
CLSPW– Spring 2018 Lec.01 - Slide 1

Technology Roadmap,
Parallel Computing & Datacenters

CS for Lawyers & Policy Workers
Babak Falsafi
ecocloud.ch

Slide credits: Babak Falsafi, Nir Shavit, Maurice Herlihy, Partha Ranganathan, Adam
Wierman, Alex Landau of EPFL, MIT, Brown, Google, CalTech and IBM

CLSPW– Spring 2018 Lec.01 - Slide 2

u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Cloud
o Virtualization

Roadmap

CLSPW– Spring 2018 Lec.01 - Slide 3

u At Penn
u Lt Gillon, Eckert and

Mauchley
u Cost $486,804.22, in

1946
u 5000 ops/second
u 19K vacuum tubes
u Power = 200K Watts

67 m3

[picture from Wikipedia]

Where did it all start? ENIAC

CLSPW– Spring 2018 Lec.01 - Slide 4

u 5.5+ billion transistors
u 18 cores
u 45 MB L3 cache
u 2.3 GHz

o Turbo 3.6 GHz

u Roughly 145W

core

Where are we today? Intel Xeon Broadwell-E5

core
core

456 mm2

core
core
core

core
core
core
core

core
core
core
core

core
core
core
core

CLSPW– Spring 2018 Lec.01 - Slide 5

Information Technology (IT):
Four Decades of Exponential Growth

IT is at the core everything we do & has become an
indispensable pillar for a modern day society!

Intel 4004, 1971

Intel Xeon, 20117

92,000 ops/sec

166,000,000,000 ops/sec

CLSPW– Spring 2018 Lec.01 - Slide 6

What Does this All Mean?

Microprocessor performance growth in perspective:

�Unmatched by any other industry�
[John Crawford, Intel Fellow, 1993]

Doubling every 18 months (1998-2008): roughly 100X
- Cars travel at 20,000 KM/H; get 50 ml/100 KM

- Air travel: Porto to Talinn in 1.5 min (MACH 100)

- Wheat yield: 10,000 bushels per acre

CLSPW– Spring 2018 Lec.01 - Slide 7

For four decades 2x transistors every 2 years

Moore’s Law:
u More trans, faster CPU’s
u Clocks from 1 MHz to 1GHz
u Parallel microarchitecture:

superscalar + pipelining
u Perf: 2.5x per 2 years

Lowered chip power with
lower voltages

Ran sequential code, one
thread/program CP

U
in

 20
00

CP
U

in
 19

90
CP

U
in

 19
80

CLSPW– Spring 2018 Lec.01 - Slide 8

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

1985 1990 1995 2000 2005 2010 2015 2020

Transistors (100,000's)

Performance (GOPS)

E2UDC ERC VisionThe chips started getting bigger not faster

> 50%/year

~15%/year

[source: Prof. Tom Wenisch, Michigan]

CLSPW– Spring 2018 Lec.01 - Slide 9

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

1985 1990 1995 2000 2005 2010 2015 2020

Transistors (100,000's)
Power (W)
Performance (GOPS)
Efficiency (GOPS/W)

E2UDC ERC VisionWhy? Must keep power at ~100W!

Era of Uniprocesors Era of Multiprocessors
c. 2005

CLSPW– Spring 2018 Lec.01 - Slide 10

Power µ V2F
V = Operating voltages
F = Clock frequency

What is Power?

CPU

CPU type Power Constraint

Mobile < a few W Battery usage

Laptop < 10s of W Battery + heat

Desktop/Server ~ 100 W Cooling

Supercomputer ~ 300 W Cooling + electricity

CLSPW– Spring 2018 Lec.01 - Slide 11

What happened to Power?

u Voltages used to go down
o From 5v (1970’s) to 1v (2000’s)
o Power µ V2F
o Power went down
o But, voltage is squared!
oGave us enough room to increase clock

frequency

CLSPW– Spring 2018 Lec.01 - Slide 12

[source: ITRS]

Today

Projections

0

0.2

0.4

0.6

0.8

1

1.2

2001 2006 2011 2016 2021 2026

C
PU

 V
ol

ta
ge

2001

2013

Voltages stop going down!

CLSPW– Spring 2018 Lec.01 - Slide 13

Voltages stopped going down

With more transistors:
u Scale back core complexity
u Use cores of yesteryear
u Each core è fewer joules/op

Analogy:
u Not quite a race car
u Handles nearly all cases

But, now……
u Need parallel software!

