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u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Cloud 
o Virtualization

Roadmap
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u At Penn
u Lt Gillon, Eckert and 

Mauchley
u Cost $486,804.22, in 

1946
u 5000 ops/second
u 19K vacuum tubes 
u Power = 200K Watts 

67 m3

[picture from Wikipedia]

Where did it all start? ENIAC
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u 5.5+ billion transistors
u 18 cores
u 45 MB L3 cache
u 2.3 GHz

o Turbo 3.6 GHz

u Roughly 145W

core

Where are we today? Intel Xeon Broadwell-E5

core
core

456 mm2

core
core
core

core
core
core
core

core
core
core
core

core
core
core
core
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Information Technology (IT): 
Four Decades of  Exponential Growth

IT is at the core everything we do & has become an 
indispensable pillar for a modern day society!

Intel 4004, 1971

Intel Xeon, 20117

92,000 ops/sec

166,000,000,000 ops/sec
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What Does this All Mean?

Microprocessor performance growth in perspective:  

�Unmatched by any other industry�
[John Crawford, Intel Fellow, 1993]

Doubling every 18 months (1998-2008):  roughly 100X
- Cars travel at 20,000 KM/H; get 50 ml/100 KM

- Air travel: Porto to Talinn in 1.5 min (MACH 100)

- Wheat yield: 10,000 bushels per acre
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For four decades 2x transistors every 2 years

Moore’s Law:
u More trans, faster CPU’s
u Clocks from 1 MHz to 1GHz
u Parallel microarchitecture: 

superscalar + pipelining
u Perf: 2.5x per 2 years

Lowered chip power with 
lower voltages

Ran sequential code, one 
thread/program CP
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Power µ V2F 
V = Operating voltages
F = Clock frequency

What is Power?

CPU

CPU type Power Constraint

Mobile < a few W Battery usage

Laptop < 10s of W Battery + heat

Desktop/Server ~ 100 W Cooling

Supercomputer ~ 300 W Cooling + electricity



CLSPW– Spring 2018 Lec.01 - Slide 11

What happened to Power?

u Voltages used to go down
o From 5v (1970’s) to 1v (2000’s)
o Power µ V2F 
o Power went down
o But, voltage is squared!
oGave us enough room to increase clock 

frequency



CLSPW– Spring 2018 Lec.01 - Slide 12

[source: ITRS]

Today
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Voltages stopped going down

With more transistors:
u Scale back core complexity
u Use cores of yesteryear
u Each core è fewer joules/op

Analogy: 
u Not quite a race car 
u Handles nearly all cases

But, now……
u Need parallel software!
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From Multicore to Eco-Mode

Allow for adjustable 
frequency & voltage:
u More of the same core
u More parallelism on slower 

cores

Analogy:
u Audi in ”eco/blue” mode
u Uses less gas
u Not as spiffy
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Turboboost

Allow for adjustable speed:
u More of the same core
u Less parallelism on faster 

cores

Analogy:
u Audi in ”sport” mode
u But uses more gas
u Can run fewer cores faster 

together
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Custom Manycore

Can no longer afford the 
general-purpose/high-perf
u Custom cores
u Reduced complexity
u Mobile efficiency

Analogy:
u Prius can handle city well
u Lot more efficient
u But, limited at speed
u More work from much higher 

parallelism
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Power µ V2F 

Assuming that voltages remain the same, to 
quadruple the number of cores while keeping the 
power the same, how much slower should the cores 
run at (slower clock rate)?

Exercise: Cores vs. Clock

Four cores, same power, clock = F/4
With original F = 2 GHz, new F = 500 MHz
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GPU’s are Massively Parallel Manycores

Further reduction in 
complexity:
u Minimal core (EPFL 2nd year)
u Maximize number of cores
u Optimized for arithmetic density per 

silicon area
u Same program runs on 

independent data

Analogy:
u Groups of “spinners” tuned to music
u All spin at the same speed
u 1000’s of spinners in parallel
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Custom Computing  

Reconfigurable (FPGA)
u Program in HDL
u Irregular parallelism
u Microsoft’s Catapult

Accelerator
u Program in DSL 
u App-specific, min. work
u Google’s TPU
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u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Virtualization
o Cloud

