

Computing Foundations II

Computer Science for
Lawyers and Humanitarian Workers

Session 2

Prof. Bryan Ford
Decentralized/Distributed Systems (DEDIS)

EPFL

Moodle:
https://moodle.epfl.ch/course/view.php?id=15667

https://moodle.epfl.ch/course/view.php?id=15667

Session 2 Outline

● Part 1: Basics of Programming
● via a brief “crash course” in the Python language

● Part 2: Basics of Algorithms and Complexity
● searching, sorting, organizing data, big-O notation

Part 1: Basics of Programming

1 Hour :)

https://www.amazon.com/Python-Beginners-programming-web-programming-programmer-ebook/dp/B075JGW5YK

Introducing Python

A popular high-level language that hides many
details in order to be simple to learn and use
● But powerful due to rich ecosystem of add-ons
● Especially popular for statistics & data science

But principles we cover are not specific to Python

We will use a web-based Python interpreter:
● Go to https://repl.it/ and search for ‘Python3’
● Or just click: https://repl.it/languages/python3

https://repl.it/
https://repl.it/languages/python3

You should see something like…

Its output
appears here

Your program
goes here

Hello World in Python

In computer science tradition, your first program in
any language should print “Hello World”

Enter this program in the ‘main.py’ window at left:

…then click the
“Play button”:

print("Hello World")

Data Types: Integers, Strings, …

Python and other high-level languages help by
distinguishing between different data types
● Example: “Hello World” (with quotes) is a string
● Example: 1234 (with no quotes) is an integer

You can print most any data type:

But they have important differences as we’ll see!

print(3, "blind mice")

Arithmetic Expressions

Python (like most high-level languages) lets you
use expressions to convey complex calculations.

Example:

Python breaks this code into simpler operations:

1) Multiply the integer 2 by the integer 3

2) Add the result of step 1 to the integer 4

3) Print the result of step 2

print(2*3+4)

Arithmetic Operators

You do integer arithmetic by combining integers
using a variety of standard operators…

…but some use
funny symbols
because math
operators like
divide (÷)
aren’t on most
keyboards

https://www.tes.com/teaching-resource/python-arithmetic-operators-11508930

Strings

Anything in single- or double-quotes is a string
● Example: “Hello World” in our first program

The quotes are critical: they tell Python not to treat
their contents like code and try to compute them!

Example:

We’re printing 3 things: 2 strings and an integer

print("2*3+4", "is", 2*3+4)

Strings

Anything in single- or double-quotes is a string
● Example: “Hello World” in our first program

The quotes are critical: they tell Python not to treat
their contents like code and try to compute them!

Example:

We’re printing 3 things: 2 strings and an integer

print("2*3+4", "is", 2*3+4)

strings integer

String Operators

Arithmetic isn’t just for numbers!
● You can concatenate strings with ‘+’ operator

Notice the difference in this example:

Python uses different operators on different types

print(1+2,'is integer arithmetic')
print('1'+'2','is string arithmetic')

Bit Isn’t Data “Just Bits and Bytes”?

Yes. Computer memory is just an array of bytes:

But languages like Python organize memory using
metadata to distinguish high-level data types...

32 57 1 4 1 2 3 4 98 13 2 5 72 101 108 108 111 69 …

1

tag: means
“this is an

integer”

4 1 2 3 4

number of
digits in the

integer

the actual
integer

2

tag
“this is a
string”

5 H e l l

length of
the string

ASCII
encoded

characters

o

All is encoded into bits and bytes

Example: characters encoded via the ASCII table

…or international-friendly Unicode and UTF8

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

Abstracting Data with Variables

We need a way to make program code abstract,
so we can rerun the same code on different data.

Variables are the most basic abstraction tool
● Act as “holes” for data to be filled in elsewhere

For example, try:

‘num’ is a variable we can refer to several times
● Change in one place to process different data

num = 5
print(num, 'plus', num, 'is', num+num)

Abstracting Code with Functions

We need to reuse program code as well as data.