CP
U

M
ul

tic
or

e
CP

U

CLSPW– Spring 2018 Lec.01 - Slide 14

From Multicore to Eco-Mode

Allow for adjustable
frequency & voltage:
u More of the same core
u More parallelism on slower

cores

Analogy:
u Audi in ”eco/blue” mode
u Uses less gas
u Not as spiffy

M
ul

tic
or

e
CP

U
(e

.g
.,

Xe
on

 in
 2

00
0)

M

an
yc

or
e

CP
U

(e
.g

.,
Xe

on
 to

da
y)

CLSPW– Spring 2018 Lec.01 - Slide 15

Turboboost

Allow for adjustable speed:
u More of the same core
u Less parallelism on faster

cores

Analogy:
u Audi in ”sport” mode
u But uses more gas
u Can run fewer cores faster

together
M

an
yc

or
e

CP
U

(e
.g

.,
Xe

on
 to

da
y)

M

an
yc

or
e

CP
U

(e
.g

.,
Tu

rb
ob

oo
st

in
 X

eo
n)

CLSPW– Spring 2018 Lec.01 - Slide 16

Custom Manycore

Can no longer afford the
general-purpose/high-perf
u Custom cores
u Reduced complexity
u Mobile efficiency

Analogy:
u Prius can handle city well
u Lot more efficient
u But, limited at speed
u More work from much higher

parallelism

M
ul

tic
or

e
CP

U
(e

.g
.,

Xe
on

)
Cu

st
om

 M
an

yc
or

e
CP

U
(e

.g
.,

Ca
vi

um
 T

hu
nd

er
X)

CLSPW– Spring 2018 Lec.01 - Slide 17

Power µ V2F

Assuming that voltages remain the same, to
quadruple the number of cores while keeping the
power the same, how much slower should the cores
run at (slower clock rate)?

Exercise: Cores vs. Clock

Four cores, same power, clock = F/4
With original F = 2 GHz, new F = 500 MHz

CLSPW– Spring 2018 Lec.01 - Slide 18

GPU’s are Massively Parallel Manycores

Further reduction in
complexity:
u Minimal core (EPFL 2nd year)
u Maximize number of cores
u Optimized for arithmetic density per

silicon area
u Same program runs on

independent data

Analogy:
u Groups of “spinners” tuned to music
u All spin at the same speed
u 1000’s of spinners in parallel

M
ul

tic
or

e
CP

U
(e

.g
.,

Xe
on

)
M

od
er

n
G

PU
(e

.g
.,

Vo
lta

)

CLSPW– Spring 2018 Lec.01 - Slide 19

Custom Computing

Reconfigurable (FPGA)
u Program in HDL
u Irregular parallelism
u Microsoft’s Catapult

Accelerator
u Program in DSL
u App-specific, min. work
u Google’s TPU

M
ul

tic
or

e
CP

U
(e

.g
.,

Xe
on

)
Cu

st
om

 S
ilic

on

CLSPW– Spring 2018 Lec.01 - Slide 20

u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Virtualization
o Cloud

Roadmap

CSLPW – Spring 2018 Lec2 - 21

Parallel or Multiprocessor Architecture

u Abstract models are (mostly) OK to understand algorithm
correctness and progress

u To understand how concurrent algorithms actually perform
u You need to understand something about multiprocessor

architectures
u Detailed nuts & bolts? EPFL courses

CSLPW – Spring 2018 Lec2 - 22

Pieces

u Processors (also called CPU or cores)
u Threads
u Interconnect
u Memory
u Caches

CSLPW – Spring 2018 Lec2 - 23

cache
Bus

Simple Multiprocessor

Bus

memory

cachecache

CSLPW – Spring 2018 Lec2 - 24

Old School vs. New School

Before 1990’s:
w Processors on different chips
w Nearby processors share memory resources

After 1990’s:
w On-chip processors (called Multicore/Manycore) and off-chip
w Nearby cores shared memory resources

CSLPW – Spring 2018 Lec2 - 25

Understanding the Pieces

u Lets try to understand what the pieces that make the
multiprocessor machine are

u And how they fit together

CSLPW – Spring 2018 Lec2 - 26

Processors

u Cycle:
w Fetch and execute one instruction

u Cycle times change
w 1980: 10 million cycles/sec
w 2018: 2,000 million cycles/sec

CSLPW – Spring 2018 Lec2 - 27

Computer Architecture

u Measure time in cycles
w Absolute cycle times change

u Memory access: ~100s of cycles
w Changes slowly
w Mostly gets worse

CSLPW – Spring 2018 Lec2 - 28

Threads

u Execution of a sequential program
u Software, not hardware
u A processor can run a thread
u Put it aside

w Thread does I/O (talks to disk and network)
w Thread runs out of time

u Run another thread

CSLPW – Spring 2018 Lec2 - 29

Interconnect

u Bus
w Broadcast medium
w Connects

w Processors to memory
w Processors to processors

u Network
w Switch-based fabric
w Connects

wOne node to another
wEach node with its own

processor, memory, …

memory

CSLPW – Spring 2018 Lec2 - 30

Interconnect (also called network)

u Interconnect is a finite resource
u Processors can be delayed if others are consuming too much
u Avoid algorithms that use too much bandwidth

CSLPW – Spring 2018 Lec2 - 31

Interconnect/Network for multiprocessors

Single-chip Multi-chip Rack Datacenter

On-Chip Off-Chip

CSLPW – Spring 2018 Lec.02 - Slide 32

u Shared Memory
o Communication is unstructured, implicit in loads and stores
o Easier to program, but harder to scale
o Single node: mobiles, laptop/desktop, single server

u Message Passing
o Structure all communication as messages
o Harder to program, but easier to scale
o Multiple nodes: rack of servers

u Data Parallel
o Structure computation over groups of independent data
o Single node: GPU
o Multiple nodes: rack of servers (CPU or GPU)