Roadmap
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Parallel or Multiprocessor Architecture

u Abstract models are (mostly) OK to understand algorithm 
correctness and progress

u To understand how concurrent algorithms actually perform
u You need to understand something about multiprocessor 

architectures
u Detailed nuts & bolts? EPFL courses
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Pieces

u Processors (also called CPU or cores)
u Threads
u Interconnect
u Memory
u Caches
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cache
Bus

Simple Multiprocessor

Bus

memory

cachecache
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Old School vs. New School

Before 1990’s:
w Processors on different chips
w Nearby processors share memory resources

After 1990’s:
w On-chip processors (called Multicore/Manycore) and off-chip
w Nearby cores shared memory resources
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Understanding the Pieces

u Lets try to understand what the pieces that make the 
multiprocessor machine are 

u And how they fit together
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Processors

u Cycle:
w Fetch and execute one instruction

u Cycle times change
w 1980: 10 million cycles/sec
w 2018: 2,000 million cycles/sec
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Computer Architecture

u Measure time in cycles
w Absolute cycle times change

u Memory access: ~100s of cycles
w Changes slowly
w Mostly gets worse
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Threads

u Execution of a sequential program
u Software, not hardware
u A processor can run a thread
u Put it aside

w Thread does I/O (talks to disk and network)
w Thread runs out of time

u Run another thread
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Interconnect

u Bus
w Broadcast medium
w Connects

w Processors to memory
w Processors to processors

u Network
w Switch-based fabric
w Connects

wOne node to another
wEach node with its own 

processor, memory, …

memory
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Interconnect (also called network)

u Interconnect is a finite resource
u Processors can be delayed if others are consuming too much
u Avoid algorithms that use too much bandwidth
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Interconnect/Network for multiprocessors

Single-chip Multi-chip Rack Datacenter

On-Chip Off-Chip
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u Shared Memory
o Communication is unstructured, implicit in loads and stores
o Easier to program, but harder to scale
o Single node: mobiles, laptop/desktop, single server

u Message Passing
o Structure all communication as messages
o Harder to program, but easier to scale
o Multiple nodes: rack of servers

u Data Parallel
o Structure computation over groups of independent data
o Single node: GPU
o Multiple nodes: rack of servers (CPU or GPU)

Communication Models
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Software layering

Single node: 
multicore, GPU

Multinode: 
cluster, datacenter, 

supercomputer

C/C++, Java, Scala, Python, …

Cilk, OpenMP, TBBs, Pthreads, CUDA, MPI …

Hadoop, Spark, Pregel, GraphLab, 
FaRM, TensorFlow…

High-level 
frameworks

Libraries / 
Language 
extensions

Programming
languages

Hardware
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Example platforms: Mobile

u E.g., iPhone, Surface, Smartwatch
u Small devices used in everyday life
u Heterogeneous CPU/GPU devices

w Shared memory CPU
w Data Parallel GPU 

u Four low-power cores
w 0.25 to 1 Watt per core

u Total power < 15 W
u Price < 1000 CHF
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Example platforms: Datacenters

u E.g., Amazon, Facebook, Google, 
Microsoft

u Run all online services: search, 
social media, e-commerce

u Shared memory within server
u Message passing across
u Dozen cores/server ~100 W
u Datacenter power ~20 MW
u Price ~ 3 billion CHF
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u Popular software library: MPI (message passing interface)
u Sharing memory is too expensive at massive scale

w Can connect commodity systems together to form large parallel machine

u E.g., “Piz Daint” comprised of ~6K independent systems
w Using MPI, can program all of them as one

Example platforms: Supercomputers
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cache
Bus

Back to Simple Multiprocessor: Shared Memory

Bus

memory

cachecache
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Processor and Memory are Far Apart

processor

memory

interconnect
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Reading from Memory

address
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Reading from Memory

zzz…
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Reading from Memory

value
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Writing to Memory

address, value
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Writing to Memory

zzz…
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Writing to Memory

ack
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Cache: Reading from Memory

address

cache
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Cache: Reading from Memory

cache
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Cache: Reading from Memory

cache
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Cache Hit

cache

?
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Cache Hit

cache
Yes!
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Cache Miss

address

cache

?No…
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Cache Miss

cache
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Cache Miss

cache
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L1 and L2 Caches

L1

L2
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L1 and L2 Caches

L1

L2

Small & fast
1 or 2 cycles
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L1 and L2 Caches