Functions let us name a fragment of code once,
then reuse it multiple times by invoking that name:

def eeny():
 print("Eeny, meeny, miny, moe")

eeny()
print("Catch a tiger by the toe")
print("If he hollers let him go")
eeny()

Abstracting Code with Functions

We need to reuse program code as well as data.

Functions let us name a fragment of code once,
then reuse it multiple times by invoking that name:

def eeny():
 print("Eeny, meeny, miny, moe")

eeny()
print("Catch a tiger by the toe")
print("If he hollers let him go")
eeny()

function name
function

definition

function
calls

Reusing Code with Different Data

Functions wouldn’t be so useful if they always had
to repeat exactly the same code on the same data

Parameters are special variables allowing us to
give a function different input data at each call:

We can now reuse ‘avg’ on any pair of numbers

def avg(a,b):
 print("The average of",a,
 "and",b,"is",(a+b)/2)

avg(2,4)
avg(5,10)

Reusing Code with Different Data

Functions wouldn’t be so useful if they always had
to repeat exactly the same code on the same data

Parameters are special variables allowing us to
give a function different input data at each call:

We can now reuse ‘avg’ on any pair of numbers

def avg(a,b):
 print("The average of",a,
 "and",b,"is",(a+b)/2)

avg(2,4)
avg(5,10)

parameters (‘holes’)

Actual data values
to ‘fill the holes’ with

Returning Data from Functions

Functions can not only take but also produce data
● By ‘return’ing it for use in the calling code

Example: ‘avg’ is more generic and useful if it lets
the caller decide how to use the computed result.
● Assign to variable, use in further calculation…

def avg(a,b):
 return (a+b)/2

toms_age = 20; bobs_age = 40
avg_age = avg(toms_age,bobs_age)
print("avg_age:", avg_age)

Flow Control: Conditionals

Sometimes we need to run different code paths
depending on the data a function is given.

Example: to compute the maximum of two
numbers, we need a way to compare them!

def max(a,b):
 if a > b:
 return a
 else:
 return b

print(max(1,2),"is",max(2,1))

Flow Control: Conditionals

Sometimes we need to run different code paths
depending on the data a function is given.

Example: to compute the maximum of two
numbers, we need a way to compare them!

def max(a,b):
 if a > b:
 return a
 else:
 return b

print(max(1,2),"is",max(2,1))

The condition to test
executes only if

the condition is true
Executes only if

the condition is false

Boolean Predicates

‘if’ can calculate complex conditional predicates
by combining relational and logical operators
● Relational: compare things, yield true or false
● Logical: take true or false, yield true or false

Relational Operators Logical Operators

Boolean Predicate Example

Example: who is and isn’t legally of (unrestricted)
working age in Switzerland?

def is_working_age(name,age):
 if (age >= 18) and (age <= 65):
 return name + " is working age"
 else:
 return name + " isn't working age"

print(is_working_age("Alice", 15))
print(is_working_age("Bob", 30))
print(is_working_age("Charlie", 68))

Boolean Predicate Example

Example: who is and isn’t legally of (unrestricted)
working age in Switzerland?

def is_working_age(name,age):
 if (age >= 18) and (age <= 65):
 return name + " is working age"
 else:
 return name + " isn't working age"

print(is_working_age("Alice", 15))
print(is_working_age("Bob", 30))
print(is_working_age("Charlie", 68))

Data Collections: Lists

We need programs to process many data items,
without having to write code to handle each item!

Collection data types such as Python lists allow
us to gather many small items into one composite

Example: a list of the members of a group

group = ["Alice", "Bob", "Charlie"]
print("the group contains", group)
print("there are", len(group), "members")
print("the first member is", group[0])

Data Collections: Lists

We need programs to process many data items,
without having to write code to handle each item!