Communication Models

CSLPW – Spring 2018 Lec.02 - Slide 33

Software layering

Single node:
multicore, GPU

Multinode:
cluster, datacenter,

supercomputer

C/C++, Java, Scala, Python, …

Cilk, OpenMP, TBBs, Pthreads, CUDA, MPI …

Hadoop, Spark, Pregel, GraphLab,
FaRM, TensorFlow…

High-level
frameworks

Libraries /
Language
extensions

Programming
languages

Hardware

CSLPW – Spring 2018 Lec2 - 34

Example platforms: Mobile

u E.g., iPhone, Surface, Smartwatch
u Small devices used in everyday life
u Heterogeneous CPU/GPU devices

w Shared memory CPU
w Data Parallel GPU

u Four low-power cores
w 0.25 to 1 Watt per core

u Total power < 15 W
u Price < 1000 CHF

CSLPW – Spring 2018 Lec2 - 35

Example platforms: Datacenters

u E.g., Amazon, Facebook, Google,
Microsoft

u Run all online services: search,
social media, e-commerce

u Shared memory within server
u Message passing across
u Dozen cores/server ~100 W
u Datacenter power ~20 MW
u Price ~ 3 billion CHF

CSLPW – Spring 2018 Lec2 - 36

u Popular software library: MPI (message passing interface)
u Sharing memory is too expensive at massive scale

w Can connect commodity systems together to form large parallel machine

u E.g., “Piz Daint” comprised of ~6K independent systems
w Using MPI, can program all of them as one

Example platforms: Supercomputers

CSLPW – Spring 2018 Lec2 - 37

cache
Bus

Back to Simple Multiprocessor: Shared Memory

Bus

memory

cachecache

CSLPW – Spring 2018 Lec2 - 38

Processor and Memory are Far Apart

processor

memory

interconnect

CSLPW – Spring 2018 Lec2 - 39

Reading from Memory

address

CSLPW – Spring 2018 Lec2 - 40

Reading from Memory

zzz…

CSLPW – Spring 2018 Lec2 - 41

Reading from Memory

value

CSLPW – Spring 2018 Lec2 - 42

Writing to Memory

address, value

CSLPW – Spring 2018 Lec2 - 43

Writing to Memory

zzz…

CSLPW – Spring 2018 Lec2 - 44

Writing to Memory

ack

CSLPW – Spring 2018 Lec2 - 45

Cache: Reading from Memory

address

cache

CSLPW – Spring 2018 Lec2 - 46

Cache: Reading from Memory

cache

CSLPW – Spring 2018 Lec2 - 47

Cache: Reading from Memory

cache

CSLPW – Spring 2018 Lec2 - 48

Cache Hit

cache

?

CSLPW – Spring 2018 Lec2 - 49

Cache Hit

cache
Yes!

CSLPW – Spring 2018 Lec2 - 50

Cache Miss

address

cache

?No…

CSLPW – Spring 2018 Lec2 - 51

Cache Miss

cache

CSLPW – Spring 2018 Lec2 - 52

Cache Miss

cache

CSLPW – Spring 2018 Lec2 - 53

L1 and L2 Caches

L1

L2

CSLPW – Spring 2018 Lec2 - 54

L1 and L2 Caches

L1

L2

Small & fast
1 or 2 cycles

CSLPW – Spring 2018 Lec2 - 55

L1 and L2 Caches

L1

L2

Larger and slower
10s of cycles

CSLPW – Spring 2018 Lec2 - 56

When a Cache Becomes Full…

u Need to make room for new entry
u By evicting an existing entry
u Need a replacement policy

w Usually some kind of least recently used heuristic

CSLPW – Spring 2018 Lec2 - 57

Fully Associative Cache

u Any line can be anywhere in the cache
w Advantage: can replace any line
w Disadvantage: hard to find lines

CSLPW – Spring 2018 Lec2 - 58

K-way Set Associative Cache

u Each slot holds k lines
w Advantage: pretty easy to find a line
w Advantage: some choice in replacing line

CSLPW – Spring 2018 Lec2 - 59

Multicore Set Associativity

u L2, lower levels can be more associative (e.g., > 16 ways)
w Why? Because cores share sets
w Threads cut effective size if accessing different data

CSLPW – Spring 2018 Lec2 - 60

Example: Average Memory latency

w/o cache, all accesses go to memory:
Average Memory Access Time = memory latency

with one level cache:
Average Memory Access Time =

cache hit time x (1 – cache miss rate) +
memory latency x cache miss rate

u With a cache has a miss rate of 10%, hit time of 2 cycles and a
memory latency off 100 cycles, what is AMAT?

AMAT = (2 x 90%) + (100 x 10%) = 11.8 cycles

CSLPW – Spring 2018 Lec2 - 61

Example: Average Memory latency

Assume the following params:
L1 hit time = 2 cycles, L1 miss rate = 5%
L2 hit time = 10 cycles, L2 miss rate = 2%
Memory latency = 200 cycles

u What is AMAT?