L1

L2

Larger and slower
10s of cycles
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When a Cache Becomes Full…

u Need to make room for new entry
u By evicting an existing entry
u Need a replacement policy

w Usually some kind of least recently used heuristic
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Fully Associative Cache

u Any line can be anywhere in the cache
w Advantage: can replace any line
w Disadvantage: hard to find lines
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K-way Set Associative Cache

u Each slot holds k lines
w Advantage: pretty easy to find a line
w Advantage: some choice in replacing line
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Multicore Set Associativity

u L2, lower levels can be more associative (e.g., > 16 ways)
w Why? Because cores share sets 
w Threads cut effective size if accessing different data
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Example: Average Memory latency

w/o cache, all accesses go to memory:
Average Memory Access Time = memory latency

with one level cache:
Average Memory Access Time = 

cache hit time x (1 – cache miss rate) + 
memory latency x cache miss rate

u With a cache has a miss rate of 10%, hit time of 2 cycles and a 
memory latency off 100 cycles, what is AMAT?

AMAT = (2 x 90%) + (100 x 10%) = 11.8 cycles  
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Example: Average Memory latency

Assume the following params:
L1 hit time = 2 cycles, L1 miss rate = 5%
L2 hit time = 10 cycles, L2 miss rate = 2%
Memory latency = 200 cycles

u What is AMAT?

AMAT = (2 x 95%) + (10 x 5%) + (200 x 5% x 2%) 
=1.9 + 0.5 + 0.2 = 2.6 cycles
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Cache Coherence

u A and B both cache address x
u A writes to x

w Updates cache
u How does B find out?
u Many coherence protocols in products
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Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

load x
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cache
Bus

Memory Responds

Bus

memory

cachecache

datadata
Got it! 
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Load x
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Bus

Other Processor Responds

memory

cachecache

data

Got it

datadata
Bus
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Modify Cached Data

Bus

data

memory

cachedata

data

data

Store x
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Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Invalidate x
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Coherence Misses

u Sometimes necessary, called “True Sharing”
w When two processors read/write same variable “x”
w Communicate a new value of “x” from one thread to another
w Inherent to the computation

u Sometimes not necessary, called “False Sharing”
w Reading and writing two distinct variables “x1” and “x2”
w Happen to reside in the same cache block
w E.g., x1 and x2 are single words, but a 64-byte block can hold 

8 words, and contains both “x1” and “x2”
u Can restructure to reduce coherence misses
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Summary

u Most multiprocessors use shared memory
u We will assume an SMP, simple multiprocessor model
u Must know how to platform works to construct software
u Must understand the bottlenecks
u Now, we will see how to think parallel
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To design well-balanced parallel software we need to
think about how a problem can be solved in parallel, 

divide the work evenly among threads,
maximize the parallelism and reduce overhead
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Example App: Apple X Face Unlock
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DEEP LEARNING EVERYWHERE
Image Classification, Object Detection, 

Localization, Action Recognition
Speech Recognition, Speech Translation, 

Natural Language Processing

Breast Cancer Cell Mitosis Detection, 
Volumetric Brain Image Segmentation

Pedestrian Detection, Lane Detection, 
Traffic Sign Recognition
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Example App: Deep Learning

Used in search, machine translation, face recognition, investment banking,.. 



CSLPW – Spring 2018 Lec2 - 75

Example App: IBM Watson
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Example Apps: Science and Engineering

u Examples
w Weather prediction
w Drug development
w Oil reservoir simulation
w Automobile crash tests
w ….

u Typically model physical systems or phenomena
u Problems are 2D or 3D
u Usually requires heavy arithmetic