Collection data types such as Python lists allow
us to gather many small items into one composite

Example: a list of the members of a group

group = ["Alice", "Bob", "Charlie"]
print("the group contains", group)
print("there are", len(group), "members")
print("the first member is", group[0])

Built-in function returning
the length of a list Returns a particular item

from a list by position

Flow Control: Loops

Loops allow us to process all the items in a list,
in sequence, without caring how many there are

Example: a function listing all members of a group

def list_members(group):
 for name in group:
 print(name, "is a member")

list_members(["Alice", "Bob", "Charlie"])

Flow Control: Loops

Loops allow us to process all the items in a list,
in sequence, without caring how many there are

Example: a function listing all members of a group

def list_members(group):
 for name in group:
 print(name, "is a member")

list_members(["Alice", "Bob", "Charlie"])

The list to loop over

Temporary variable that refers to each element in turn

The code to run repeatedly, once for each list element

Lists of Anything and Everything

Lists can hold any data type, even other lists!

Example:

Question: before running the above code,
how many items total will the last line report?

Why?

weird_list = [1, 2, "three", [4, "five"]]

for item in weird_list:
 print("next item:", item)
print(len(weird_list), "items total")

Calculating Aggregates over Lists

We can now calculate statistics over many
integers without caring how many there are.

Example 1: find the average of a list of numbers

def avg_list(list):
 sum = 0
 for value in list:
 sum = sum + value
 return sum / len(list)

print("avg", avg_list([10, 30, 20]))

Calculating Aggregates over Lists

We can now calculate statistics over many
integers without caring how many there are.

Example 1: find the average of a list of numbers

def avg_list(list):
 sum = 0
 for value in list:
 sum = sum + value
 return sum / len(list)

print("avg", avg_list([10, 30, 20]))

Temporary variable
holding the running sum

Repeat for each value
to add them up

Calculate the average

Calculating Aggregates over Lists

We can now calculate statistics over many integers
without caring how many there are.

Example 2: find the maximum number in a list

Can you change this into a ‘min_list’ quickly?

def max_list(list):
 largest = 0
 for value in list:
 if value > largest:
 largest = value
 return largest

print("max", max_list([10, 30, 20]))

Calculating Aggregates over Lists

We can now calculate statistics over many integers
without caring how many there are.

Example 2: find the maximum number in a list

Can you change this into a ‘min_list’ quickly?

def max_list(list):
 largest = 0
 for value in list:
 if value > largest:
 largest = value
 return largest

print("max", max_list([10, 30, 20]))

Temporary variable
holding the largest value

we’ve seen so far

We repeat this for each
value to find the largest

Computing New Collections

We’re not constrained to aggregation, but can
transform existing collections into new collections.

Example: reverse the order of items in a list.

def reverse(list):
 newlist = []
 for item in list:
 newlist = [item] + newlist
 return newlist

print(reverse([1,2,3,4,5]))

Computing New Collections

We’re not constrained to aggregation, but can
transform existing collections into new collections.

Example: reverse the order of items in a list.

def reverse(list):
 newlist = []
 for item in list:
 newlist = [item] + newlist
 return newlist

print(reverse([1,2,3,4,5]))

Temporary variable we’ll
use to build the new list

prepend each item to
new list successively

Associative Dictionaries

We often need to associate data items:
e.g., names of people with attributes such as age.

Dictionaries are collections of key/value pairs,
each relating a key (e.g., name) to a value (age).

Now we can find values by key instead of position:

ages = {
 "Alice":15, "Bob":30, "Charlie":68}

print("Bob's age is", ages["Bob"])

Loops over Dictionaries

We can use ‘for’ to loop over all the keys present
in a dictionary and do something with their values.

Example: print name and age of each person

ages = {
 "Alice":15, "Bob":30, "Charlie":68}

for name in ages:
 print(name + "'s age is", ages[name])
print(len(ages), "total members")

Loops over Dictionaries

We can use ‘for’ to loop over all the keys present
in a dictionary and do something with their values.

