Compare the recursive factorial and fibonacci 
algorithms presented above. Suppose factorial(1) 
and fibonacci(1)  each take 1 second to execute.  
How long will they take with an input n of 100?
● factorial(100) can be expected to take “on the 

order of” around 100 seconds to complete.
● fibonacci(100) can be expected to take “on the 

order of” around 35 million years to complete.

They both look (and work) quite similarly but have 
vastly different computational complexity.  Why?



  

Analyzing factorial vs fibonacci

Recall that factorial(n) contains one recursive 
function call, whereas fibonacci(n) contains two:

How many calls to each occur when n = 100?

def factorial(n):
  if n > 1:
    return n * factorial(n-1)
  return 1

def fibonacci(n):
  if n > 2:
    return fibonacci(n-1) + fibonacci(n-2)
  return 1



  

Analyzing factorial vs fibonacci

Calling factorial(100)
→ 1 call to factorial(99)

Calling factorial(99)
→ 1 call to factorial(98)

…

Calling fibonacci(100)
→ 1 call to fibonacci(99)
→ 1 call to fibonacci(98)

Calling fibonacci(99)
→ 1 call to fibonacci(98)
→ 1 call to fibonacci(97)

Notice that one call to fibonacci(100) causes
two redundant calls to fibonacci(98).

Each of those makes two calls to fibonacci(96),
or 22=4 redundant calls to fibonacci(96) in total.

…until fibonacci(2) ends up getting called 250 times!



  

Linear vs Exponential Complexity

Recursive factorial has linear or complexity:
execution time increases proportionally with n.
● Mathematically, there is some constant c

such that execution time T = c × n.

Recursive fibonacci has exponential complexity:
execution time increases exponentially with n.
● Mathematically, there is some constant c

such that execution time T = c × 2n

Recursive factorial is efficiently computable, 
whereas recursive fibonacci is definitely not!



  

Complexity and Big-Oh Notation

Since algorithmic complexity focuses on how 
execution costs grow with the problem size (n),
the specific constant c doesn’t really matter.
● factorial(n) running on a faster CPU will have a 

smaller constant c, but will grow the same way.

Computer scientists use “Big-O” notation to hide 
these irrelevant constants and focus on growth.
● O(n) means there is a c such that T = c × n.
● O(n2) means there is a c such that T = c × n2.
● O(2n) means there is a c such that T = c × 2n.



  

Polynomial Complexity

Theoretical computer scientists consider a 
problem to be efficiently computable if there is a 
polynomial-time algorithm to compute it.

This means there is some constant power p
such that the algorithm runs in time O(np).
● Constant-time execution is O(1), or p = 0.
● Linear-time execution is O(n), or p = 1.
● Quadratic-time execution is O(n2), or p = 2.

The polynomial power p cannot depend on n, 
otherwise runtime would be exponential in n!



  

Complexity Classes Illustrated



  

Search Algorithms

Let’s analyze the complexity of some simple 
algorithms for finding something in a collection.

Example: given a Python list of group members,
determine if a particular name is in the group.

We will look at three classes of algorithms:
● Linear-time, O(n): slow for search algorithms
● Logarithmic-time, O(log n): much better
● Constant-time, O(1): even better!



  

Linear-Scan Search Algorithm

The simplest approach: simply scan the list.

Works fine, but takes linear time, O(n), because
we may test against all n members of the group.

def member(name, group):
  for member in group:
    if member == name:
      return name + " is a member"
  return name + " isn't a member"

group = ["Alice", "Bob", "Charlie"]
print(member("Alice", group))
print(member("Dave", group))

https://stackoverflow.com/questions/4317414/polynomial-time-and-exponential-time


  

Logarithmic-time Binary Search

Significantly faster searches generally require that 
the data be organized in some way, e.g., sorted.

If so, we can use more-or-less the same algorithm 
that we use manually searching a dictionary:

1) Open to a page in (approximately) the middle.