Molecular dynamics 
used in drug discovery
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Technical distinction: Concurrency vs. Parallelism

u Concurrency: two or more threads march together

u Parallelism: two or more threads execute at the same time
w All parallel threads are concurrent, but not vice versa

u Roughly how many threads vs. how many cores

Thread 1 Thread 2 Thread 1

Thread 1

Thread 2
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Terminology

u A Task is a piece of work
w iPhone X Face Unlock: compute a grid point on image

u Task grain
w small è fewer operations (less work) per task
w large è more operations (more work) per task

u Threads performs tasks
w Threads execute on cores
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Forms of Parallelism
u Throughput parallelism

w Perform many (identical) sequential tasks at the same time
w E.g., Google search, ATM (bank) transactions

u Functional or task parallelism
w Perform tasks that are functionally different in parallel
w E.g., iPhoto (face recognition with slide show)

u Pipeline parallelism
w Perform tasks that are different in a particular order
w E.g., speech (signal, phonemes, words, conversation)

u Data parallelism
w Perform the same task on different data
w E.g., Data analytics, image processing

}
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Division of Work: It’s about Performance

u Balance workload
w Give each parallel task the same rough amount of work

u Reduce communication
w Balance computation time with communication time
w Computation à useful work, Communication à overhead

u Reduce extra work
w Creating a thread, assigning work
w Scheduling threads on processors, OS, etc.

u These are at odds with each other
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Example: Division of Work

}

} Overhead

} {Load imbalance

Small tasks Large tasks
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Matrix Multiplication

( ) ( ) ( )BAC •=
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Matrix Multiplication

Where cij = aik ⋅bkj
k=1

n

∑

Cn×n( ) = An×n( )× Bn×n( )
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Matrix Multiplication

For each i and j:
Multiply the entries aik by the entries bkj for k = 1, 2, …, n 
and summing the results over k    

Cn×n( ) = An×n( )× Bn×n( )
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class Worker extends Thread {
int row, col;
Worker(int row, int col) {
this.row = row; this.col = col;

}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Matrix Multiplication in Java

85
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Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

a thread
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Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Which matrix entry to 
compute
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Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Actual computation
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Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}
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Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Create n x n
threads



CSLPW – Spring 2018 Lec2 - 91

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Start them
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Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Wait for 
them to 

finish

Start them
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Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Wait for 
them to 

finish

Start them

What�s wrong with this 
picture?



CSLPW – Spring 2018 Lec2 - 94

Thread Overhead

u One thread per task
w One dot product task

u Threads Require resources
w State:

wMemory for stacks
wA copy of the register file
wProgram state: Program Counter, Stack pointer,….

w Setup, teardown
w Scheduler overhead

u Short-lived threads
w Bad ratio of work versus overhead
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One More “Big” Performance-Related Axiom
u Amdahl’s Law

w In English:  if you speed up only a small fraction of the execution time of a 
program or a computation, the speedup you achieve on the whole 
application is limited

u Example
10 s 90 s

1 s 90 s

A 10x
speedup
on this part!

100s

91s
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Amdahl’s Law

Speedup =   1
Fractionenhanced + (1 - Fractionenhanced)
Speedupenhanced

Parallel fraction
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Amdahl’s Law

Speedup =   1
Fractionenhanced + (1 - Fractionenhanced)
Speedupenhanced

Sequential
fraction
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Amdahl’s Law

Simple example:
Program runs for 100 seconds on a uniprocessor
10% of the program can be parallelized on a multiprocessor
Assume an ideal multiprocessor with 10 processors

Speedup =   1
Fractionenhanced + (1 - Fractionenhanced)
Speedupenhanced

Speedup = 1         =   1      = 1  = 1.1
0.1 + (1-0.1)         0.01 + 0.9    0.91
10
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Fractionenhanced
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Parallel execution is not ideal

u 10 processors rarely get a speedup of 10
w Load imbalance
w Thread start/join overhead
w Communication overhead

u Even if Fractionenhanced is close to 100%
w Speedupenhanced << p for p processors
w Our goal is to get it as close as possible to p



CSLPW – Spring 2018 Lec2 - 101

Amdahl�s Law (in practice)
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Back to Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Sequential
(1 – Fractionenhanced)
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Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Parallel
(Fractionenhanced)
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Example: n = 16

u How many threads will our Matrix Multiplication create?

u How many of these threads are concurrent (i.e., degree of 
concurrency)?

16 x 16 = 256 threads

All threads
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Example: Assume there are 4 processors

u How many threads per processor?

u How many threads run in parallel (i.e., degree of 
parallelism)?