Example: print name and age of each person

ages = {
 "Alice":15, "Bob":30, "Charlie":68}

for name in ages:
 print(name + "'s age is", ages[name])
print(len(ages), "total members")

The dictionary
to loop over

Temporary variable referring to each key in turn

The code to run once for each key in the dictionary

Example: Pseudonymizer

As with lists, we can transform whole dictionaries.
● Example: replace names with pseudonyms†

def pseudonymize(dict):
 newdict = {}
 nextnym = 1
 for name in dict:
 nym = "user" + str(nextnym)
 newdict[nym] = dict[name]
 nextnym = nextnym + 1
 return newdict

ages = {
 "Alice":15, "Bob":30, "Charlie":68}
print(pseudonymize(ages))

† A rather naive way to protect privacy of course, as we’ll explore later

Divide-and-Conquer via Recursion

We often want to break a large, hard problem into
smaller, easier subproblems, using the same code
to process the main problem and its subproblems.

We do this via recursion: a function calling itself.

Example: factorial(n) multiplies all integers 1…n.

Example: Recursive Factorial

Example: factorial(n) multiplies all integers 1…n.
● factorial(3) is 1×2×3 = 6
● factorial(5) is 1×2×3×4×5 = 120

To compute factorial(n), let’s first solve the smaller
problem of factorial(n-1), then just multiply by n:

def factorial(n):
 if n > 1:
 return n * factorial(n-1)
 return 1

print(factorial(3), factorial(5))

Example: Recursive Factorial

Example: factorial(n) multiplies all integers 1…n.
● factorial(3) is 1×2×3 = 6
● factorial(5) is 1×2×3×4×5 = 120

To compute factorial(n), let’s first solve the smaller
problem of factorial(n-1), then just multiply by n:

def factorial(n):
 if n > 1:
 return n * factorial(n-1)
 return 1

print(factorial(3), factorial(5))

Recursive function call

How Recursive Functions Work

The computer keeps track of multiple partially
executed instances of factorial function at once.

Call factorial(3) from main program: n = 3
Is n (3) greater than 1? Yes.

Call factorial(2) from factorial(3): n = 2
Is n (2) greater than 1? Yes.

Call factorial(1) from factorial(2)
Is n (1) greater than 1? No.
Return 1.

Return 2 times factorial(1)’s result (1)
Result of factorial(2) = 2

Return 3 times factorial(2)’s result (2)
Result of factorial(3) = 6

Pitfalls of Recursion (1)

Infinite recursion: what happens if you forget the
condition that stops subdividing the problem.

Example: factorial(n) without the ‘if’ condition:

What happens?

def factorial(n):
 return n * factorial(n-1)

print(factorial(3), factorial(5))

Example: Fibonacci Numbers

Fibonacci numbers are extremely simple but
fundamental in both mathematics and nature:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Notice that all but the first two are simply the
sum of the previous two numbers in the series.

They relate to golden spirals and flower petals…

Fibonacci Numbers via Recursion

We can compute fibonacci(n) just like factorial(n),
breaking it down into the smaller sub-problems
of computing fibonacci(n-1) and fibonacci(n-2):

def fibonacci(n):
 if n > 2:
 return fibonacci(n-1) + fibonacci(n-2)
 return 1

for n in range(1, 10):
 print(fibonacci(n))

Fibonacci Numbers via Recursion

We can compute fibonacci(n) just like factorial(n),
breaking it down into the smaller sub-problems
of computing fibonacci(n-1) and fibonacci(n-2):

def fibonacci(n):
 if n > 2:
 return fibonacci(n-1) + fibonacci(n-2)
 return 1

for n in range(1, 10):
 print(fibonacci(n))

Recursive function calls

https://en.wikipedia.org/wiki/Fibonacci_number

Pitfalls of Recursion (2)

What happens if you try to use the above program
to print all the Fibonacci numbers up to 100?

Try it!

Why do you think it behaves this way?

Part 2: Algorithms and Complexity

Algorithmic Complexity

Just because an algorithm works in principle
doesn’t necessarily make it practical to use.

Algorithmic complexity is the analysis of
the performance costs of running an algorithm
on an input data set or problem of a given size.
● The focus is not on predicting costs precisely,

but on categorizing algorithms by how quickly
their costs grow as the problem size grows.

● Helps us distinguish algorithms that “may be”
practical from those that are wildly impractical.