2) Use alphabetical ordering to check whether the 
desired word is before, on, or after this page.

3) If not found on this page, repeat from step 1,
restricting attention to pages before/after this.



  

Example Binary Search in Python

A bit more complex, but recursion helps…

Divide-and-conquer!

def member(name, list):
  if len(list) == 0:
    return name + " isn't a member"
  mid = len(list) // 2
  if list[mid] == name:
    return name + " is a member"
  elif list[mid] > name:
    return member(name, list[0:mid])
  else:
    return member(name, list[mid+1:])



  

How big of a win is binary search?

On short lists (e.g., n = 10), you won’t notice.

But as n gets large, the difference becomes huge.

Linear scan:
doubling n
doubles time.

Binary search:
doubling n
adds one step!



  

Can we do even better?

Yes, with some technical issues and caveats:
Hash tables can provide constant-time O(1) cost.

1) Use a hash function
to map names (keys)
to indexes in a table

2) Look in that one
hash table entry

3) Hope that names
don’t [often] “collide”
by hashing to the same entry!



  

Sorting Algorithms

We can search efficiently in well-organized data,
but what are the costs of organizing it?

Sorting algorithms take a list of data items and 
put them in order (e.g., numeric or lexicographic).
● Slow sorting algorithms are simple and easy;

faster sorting algorithms are bit more complex.
● We will use this website to explore visually how 

classic sorting algorithms work:

https://visualgo.net/en 

http://billleidy.com/blog/what-is-big-O.html


  

Selection Sort: O(n2)

A selection sort steps over the list, selecting the 
next-smallest element that fits into each position.

1) Find the smallest item, move it to position 1

2) Find second-smallest item, move to position 2

3) …

But each step requires searching the unsorted 
part of the list for the smallest remaining item,
which takes up to n computation operations.
● n selection steps × n search steps each = O(n2)



  

Example Selection Sort in Python

def sort(list):
  for i in range(len(list)):
    smallest = i
    for j in range(i+1, len(list)):
      if list[j] < list[smallest]:
        smallest = j
    temp = list[i]
    list[i] = list[smallest]
    list[smallest] = temp

list = [5, 7, 3, 9, 1, 6]
sort(list)
print(list)



  

Selection Sort Illustrated

n operations

n-1 operations

n-2 operations

… 

1 operation

done!



  

Bubble Sort: O(n2)

A bubble sort simply traverses the list repeatedly, 
swapping all adjacent out-of-order pairs it finds,
until it finds no further out-of-order pairs to swap.

https://visualgo.net/en


  

Bubble Sort Illustrated



  

Bubble Sort Complexity Analysis

Bubble sort has computational complexity O(n2):
● It may require up to n passes over the list.
● Each pass requires n-1 comparison steps.
● O(n) passes × O(n) comparisons = O(n2)

In general, sorting algorithms that depend on 
strictly linear traversals of the data are O(n2). 

Can we do better?  Yes: divide and conquer!



  

Merge Sort: O(n log n)

A merge sort divides a long list in half, recursively 
sorts the two halves, then merges the results.

In particular, to sort a list:

1) If the list has only one item, just return it.

2) Divide the list into “left” and “right” halves.

3) Recursively call merge-sort to sort each half.

4) Merge the two sorted halves into one list.

https://stackoverflow.com/questions/36700830/selection-sort-algorithm


  

Merge Sort Illustrated



  

Example Merge Sort in Python



  

Example Merge Sort in Python

Subdivide the problem

Sort each
sub-list

Merge the
sub-lists

https://education.microsoft.com/Story/Lesson?token=6Lvog


  

Merge Sort Complexity Analysis

Three key observations:
● Because each recursive divide-and-conquer 

level divides the list in half, we need at most 
O(log n) levels of recursion.

● Merging two lists of length n/2 requires only a 
single pass and thus operates in O(n) time.
– Repeatedly pick the first item from the left sub-list or 

the first item from the right, whichever is smaller.

● The total “merging work” at each level is O(n).