256 threads / 4 = 64 threads

One thread per core = 4 threads
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Best efficiency: Concurrency ~ Parallelism
u All work is independent
u Max parallelism? 4
u Only need 4 threads

w Reduce thread.start(), thread.join() overhead
w Only 4 start() and 4 join()
w Workers (each thread) should do more work
w 16x16 dot products divided by 4 = 64 dot products per thread

Rows       0-3      4-7       8-11    12-15
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Matrix Multiplication on “p” cores

void multiply() {
BigWorker[] worker = new BigWorker[n];

for (int row=0; row < n; row+=n/p)
worker[row] = new BigWorker(row);

for (int row=0; row < n; row+=n/p)
worker[row].start();

for (int row=0; row < n; row+=n/p)
worker[row].join();

}
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Matrix Multiplication: (n/c) x n per worker

void multiply() {
BigWorker[] worker = new BigWorker[n];

for (int row=0; row < n; row+=n/p)
worker[row] = new Worker(row);

for (int row=0; row < n; row+=n/p)
worker[row].start();

for (int row=0; row < n; row+=n/p)
worker[row].join();

}

Create p 
threads
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BigWorker: Each thread does (n/p) x n
class BigWorker extends Thread {
int begin_row;
BigWorker(int begin_row) {
this.begin_row = begin_row; 

}
public void run() {
double dotProduct = 0.0;
for (int row=begin_row; row < begin_row+n/p; row++)

for (int col=0; col < n; col++)
for (int i = 0; i < n; i++)

dotProduct += A[row][i] * B[i][col];
C[row][col] = dotProduct;

}}}



CSLPW – Spring 2018 Lec2 - 110

BigWorker: Each thread does (n/p) x n
class Worker extends Thread {
int begin_row;
BigWorker(int begin_row) {
this.begin_row = begin_row; 

}
public void run() {
double dotProduct = 0.0;
for (int row=begin_row; row < begin_row+n/p; row++)

for (int col=0; col < n; col++)
for (int i = 0; i < n; i++)

dotProduct += A[row][i] * B[i][col];
C[row][col] = dotProduct;

}}}

Multiple rows
All columns
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Summary

u Need to think parallel
w Division of work
w Lots of bottlenecks

u Don’t forget Amdahl’s Law
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u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Cloud 
o Virtualization

Roadmap
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Data Economics
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Internet-of-Things (IoT): Data in Flight

114

Source: IDC Worldwide and Regional IoT forecast, EMC Digital Universe with Research and Analysis by IDC

20 Billion Connected 
Devices

4 Zettabytes of Data, 10% of Digital 
Universe$7 Trillion 

Market Revenue



CLSPW– Spring 2018 Lec.01 - Slide 115

Data Shaping All Science & Technology

Science entering 4th paradigm
u Analytics using IT on

● Instrument data
● Simulation data
● Sensor data
● Human data 
● …

Complements theory, empirical 
science & simulation

Data-centric science key for innovation-based economies! 
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Source: James Hamilton, 2014
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_Reinvent20131115.pdf

Daily IT growth in 2014 = All of AWS in 2004!
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Modern Datacenters are 
Warehouse-Scale Computers

u Millions of interconnected 
home-brewed servers

u Centralization helps exploit 
economies of scale

u Network fabric provides 
micro-second connectivity

u At physical limits
u Need sources for

● Electricity
● Network
● Cooling

30MW, 20x Football Field 
$3 billion
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Warning! 
Datacenters are not Supercomputers

• Run heterogeneous data services at massive scale
• Driven for commercial use
• Fundamentally different design, operation, reliability, TCO

• Density 10-25KW/rack as compared to 25-90KW/rack
• Tier 3 (~2 hrs/downtime) vs. Tier 1 (upto 1 day/downtime)
• ……and lots more

Datacenters are the IT utility plants of the future

Supercomputing Cloud Computing

≠
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Cloud Taking Over Enterprise

Source: Dell ‘Oro 2Q15 
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Historically, what is a datacenter?