AMAT = (2 x 95%) + (10 x 5%) + (200 x 5% x 2%)
=1.9 + 0.5 + 0.2 = 2.6 cycles

CSLPW – Spring 2018 Lec2 - 62

Cache Coherence

u A and B both cache address x
u A writes to x

w Updates cache
u How does B find out?
u Many coherence protocols in products

CSLPW – Spring 2018 Lec2 - 63

Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

load x

CSLPW – Spring 2018 Lec2 - 64

cache
Bus

Memory Responds

Bus

memory

cachecache

datadata
Got it!

CSLPW – Spring 2018 Lec2 - 65

Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Load x

CSLPW – Spring 2018 Lec2 - 66

Bus

Other Processor Responds

memory

cachecache

data

Got it

datadata
Bus

CSLPW – Spring 2018 Lec2 - 67

Modify Cached Data

Bus

data

memory

cachedata

data

data

Store x

CSLPW – Spring 2018 Lec2 - 68

Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Invalidate x

CSLPW – Spring 2018 Lec2 - 69

Coherence Misses

u Sometimes necessary, called “True Sharing”
w When two processors read/write same variable “x”
w Communicate a new value of “x” from one thread to another
w Inherent to the computation

u Sometimes not necessary, called “False Sharing”
w Reading and writing two distinct variables “x1” and “x2”
w Happen to reside in the same cache block
w E.g., x1 and x2 are single words, but a 64-byte block can hold

8 words, and contains both “x1” and “x2”
u Can restructure to reduce coherence misses

CSLPW – Spring 2018 Lec2 - 70

Summary

u Most multiprocessors use shared memory
u We will assume an SMP, simple multiprocessor model
u Must know how to platform works to construct software
u Must understand the bottlenecks
u Now, we will see how to think parallel

CSLPW – Spring 2018 Lec2 - 71

To design well-balanced parallel software we need to
think about how a problem can be solved in parallel,

divide the work evenly among threads,
maximize the parallelism and reduce overhead

CSLPW – Spring 2018 Lec2 - 72

Example App: Apple X Face Unlock

CSLPW – Spring 2018 Lec2 - 736

DEEP LEARNING EVERYWHERE
Image Classification, Object Detection,

Localization, Action Recognition
Speech Recognition, Speech Translation,

Natural Language Processing

Breast Cancer Cell Mitosis Detection,
Volumetric Brain Image Segmentation

Pedestrian Detection, Lane Detection,
Traffic Sign Recognition

CSLPW – Spring 2018 Lec2 - 74

Example App: Deep Learning

Used in search, machine translation, face recognition, investment banking,..

CSLPW – Spring 2018 Lec2 - 75

Example App: IBM Watson

CSLPW – Spring 2018 Lec2 - 76

Example Apps: Science and Engineering

u Examples
w Weather prediction
w Drug development
w Oil reservoir simulation
w Automobile crash tests
w ….

u Typically model physical systems or phenomena
u Problems are 2D or 3D
u Usually requires heavy arithmetic

Molecular dynamics
used in drug discovery

CSLPW – Spring 2018 Lec2 - 77

Technical distinction: Concurrency vs. Parallelism

u Concurrency: two or more threads march together

u Parallelism: two or more threads execute at the same time
w All parallel threads are concurrent, but not vice versa

u Roughly how many threads vs. how many cores

Thread 1 Thread 2 Thread 1

Thread 1

Thread 2

CSLPW – Spring 2018 Lec2 - 78

Terminology

u A Task is a piece of work
w iPhone X Face Unlock: compute a grid point on image

u Task grain
w small è fewer operations (less work) per task
w large è more operations (more work) per task

u Threads performs tasks
w Threads execute on cores

CSLPW – Spring 2018 Lec2 - 79

Forms of Parallelism
u Throughput parallelism

w Perform many (identical) sequential tasks at the same time
w E.g., Google search, ATM (bank) transactions

u Functional or task parallelism
w Perform tasks that are functionally different in parallel
w E.g., iPhoto (face recognition with slide show)

u Pipeline parallelism
w Perform tasks that are different in a particular order
w E.g., speech (signal, phonemes, words, conversation)

u Data parallelism
w Perform the same task on different data
w E.g., Data analytics, image processing

}
Re

du
ce

 ti
m

e
fo

r o
ne

 jo
b

CSLPW – Spring 2018 Lec2 - 80

Division of Work: It’s about Performance

u Balance workload
w Give each parallel task the same rough amount of work

u Reduce communication
w Balance computation time with communication time
w Computation à useful work, Communication à overhead

u Reduce extra work
w Creating a thread, assigning work
w Scheduling threads on processors, OS, etc.

u These are at odds with each other

CSLPW – Spring 2018 Lec2 - 81

Example: Division of Work

}

} Overhead

} {Load imbalance

Small tasks Large tasks

CSLPW – Spring 2018 Lec2 - 82

Matrix Multiplication

() () ()BAC •=

CSLPW – Spring 2018 Lec2 - 83

c11 c12 … c1n
c21 c22 … c2n
   
cn1 cn2 … cnn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

a11 a12 … a1n
a21 a22 … a2n
   
an1 an2 … ann

!