Kinds of Complexity Costs

We care about multiple kinds of costs, e.g.:
● Computation: how many “steps” or units of

work a processor must perform to complete it
● Storage: how many bytes of memory or disk

space it requires to store intermediate results.
● Communication: how many messages or

bytes a distributed algorithm must transmit.

We will focus on computation, but the fundamental
principles are the same for analyzing other costs.

https://www.codebyamir.com/blog/how-algorithms-shape-our-world

Complexity Example

Compare the recursive factorial and fibonacci
algorithms presented above. Suppose factorial(1)
and fibonacci(1) each take 1 second to execute.
How long will they take with an input n of 100?
● factorial(100) can be expected to take “on the

order of” around 100 seconds to complete.
● fibonacci(100) can be expected to take “on the

order of” around 35 million years to complete.

They both look (and work) quite similarly but have
vastly different computational complexity. Why?

Analyzing factorial vs fibonacci

Recall that factorial(n) contains one recursive
function call, whereas fibonacci(n) contains two:

How many calls to each occur when n = 100?

def factorial(n):
 if n > 1:
 return n * factorial(n-1)
 return 1

def fibonacci(n):
 if n > 2:
 return fibonacci(n-1) + fibonacci(n-2)
 return 1

Analyzing factorial vs fibonacci

Calling factorial(100)
→ 1 call to factorial(99)

Calling factorial(99)
→ 1 call to factorial(98)

…

Calling fibonacci(100)
→ 1 call to fibonacci(99)
→ 1 call to fibonacci(98)

Calling fibonacci(99)
→ 1 call to fibonacci(98)
→ 1 call to fibonacci(97)

Notice that one call to fibonacci(100) causes
two redundant calls to fibonacci(98).

Each of those makes two calls to fibonacci(96),
or 22=4 redundant calls to fibonacci(96) in total.

…until fibonacci(2) ends up getting called 250 times!

Linear vs Exponential Complexity

Recursive factorial has linear or complexity:
execution time increases proportionally with n.
● Mathematically, there is some constant c

such that execution time T = c × n.

Recursive fibonacci has exponential complexity:
execution time increases exponentially with n.
● Mathematically, there is some constant c

such that execution time T = c × 2n

Recursive factorial is efficiently computable,
whereas recursive fibonacci is definitely not!

Complexity and Big-Oh Notation

Since algorithmic complexity focuses on how
execution costs grow with the problem size (n),
the specific constant c doesn’t really matter.
● factorial(n) running on a faster CPU will have a

smaller constant c, but will grow the same way.

Computer scientists use “Big-O” notation to hide
these irrelevant constants and focus on growth.
● O(n) means there is a c such that T = c × n.
● O(n2) means there is a c such that T = c × n2.
● O(2n) means there is a c such that T = c × 2n.

Polynomial Complexity

Theoretical computer scientists consider a
problem to be efficiently computable if there is a
polynomial-time algorithm to compute it.

This means there is some constant power p
such that the algorithm runs in time O(np).
● Constant-time execution is O(1), or p = 0.
● Linear-time execution is O(n), or p = 1.
● Quadratic-time execution is O(n2), or p = 2.

The polynomial power p cannot depend on n,
otherwise runtime would be exponential in n!

Complexity Classes Illustrated

Search Algorithms

Let’s analyze the complexity of some simple
algorithms for finding something in a collection.

Example: given a Python list of group members,
determine if a particular name is in the group.

We will look at three classes of algorithms:
● Linear-time, O(n): slow for search algorithms
● Logarithmic-time, O(log n): much better
● Constant-time, O(1): even better!

Linear-Scan Search Algorithm

The simplest approach: simply scan the list.

Works fine, but takes linear time, O(n), because
we may test against all n members of the group.

def member(name, group):
 for member in group:
 if member == name:
 return name + " is a member"
 return name + " isn't a member"

group = ["Alice", "Bob", "Charlie"]
print(member("Alice", group))
print(member("Dave", group))

https://stackoverflow.com/questions/4317414/polynomial-time-and-exponential-time

Logarithmic-time Binary Search

Significantly faster searches generally require that
the data be organized in some way, e.g., sorted.