u Oxford dictionary defines �data center� as:

u Term originated in the 1990s with the advent of client-
server architecture

u Dot-com bubble è internet data centers

�A large group of networked computer servers typically 
used by organizations for the remote storage, 
processing, or distribution of large amounts of data.�
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u 1.5% of worldwide electricity
o 1.3% annual growth: energy-efficiency dramatically improved recently

Datacenter Power
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Warehouse-scale computing: 
The datacenter is the computer

u Program
u Internet service (e.g. web search, email, video 

streaming, maps, etc.)

u Computer
u Thousands of 

individual computing nodes
u Networking and 

storage subsystems
u Power distribution

and cooling system
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Datacenter availability requirements

Cost and reliability are important for high availability!
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Multi-datacenter scenarios

u User queries may involve computation across multiple 
datacenters

u Inter-datacenter communications are of much poorer 
quality than intra-datacenter communications



CLSPW– Spring 2018 Lec.01 - Slide 125

Architectural overview
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Storage management

Distributed File System
u Disk drives are directly 

attached to server nodes
u Replication across 

different machines
u Poorer write performance
u Higher read performance
u Can exploit data locality
u Google File System(GFS)

Network-Attached Storage
u Disk drives are connected 

to cluster-level switch
u Replication within each 

appliance
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Network fabric

Software should exploit rack-level locality!

Cheap! Expensive!
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Storage hierarchy
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Performance variations
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Useful Numbers 
Courtesy of Jeff Dean, Google

u L1 cache reference 0.5 ns
u L2 cache reference 7 ns 
u Mutex lock/unlock 25 ns 
u Main memory reference 100 ns 
u Compress 1K bytes with Zippy 3,000 ns 
u Send 2K bytes over 1 Gbps network 20,000 ns 
u Read 1 MB sequentially from memory250,000 ns 
u Round trip within same datacenter 500,000 ns 
u Disk seek 10,000,000 ns 
u Read 1 MB sequentially from disk 20,000,000 ns 
u Send packet CAàEuropeàCA 150,000,000 ns
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Software layers

u Platform-level software – common firmware, kernel, 
operating system distribution, and libraries

u Cluster-level infrastructure – distributed file systems, 
schedules, and remote procedure call (RPC) layers

u Application-level software – specific services
u Online services: web search, email, maps
u Offline services: building of web index
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Datacenter software development

u Applications have inherent data parallelism or request 
parallelism

u Each platform generation has significant homogeneity

u Isolation of users from service implementation makes it 
much easier to deploy new software quickly

u Cluster-level software must deal with expected frequent 
hardware failure
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uMany independent requests/tasks
uHuge dataset split into shards
uUse aggregate memory over network

Example: Search

Master 
node

Client 
Requests

Dataset
Server

Server

Server
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Cluster-level infrastructure software

u Resource management
u Maps user tasks to hardware resources
u Enforces priorities and quotas
u Users specify job requirements

ue.g., CPU performance, memory capacity, bandwidth

u Hardware abstraction

u Deployment and maintenance

u Programming frameworks
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Software-based fault tolerance

Fault tolerance:
o Phones crash all the time (not safety critical)
o Planes, cars, hospital equipment, supercomputers can 

not crash often (use expensive hardware)
o Servers are cheap, crash less often but repaired in 

software and have a legal contract to customers

u Key idea: hardware faults are detected and reported to 
software in a timely manner, software takes appropriate 
action to manage the fault

u Hides complexity from application-level software
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Computing/IT 
equipment

Over half of energy consumption

What else 
consumes power 
in a datacenter?

Power distribution units, cooling system, etc.

Data Center Power Consumption
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Image courtesy of DLB Associates

The Components of a Typical Datacenter

PDU

CRAC

Cabinets

Diesel
Generator

UPS

Fuel
Tanks

Electrical Switch Gear
Pump
Room

Heat 
Rejection

Devices

Colocation
Suites
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How to Measure Datacenter Energy Efficiency

u PUE = power usage effectiveness
o Building power/power of IT (servers, network)

o Current state of the art PUE = ~1.1

u SPUE = server power usage effectiveness
o Server power/power for server components (e.g., CPU, disk)

o State of the art SPUE = 1.1 

u If PUE=SPUE=1.1 => 10% of energy is “wasted”
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Update: LBNL survey of PUE of 24 datacenters, 2007 [Greenberg et al.]