"

#
#
#
#
#

$

%

&
&
&
&
&

×

b11 b12 … b1n
b21 b22 … b2n
   
bn1 bn2 … bnn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Matrix Multiplication

Where cij = aik ⋅bkj
k=1

n

∑

Cn×n() = An×n()× Bn×n()

CSLPW – Spring 2018 Lec2 - 84

c11 c12 … c1n
c21 c22 … c2n
   
cn1 cn2 … cnn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

a11 a12 … a1n
a21 a22 … a2n
   
an1 an2 … ann

!

"

#
#
#
#
#

$

%

&
&
&
&
&

×

b11 b12 … b1n
b21 b22 … b2n
   
bn1 bn2 … bnn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Matrix Multiplication

For each i and j:
Multiply the entries aik by the entries bkj for k = 1, 2, …, n
and summing the results over k

Cn×n() = An×n()× Bn×n()

CSLPW – Spring 2018 Lec2 - 85

class Worker extends Thread {
int row, col;
Worker(int row, int col) {
this.row = row; this.col = col;

}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Matrix Multiplication in Java

85

B

A

C

n

i

col

row

i

n

n

n

CSLPW – Spring 2018 Lec2 - 86

Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

a thread

CSLPW – Spring 2018 Lec2 - 87

Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Which matrix entry to
compute

CSLPW – Spring 2018 Lec2 - 88

Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Actual computation

CSLPW – Spring 2018 Lec2 - 89

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

CSLPW – Spring 2018 Lec2 - 90

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Create n x n
threads

CSLPW – Spring 2018 Lec2 - 91

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Start them

CSLPW – Spring 2018 Lec2 - 92

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Wait for
them to

finish

Start them

CSLPW – Spring 2018 Lec2 - 93

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Wait for
them to

finish

Start them

What�s wrong with this
picture?

CSLPW – Spring 2018 Lec2 - 94

Thread Overhead

u One thread per task
w One dot product task

u Threads Require resources
w State:

wMemory for stacks
wA copy of the register file
wProgram state: Program Counter, Stack pointer,….

w Setup, teardown
w Scheduler overhead

u Short-lived threads
w Bad ratio of work versus overhead

CSLPW – Spring 2018 Lec2 - 95

One More “Big” Performance-Related Axiom
u Amdahl’s Law

w In English: if you speed up only a small fraction of the execution time of a
program or a computation, the speedup you achieve on the whole
application is limited

u Example
10 s 90 s

1 s 90 s

A 10x
speedup
on this part!

100s

91s

CSLPW – Spring 2018 Lec2 - 96

Amdahl’s Law

Speedup = 1
Fractionenhanced + (1 - Fractionenhanced)
Speedupenhanced

Parallel fraction

CSLPW – Spring 2018 Lec2 - 97

Amdahl’s Law

Speedup = 1
Fractionenhanced + (1 - Fractionenhanced)
Speedupenhanced

Sequential
fraction

CSLPW – Spring 2018 Lec2 - 98

Amdahl’s Law

Simple example:
Program runs for 100 seconds on a uniprocessor
10% of the program can be parallelized on a multiprocessor
Assume an ideal multiprocessor with 10 processors

Speedup = 1
Fractionenhanced + (1 - Fractionenhanced)
Speedupenhanced

Speedup = 1 = 1 = 1 = 1.1
0.1 + (1-0.1) 0.01 + 0.9 0.91
10

CSLPW – Spring 2018 Lec2 - 99

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 4 8 16 32 64 128

Ti
m

e

of Processors

10%
50%
70%
80%
90%

Implications of Amdahl’s Law

Fractionenhanced

CSLPW – Spring 2018 Lec2 - 100

Parallel execution is not ideal

u 10 processors rarely get a speedup of 10
w Load imbalance
w Thread start/join overhead
w Communication overhead

u Even if Fractionenhanced is close to 100%
w Speedupenhanced << p for p processors
w Our goal is to get it as close as possible to p

CSLPW – Spring 2018 Lec2 - 101

Amdahl�s Law (in practice)

CSLPW – Spring 2018 Lec2 - 102

Back to Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row …)
for (int col …)
worker[row][col] = new Worker(row,col);

for (int row …)
for (int col …)
worker[row][col].start();

for (int row …)
for (int col …)
worker[row][col].join();

}

Sequential
(1 – Fractionenhanced)

CSLPW – Spring 2018 Lec2 - 103

Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {

this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (int i = 0; i < n; i++)
dotProduct += A[row][i] * B[i][col];

C[row][col] = dotProduct;
}}}

Parallel
(Fractionenhanced)

CSLPW – Spring 2018 Lec2 - 104

Example: n = 16

u How many threads will our Matrix Multiplication create?

u How many of these threads are concurrent (i.e., degree of
concurrency)?