If so, we can use more-or-less the same algorithm
that we use manually searching a dictionary:

1) Open to a page in (approximately) the middle.

2) Use alphabetical ordering to check whether the
desired word is before, on, or after this page.

3) If not found on this page, repeat from step 1,
restricting attention to pages before/after this.

Example Binary Search in Python

A bit more complex, but recursion helps…

Divide-and-conquer!

def member(name, list):
 if len(list) == 0:
 return name + " isn't a member"
 mid = len(list) // 2
 if list[mid] == name:
 return name + " is a member"
 elif list[mid] > name:
 return member(name, list[0:mid])
 else:
 return member(name, list[mid+1:])

How big of a win is binary search?

On short lists (e.g., n = 10), you won’t notice.

But as n gets large, the difference becomes huge.

Linear scan:
doubling n
doubles time.

Binary search:
doubling n
adds one step!

Can we do even better?

Yes, with some technical issues and caveats:
Hash tables can provide constant-time O(1) cost.

1) Use a hash function
to map names (keys)
to indexes in a table

2) Look in that one
hash table entry

3) Hope that names
don’t [often] “collide”
by hashing to the same entry!

Sorting Algorithms

We can search efficiently in well-organized data,
but what are the costs of organizing it?

Sorting algorithms take a list of data items and
put them in order (e.g., numeric or lexicographic).
● Slow sorting algorithms are simple and easy;

faster sorting algorithms are bit more complex.
● We will use this website to explore visually how

classic sorting algorithms work:

https://visualgo.net/en

http://billleidy.com/blog/what-is-big-O.html

Selection Sort: O(n2)

A selection sort steps over the list, selecting the
next-smallest element that fits into each position.

1) Find the smallest item, move it to position 1

2) Find second-smallest item, move to position 2

3) …

But each step requires searching the unsorted
part of the list for the smallest remaining item,
which takes up to n computation operations.
● n selection steps × n search steps each = O(n2)

Example Selection Sort in Python

def sort(list):
 for i in range(len(list)):
 smallest = i
 for j in range(i+1, len(list)):
 if list[j] < list[smallest]:
 smallest = j
 temp = list[i]
 list[i] = list[smallest]
 list[smallest] = temp

list = [5, 7, 3, 9, 1, 6]
sort(list)
print(list)

Selection Sort Illustrated

n operations

n-1 operations

n-2 operations

…

1 operation

done!

Bubble Sort: O(n2)

A bubble sort simply traverses the list repeatedly,
swapping all adjacent out-of-order pairs it finds,
until it finds no further out-of-order pairs to swap.

https://visualgo.net/en

Bubble Sort Illustrated

Bubble Sort Complexity Analysis

Bubble sort has computational complexity O(n2):
● It may require up to n passes over the list.
● Each pass requires n-1 comparison steps.
● O(n) passes × O(n) comparisons = O(n2)

In general, sorting algorithms that depend on
strictly linear traversals of the data are O(n2).

Can we do better? Yes: divide and conquer!

Merge Sort: O(n log n)

A merge sort divides a long list in half, recursively
sorts the two halves, then merges the results.

In particular, to sort a list:

1) If the list has only one item, just return it.

2) Divide the list into “left” and “right” halves.

3) Recursively call merge-sort to sort each half.

4) Merge the two sorted halves into one list.

https://stackoverflow.com/questions/36700830/selection-sort-algorithm

Merge Sort Illustrated

Example Merge Sort in Python

Example Merge Sort in Python

Subdivide the problem

Sort each
sub-list

Merge the
sub-lists

https://education.microsoft.com/Story/Lesson?token=6Lvog

Merge Sort Complexity Analysis

Three key observations:
● Because each recursive divide-and-conquer

level divides the list in half, we need at most
O(log n) levels of recursion.