O(log n) levels × O(n) work per level = O(n log n)



  

Quick Sort: O(n log n) expected!

Quick sort is a classic randomized algorithm
● Simpler and almost always faster than most 

known deterministic sorting algorithms

Also uses recursion to divide-and-conquer:

1) Pick a random list element as the pivot.

2) Divide the list into two unsorted sub-lists, 
containing items lower/higher than the pivot.

3) Recursively quick-sort each of the sub-lists.

4) Concatenate the sub-lists to form the result.



  

Quick Sort Complexity Analysis

Key observations:
● Quick Sort will require at most O(log n) 

levels of recursion with high probability.
– We could consistently pick “bad” pivots producing  

unbalanced sub-lists, but it’s exponentially unlikely

● Dividing the big list into two sub-lists is O(n).
– Compare each item with pivot, put in “left” or “right”

● Concatenating sorted sub-lists is O(n).

O(log n) levels × O(n) work per level = O(n log n)



  

Matrix Multiplication

A huge number of data processing applications, 
especially in graphics and signal processing, 
depend heavily on matrix multiplication.

In short: each cell of the result matrix C is the 
inner product of a row in A and a column in B.



  

Matrix Multiplication Complexity

The simple, obvious algorithm is O(n3) because:
● There are O(n2) cells in the result to be filled.
● Computing each result cell requires multiplying

n cells of a row in A by n cells of a column in B.

Thus, matrix multiplication is fundamentally more 
costly than searching or sorting as n grows large.
● But still polynomial time: n3 is a polynomial.

With fancier, more complex algorithms, can be 
reduced to O(n2.3737) and maybe even better…



  

Exponential-Time Algorithms

For many problems, there is no known algorithm 
guaranteed to complete in polynomial time
● Example: the Traveling Salesman Problem

Given a list of cities and the 
distances between each pair 
of cities, what is the shortest 

possible route that visits 
each city and returns to the 

origin city?



  

Why are Algorithms Exponential?

Usually: because we have to search a space of 
possible answers that explodes multiplicatively after 
each step of progress in the search.

Traveling salesman example: which city next?
● No apparent way much better than try them all

After step…

1) n choices

2) n2 choices

3) n3 choices

etc… 

①

①①

①
①

②

②
②

②
②

②

②

②
②

②②



  

Recursive Fibonacci Revisited

The recursive Fibonacci algorithm from before 
takes exponential time in input n.  Essential?

No: that was because of a bad implementation.

● It’s surprisingly easy to get exponentially bad 
performance accidentally from an algorithm bug

We can compute Fibonacci numbers quickly just 
by ensuring that we compute each one only once.

● Example: initialize a list to [1, 1],
then successively extend until length n.

But there are also real exponential-time problems



  

NP-complete and NP-hard problems

For a large class of NP-complete problems,
it seems extremely unlikely that a polynomial-time 
algorithm exists, but we can’t (yet) prove it.
● NP means “nondeterministic polynomial-time”

– Simplified: answer is hard to find but easy to check

● One of 6 open theory problems with a $1 million 
prize from the Clay Mathematics Institute

NP-hard problems are at least as hard as
NP-complete problems and maybe even harder



  

Session 2 Wrap-Up

Part 1: a crash course in Python programming
● Data types: integers, strings, lists, dictionaries
● Operators: integer, string, relational, logical
● Abstracting with variables and functions
● Flow control: conditionals and loops
● Recursion: functions calling themselves



  

Session 2 Wrap-Up

Part 2: basics of algorithms and complexity
● How computation costs grow with problem size

– Ignoring constants with Big-O notation

● “Efficiently computable” complexity classes:
– Constant time: O(1): e.g., hash table lookup
– Logarithmic time: O(log n): e.g., binary search
– Linear time: O(n): e.g., linear search
– Quasilinear time: O(n log n): merge sort, quick sort
– Polynomial time: O(np): e.g., matrix multiply

● Exponential-time complexity: O(2n): impractical!
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