16 x 16 = 256 threads

All threads

CSLPW – Spring 2018 Lec2 - 105

Example: Assume there are 4 processors

u How many threads per processor?

u How many threads run in parallel (i.e., degree of
parallelism)?

256 threads / 4 = 64 threads

One thread per core = 4 threads

CSLPW – Spring 2018 Lec2 - 106

Best efficiency: Concurrency ~ Parallelism
u All work is independent
u Max parallelism? 4
u Only need 4 threads

w Reduce thread.start(), thread.join() overhead
w Only 4 start() and 4 join()
w Workers (each thread) should do more work
w 16x16 dot products divided by 4 = 64 dot products per thread

Rows 0-3 4-7 8-11 12-15

CSLPW – Spring 2018 Lec2 - 107

Matrix Multiplication on “p” cores

void multiply() {
BigWorker[] worker = new BigWorker[n];

for (int row=0; row < n; row+=n/p)
worker[row] = new BigWorker(row);

for (int row=0; row < n; row+=n/p)
worker[row].start();

for (int row=0; row < n; row+=n/p)
worker[row].join();

}

CSLPW – Spring 2018 Lec2 - 108

Matrix Multiplication: (n/c) x n per worker

void multiply() {
BigWorker[] worker = new BigWorker[n];

for (int row=0; row < n; row+=n/p)
worker[row] = new Worker(row);

for (int row=0; row < n; row+=n/p)
worker[row].start();

for (int row=0; row < n; row+=n/p)
worker[row].join();

}

Create p
threads

CSLPW – Spring 2018 Lec2 - 109

BigWorker: Each thread does (n/p) x n
class BigWorker extends Thread {
int begin_row;
BigWorker(int begin_row) {
this.begin_row = begin_row;

}
public void run() {
double dotProduct = 0.0;
for (int row=begin_row; row < begin_row+n/p; row++)

for (int col=0; col < n; col++)
for (int i = 0; i < n; i++)

dotProduct += A[row][i] * B[i][col];
C[row][col] = dotProduct;

}}}

CSLPW – Spring 2018 Lec2 - 110

BigWorker: Each thread does (n/p) x n
class Worker extends Thread {
int begin_row;
BigWorker(int begin_row) {
this.begin_row = begin_row;

}
public void run() {
double dotProduct = 0.0;
for (int row=begin_row; row < begin_row+n/p; row++)

for (int col=0; col < n; col++)
for (int i = 0; i < n; i++)

dotProduct += A[row][i] * B[i][col];
C[row][col] = dotProduct;

}}}

Multiple rows
All columns

CSLPW – Spring 2018 Lec2 - 111

Summary

u Need to think parallel
w Division of work
w Lots of bottlenecks

u Don’t forget Amdahl’s Law

CLSPW– Spring 2018 Lec.01 - Slide 112

u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Cloud
o Virtualization

Roadmap

CLSPW– Spring 2018 Lec.01 - Slide 113

Data Economics

CLSPW– Spring 2018 Lec.01 - Slide 114

Internet-of-Things (IoT): Data in Flight

114

Source: IDC Worldwide and Regional IoT forecast, EMC Digital Universe with Research and Analysis by IDC

20 Billion Connected
Devices

4 Zettabytes of Data, 10% of Digital
Universe$7 Trillion

Market Revenue

CLSPW– Spring 2018 Lec.01 - Slide 115

Data Shaping All Science & Technology

Science entering 4th paradigm
u Analytics using IT on

● Instrument data
● Simulation data
● Sensor data
● Human data
● …

Complements theory, empirical
science & simulation

Data-centric science key for innovation-based economies!

CLSPW– Spring 2018 Lec.01 - Slide 116

Source: James Hamilton, 2014
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_Reinvent20131115.pdf

Daily IT growth in 2014 = All of AWS in 2004!

CLSPW– Spring 2018 Lec.01 - Slide 117

Modern Datacenters are
Warehouse-Scale Computers

u Millions of interconnected
home-brewed servers

u Centralization helps exploit
economies of scale

u Network fabric provides
micro-second connectivity

u At physical limits
u Need sources for

● Electricity
● Network
● Cooling

30MW, 20x Football Field
$3 billion

CLSPW– Spring 2018 Lec.01 - Slide 118

Warning!
Datacenters are not Supercomputers

• Run heterogeneous data services at massive scale
• Driven for commercial use
• Fundamentally different design, operation, reliability, TCO

• Density 10-25KW/rack as compared to 25-90KW/rack
• Tier 3 (~2 hrs/downtime) vs. Tier 1 (upto 1 day/downtime)
• ……and lots more

Datacenters are the IT utility plants of the future

Supercomputing Cloud Computing

≠

CLSPW– Spring 2018 Lec.01 - Slide 119

Cloud Taking Over Enterprise

Source: Dell ‘Oro 2Q15

CLSPW– Spring 2018 Lec.01 - Slide 120

Historically, what is a datacenter?

u Oxford dictionary defines �data center� as:

u Term originated in the 1990s with the advent of client-
server architecture

u Dot-com bubble è internet data centers

�A large group of networked computer servers typically
used by organizations for the remote storage,
processing, or distribution of large amounts of data.�

CLSPW– Spring 2018 Lec.01 - Slide 121

u 1.5% of worldwide electricity
o 1.3% annual growth: energy-efficiency dramatically improved recently

Datacenter Power

CLSPW– Spring 2018 Lec.01 - Slide 122

Warehouse-scale computing:
The datacenter is the computer

u Program
u Internet service (e.g. web search, email, video

streaming, maps, etc.)

u Computer
u Thousands of

individual computing nodes
u Networking and

storage subsystems
u Power distribution

and cooling system

CLSPW– Spring 2018 Lec.01 - Slide 123

Datacenter availability requirements

Cost and reliability are important for high availability!