PUE Statistics
u [2006] About 85% of datacenters estimated to have PUE > 3.0
u [2006] Only about 5%  of datacenters estimated to have PUE ≤ 2.0
u [2010] Average PUE of approximately 1.89
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Datacenter consolidation
Trend is to consolidate workloads in hyperscale datacenters
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Hyperscale datacenters are more efficient

u Avg. PUE comparison:
o Hyperscale datacenter: 1.1
o Midtier datacenter: 1.6

u Reasons for increased efficiency:
o Higher utilization
o Redundancy control is cheaper at high scale

More hyperscale à more efficient datacenter computing



CLSPW– Spring 2018 Lec.01 - Slide 142

Sources of Efficiency Loss: 
Power Distribution (James Hamilton)

13.2kv

115kv 13.2kv

13.2kv 480V

20
8V ~1% loss in switch

Gear and conductorsUPS:
Rotary or Battery

2.5MW Generator
~180 Gallons/hour

IT LOAD

11% distribution loss
.997*.94*.98*.98*.99 = 89%

PDUs

99.7% efficient 94% efficient 98% efficient 98% efficient

UPS & Gen 
often on 480V

Note: Two more 
levels of power 
conversion at 
server level 

High voltage utility 
distribution

Substation
Transformers

Transformers

IT load –
servers, 
storage, 
network
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Image courtesy of DLB Associates

Old School Datacenter Cooling System 
u Datacenter floor is raised 2-4ft  above the concrete floor
u Under-floor area helps distribute cool air to the server racks
u Also used for routing power/network cables to the racks
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New School:
Chilled-Water Cooling
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Key Energy Usage Feature of Current Servers

u Under low utilization, the inefficiency is significantly higher
u Cause: Idle power consumption more than half of peak!!!

u Individual servers spend negligible time completely idle

An example benchmark result for 

SPECpower_ssj2008; energy 

efficiency is indicated by bars, 

whereas power consumption is 

indicated by the line. Both are 

plotted for a range of utilization 

levels, with the average metric 

corresponding to the vertical dark 

line. The system has a single-chip 

2.83 GHz quad-core Intel Xeon 

processor, 4 GB of DRAM, and one 

7.2 k RPM 3.5� SATA disk drive.
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Load vs. Efficiency
u Off-peak traffic is 2x lower than peak period

u Need to operate efficiently with low utilization
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Dynamic Power Range
Energy-proportional machines would exhibit a wide dynamic power 

range – rare in computing equipment (merely 2x), but not 

unprecedented in other domains (e.g. Humans have a 20x factor)

Human energy usage vs. activity levels (adult male)



CLSPW– Spring 2018 Lec.01 - Slide 148

Causes of Poor Energy Proportionality
u CPUs are not necessarily the main culprit!
u Over the years, CPU designers have been more attentive to energy 

efficiency than their counterparts for other subsystems (e.g., switching 
to multicore vs. higher clock frequencies)

u Server-class CPUs have dynamic power range of 3.0x or more 
(compare with: 2.0x for memory, 1.3x for disks, less than 1.2x for 
networking switches)
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Role of Software

u Clever software strategies can enhance energy-
proportionality of the underlying hardware:
u Intelligent use of power management features in existing hardware
u Using low-overhead inactive or active low-power modes
u Power-friendly scheduling of tasks

u Challenges
u Encapsulation (avoid exposure to developers)
u Robustness (avoid side-effects like increased variability of 

response-time)
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Summary

u Datacenters basics

u Software
u Parallel
u Fault-tolerant

u Energy efficiency 
u Decrease PUE*SPUE
u Energy proportional computing
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u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Cloud 
o Virtualization

Roadmap



CLSPW– Spring 2018 Lec.01 - Slide 152

A Brief History of IT

u From computing-centric to data-centric
u Consumer Era: Internet-of-Things in the Cloud

1970s-

PC Era

Mobile Era

Mainframes
1980s 1990s Today+

Consumer Era
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Cloud Computing

u IT resources provided as a service
o Compute, storage, databases, queues

u Clouds leverage economies of scale of 
commodity hardware
o Cheap storage, high bandwidth networks & multicore processors 
o Geographically distributed data centers

u Focus on business, science, governance rather 
than IT maintenance

u Sign a contract to use a service
u Offerings from Microsoft, Amazon, Google, …
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Cloud Service Models