● Merging two lists of length n/2 requires only a
single pass and thus operates in O(n) time.
– Repeatedly pick the first item from the left sub-list or

the first item from the right, whichever is smaller.

● The total “merging work” at each level is O(n).

O(log n) levels × O(n) work per level = O(n log n)

Quick Sort: O(n log n) expected!

Quick sort is a classic randomized algorithm
● Simpler and almost always faster than most

known deterministic sorting algorithms

Also uses recursion to divide-and-conquer:

1) Pick a random list element as the pivot.

2) Divide the list into two unsorted sub-lists,
containing items lower/higher than the pivot.

3) Recursively quick-sort each of the sub-lists.

4) Concatenate the sub-lists to form the result.

Quick Sort Complexity Analysis

Key observations:
● Quick Sort will require at most O(log n)

levels of recursion with high probability.
– We could consistently pick “bad” pivots producing

unbalanced sub-lists, but it’s exponentially unlikely

● Dividing the big list into two sub-lists is O(n).
– Compare each item with pivot, put in “left” or “right”

● Concatenating sorted sub-lists is O(n).

O(log n) levels × O(n) work per level = O(n log n)

Matrix Multiplication

A huge number of data processing applications,
especially in graphics and signal processing,
depend heavily on matrix multiplication.

In short: each cell of the result matrix C is the
inner product of a row in A and a column in B.

Matrix Multiplication Complexity

The simple, obvious algorithm is O(n3) because:
● There are O(n2) cells in the result to be filled.
● Computing each result cell requires multiplying

n cells of a row in A by n cells of a column in B.

Thus, matrix multiplication is fundamentally more
costly than searching or sorting as n grows large.
● But still polynomial time: n3 is a polynomial.

With fancier, more complex algorithms, can be
reduced to O(n2.3737) and maybe even better…

Exponential-Time Algorithms

For many problems, there is no known algorithm
guaranteed to complete in polynomial time
● Example: the Traveling Salesman Problem

Given a list of cities and the
distances between each pair
of cities, what is the shortest

possible route that visits
each city and returns to the

origin city?

Why are Algorithms Exponential?

Usually: because we have to search a space of
possible answers that explodes multiplicatively after
each step of progress in the search.

Traveling salesman example: which city next?
● No apparent way much better than try them all

After step…

1) n choices

2) n2 choices

3) n3 choices

etc…

①

①①

①
①

②

②
②

②
②

②

②

②
②

②②

Recursive Fibonacci Revisited

The recursive Fibonacci algorithm from before
takes exponential time in input n. Essential?

No: that was because of a bad implementation.

● It’s surprisingly easy to get exponentially bad
performance accidentally from an algorithm bug

We can compute Fibonacci numbers quickly just
by ensuring that we compute each one only once.

● Example: initialize a list to [1, 1],
then successively extend until length n.

But there are also real exponential-time problems

NP-complete and NP-hard problems

For a large class of NP-complete problems,
it seems extremely unlikely that a polynomial-time
algorithm exists, but we can’t (yet) prove it.
● NP means “nondeterministic polynomial-time”

– Simplified: answer is hard to find but easy to check

● One of 6 open theory problems with a $1 million
prize from the Clay Mathematics Institute

NP-hard problems are at least as hard as
NP-complete problems and maybe even harder

Session 2 Wrap-Up

Part 1: a crash course in Python programming
● Data types: integers, strings, lists, dictionaries
● Operators: integer, string, relational, logical
● Abstracting with variables and functions
● Flow control: conditionals and loops
● Recursion: functions calling themselves

Session 2 Wrap-Up

Part 2: basics of algorithms and complexity
● How computation costs grow with problem size

– Ignoring constants with Big-O notation

● “Efficiently computable” complexity classes:
– Constant time: O(1): e.g., hash table lookup
– Logarithmic time: O(log n): e.g., binary search
– Linear time: O(n): e.g., linear search
– Quasilinear time: O(n log n): merge sort, quick sort
– Polynomial time: O(np): e.g., matrix multiply

● Exponential-time complexity: O(2n): impractical!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 68
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 93
	Slide 94