CLSPW– Spring 2018 Lec.01 - Slide 124

Multi-datacenter scenarios

u User queries may involve computation across multiple
datacenters

u Inter-datacenter communications are of much poorer
quality than intra-datacenter communications

CLSPW– Spring 2018 Lec.01 - Slide 125

Architectural overview

CLSPW– Spring 2018 Lec.01 - Slide 126

Storage management

Distributed File System
u Disk drives are directly

attached to server nodes
u Replication across

different machines
u Poorer write performance
u Higher read performance
u Can exploit data locality
u Google File System(GFS)

Network-Attached Storage
u Disk drives are connected

to cluster-level switch
u Replication within each

appliance

CLSPW– Spring 2018 Lec.01 - Slide 127

Network fabric

Software should exploit rack-level locality!

Cheap! Expensive!

CLSPW– Spring 2018 Lec.01 - Slide 128

Storage hierarchy

CLSPW– Spring 2018 Lec.01 - Slide 129

Performance variations

CLSPW– Spring 2018 Lec.01 - Slide 130

Useful Numbers
Courtesy of Jeff Dean, Google

u L1 cache reference 0.5 ns
u L2 cache reference 7 ns
u Mutex lock/unlock 25 ns
u Main memory reference 100 ns
u Compress 1K bytes with Zippy 3,000 ns
u Send 2K bytes over 1 Gbps network 20,000 ns
u Read 1 MB sequentially from memory250,000 ns
u Round trip within same datacenter 500,000 ns
u Disk seek 10,000,000 ns
u Read 1 MB sequentially from disk 20,000,000 ns
u Send packet CAàEuropeàCA 150,000,000 ns

CLSPW– Spring 2018 Lec.01 - Slide 131

Software layers

u Platform-level software – common firmware, kernel,
operating system distribution, and libraries

u Cluster-level infrastructure – distributed file systems,
schedules, and remote procedure call (RPC) layers

u Application-level software – specific services
u Online services: web search, email, maps
u Offline services: building of web index

CLSPW– Spring 2018 Lec.01 - Slide 132

Datacenter software development

u Applications have inherent data parallelism or request
parallelism

u Each platform generation has significant homogeneity

u Isolation of users from service implementation makes it
much easier to deploy new software quickly

u Cluster-level software must deal with expected frequent
hardware failure

CLSPW– Spring 2018 Lec.01 - Slide 133

uMany independent requests/tasks
uHuge dataset split into shards
uUse aggregate memory over network

Example: Search

Master
node

Client
Requests

Dataset
Server

Server

Server

CLSPW– Spring 2018 Lec.01 - Slide 134

Cluster-level infrastructure software

u Resource management
u Maps user tasks to hardware resources
u Enforces priorities and quotas
u Users specify job requirements

ue.g., CPU performance, memory capacity, bandwidth

u Hardware abstraction

u Deployment and maintenance

u Programming frameworks

CLSPW– Spring 2018 Lec.01 - Slide 135

Software-based fault tolerance

Fault tolerance:
o Phones crash all the time (not safety critical)
o Planes, cars, hospital equipment, supercomputers can

not crash often (use expensive hardware)
o Servers are cheap, crash less often but repaired in

software and have a legal contract to customers

u Key idea: hardware faults are detected and reported to
software in a timely manner, software takes appropriate
action to manage the fault

u Hides complexity from application-level software

CLSPW– Spring 2018 Lec.01 - Slide 136

Computing/IT
equipment

Over half of energy consumption

What else
consumes power
in a datacenter?

Power distribution units, cooling system, etc.

Data Center Power Consumption

CLSPW– Spring 2018 Lec.01 - Slide 137
Image courtesy of DLB Associates

The Components of a Typical Datacenter

PDU

CRAC

Cabinets

Diesel
Generator

UPS

Fuel
Tanks

Electrical Switch Gear
Pump
Room

Heat
Rejection

Devices

Colocation
Suites

CLSPW– Spring 2018 Lec.01 - Slide 138

How to Measure Datacenter Energy Efficiency

u PUE = power usage effectiveness
o Building power/power of IT (servers, network)

o Current state of the art PUE = ~1.1

u SPUE = server power usage effectiveness
o Server power/power for server components (e.g., CPU, disk)

o State of the art SPUE = 1.1

u If PUE=SPUE=1.1 => 10% of energy is “wasted”

CLSPW– Spring 2018 Lec.01 - Slide 139
Update: LBNL survey of PUE of 24 datacenters, 2007 [Greenberg et al.]