CRM

LotusLive

App Engine

IC Cluster
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Example: Microsoft Azure

Live 
Services
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Services

Application

Development

Platform

Storage

Hosting

Cloud Model Service Layers [src: Mark Baker]

Description
Services – Complete business services such as PayPal, 
OpenID, OAuth, Google Maps, Alexa

Services

Application
Focused 

Infrastructure
Focused

Application – Cloud based software that eliminates the 
need for local installation such as Google Apps, 
Microsoft Online

Storage – Data storage or cloud based  NAS such as 
CTERA, iDisk, CloudNAS

Development – Software development platforms used 
to build custom cloud based applications (PAAS & 
SAAS) such as SalesForce

Platform – Cloud based platforms, typically provided 
using virtualization, such as Amazon ECC, Sun Grid

Hosting – Physical data centers such as those run by 
IBM, HP, NaviSite, etc.

156
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u Run multiple operating systems and user applications
on the same hardware
o E.g., run both Windows and Linux on the same laptop

u The OSes are completely isolated from each other

u Complete control over your own “guest” OS

What is virtualization?
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u Server consolidation
o Run a web server and a mail server on the same physical server

u Easier development
o Develop critical operating system components (file system, disk driver) 

without affecting computer stability

u Quality Assurance
o Testing a network product (e.g., a firewall) may require tens of computers
o Try testing thoroughly a product at each pre-release milestone

u Cloud computing
o Buy computing as a service
o You pay for e.g., 2 CPU cores for 3 hours plus 10GB of network traffic

Uses of virtualization
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u Definitions
o Hypervisor (or VMM – Virtual Machine Monitor) is a software 

layer that allows several virtual machines to run on a physical 
machine

o Physical OS and hardware are called the Host
o Virtual machine OS and applications are called the Guest

Two Types of Virtualization

VMware ESX, Microsoft Hyper-V, Xen

Hardware

Hypervisor

VM1 VM2

Type 1 (bare-metal)

Host

Guest

Hardware

OS

Process Hypervisor

VM1 VM2

Type 2 (hosted)

VMware Workstation, Microsoft Virtual PC, Sun 
VirtualBox, QEMU, KVM

Host

Guest
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u Emulate
o Interpret every guest instruction, real slow
o E.g., BOCHS

u Dynamic binary translation
o Most code will run native (like JAVA JIT)
o Sensitive code will call the hypervisor (trapping into host)
o E.g., Vmware, QEMU

u Paravirtualization
o Modified guest OS works directly with the hypervisor
o E.g., Xen

How to run a VM (also called a container)?
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Hundreds of Data Breaches in 2016 

161
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Cloud Security

162
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ü Reduced exposure
ü Auditing/testing
ü Automatic management
ü Redundancy
ü Disaster recovery

✗ Trusting vendors
✗ Accountability
✗ Opaque technologies
✗ Loss of physical control

Advantages vs. Challenges

163

source: Peter Mell, Tim Grance, NIST, Information Technology Laboratory, 2009

www.nist.gov
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End of Safe Harbor

Born: 2000
RIP: 6.10.2015

No longer a valid 
legal basis in CH

Need new legal frameworks for IT!
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Digital Sovereignty

u Bought server & software
u Local usage (in office/building)
u Governed privately
ü Digital Sovereignty

Yesterday: IT Products Today+: IT Services

Technologies & legal frameworks to enable transition?

§ Cloud services
§ Global resources
§ Governed by country
✗ Loss of Sovereignty
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Implications for Switzerland

u #1 ICT spend per capita  [World Bank, 2013]
● 7.2% of GDP with strong consumer and enterprise spend

● 70% service-based economy
● Top ten knowledge-based

u Living in private clouds with legacy technologies is a risk

Major stake holder in cloud technologies!
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Summary

uWe now live in a Digital Universe
uTechnology roadmap ➔ Centralization
uClouds & datacenters are the only path forward
● Leverage massive data analytics
●Benefit from economies of scale

uChallenges
●Technologies to scale platforms
● Frameworks to guarantee sovereignty