PUE Statistics
u [2006] About 85% of datacenters estimated to have PUE > 3.0
u [2006] Only about 5% of datacenters estimated to have PUE ≤ 2.0
u [2010] Average PUE of approximately 1.89

CLSPW– Spring 2018 Lec.01 - Slide 140

Datacenter consolidation
Trend is to consolidate workloads in hyperscale datacenters

CLSPW– Spring 2018 Lec.01 - Slide 141

Hyperscale datacenters are more efficient

u Avg. PUE comparison:
o Hyperscale datacenter: 1.1
o Midtier datacenter: 1.6

u Reasons for increased efficiency:
o Higher utilization
o Redundancy control is cheaper at high scale

More hyperscale à more efficient datacenter computing

CLSPW– Spring 2018 Lec.01 - Slide 142

Sources of Efficiency Loss:
Power Distribution (James Hamilton)

13.2kv

115kv 13.2kv

13.2kv 480V

20
8V ~1% loss in switch

Gear and conductorsUPS:
Rotary or Battery

2.5MW Generator
~180 Gallons/hour

IT LOAD

11% distribution loss
.997*.94*.98*.98*.99 = 89%

PDUs

99.7% efficient 94% efficient 98% efficient 98% efficient

UPS & Gen
often on 480V

Note: Two more
levels of power
conversion at
server level

High voltage utility
distribution

Substation
Transformers

Transformers

IT load –
servers,
storage,
network

CLSPW– Spring 2018 Lec.01 - Slide 143
Image courtesy of DLB Associates

Old School Datacenter Cooling System
u Datacenter floor is raised 2-4ft above the concrete floor
u Under-floor area helps distribute cool air to the server racks
u Also used for routing power/network cables to the racks

CLSPW– Spring 2018 Lec.01 - Slide 144

New School:
Chilled-Water Cooling

CLSPW– Spring 2018 Lec.01 - Slide 145

Key Energy Usage Feature of Current Servers

u Under low utilization, the inefficiency is significantly higher
u Cause: Idle power consumption more than half of peak!!!

u Individual servers spend negligible time completely idle

An example benchmark result for

SPECpower_ssj2008; energy

efficiency is indicated by bars,

whereas power consumption is

indicated by the line. Both are

plotted for a range of utilization

levels, with the average metric

corresponding to the vertical dark

line. The system has a single-chip

2.83 GHz quad-core Intel Xeon

processor, 4 GB of DRAM, and one

7.2 k RPM 3.5� SATA disk drive.

CLSPW– Spring 2018 Lec.01 - Slide 146

Load vs. Efficiency
u Off-peak traffic is 2x lower than peak period

u Need to operate efficiently with low utilization

CLSPW– Spring 2018 Lec.01 - Slide 147

Dynamic Power Range
Energy-proportional machines would exhibit a wide dynamic power

range – rare in computing equipment (merely 2x), but not

unprecedented in other domains (e.g. Humans have a 20x factor)

Human energy usage vs. activity levels (adult male)

CLSPW– Spring 2018 Lec.01 - Slide 148

Causes of Poor Energy Proportionality
u CPUs are not necessarily the main culprit!
u Over the years, CPU designers have been more attentive to energy

efficiency than their counterparts for other subsystems (e.g., switching
to multicore vs. higher clock frequencies)

u Server-class CPUs have dynamic power range of 3.0x or more
(compare with: 2.0x for memory, 1.3x for disks, less than 1.2x for
networking switches)

CLSPW– Spring 2018 Lec.01 - Slide 149

Role of Software

u Clever software strategies can enhance energy-
proportionality of the underlying hardware:
u Intelligent use of power management features in existing hardware
u Using low-overhead inactive or active low-power modes
u Power-friendly scheduling of tasks

u Challenges
u Encapsulation (avoid exposure to developers)
u Robustness (avoid side-effects like increased variability of

response-time)

CLSPW– Spring 2018 Lec.01 - Slide 150

Summary

u Datacenters basics

u Software
u Parallel
u Fault-tolerant

u Energy efficiency
u Decrease PUE*SPUE
u Energy proportional computing

CLSPW– Spring 2018 Lec.01 - Slide 151

u Technology
o Moore’s Law
o Parallelism

u Datacenters & Centralization
o Economies of scale
o Metrics

u Service-Oriented Computing
o Cloud
o Virtualization

Roadmap

CLSPW– Spring 2018 Lec.01 - Slide 152

A Brief History of IT

u From computing-centric to data-centric
u Consumer Era: Internet-of-Things in the Cloud

1970s-

PC Era

Mobile Era

Mainframes
1980s 1990s Today+

Consumer Era

CLSPW– Spring 2018 Lec.01 - Slide 153

Cloud Computing

u IT resources provided as a service
o Compute, storage, databases, queues

u Clouds leverage economies of scale of
commodity hardware
o Cheap storage, high bandwidth networks & multicore processors
o Geographically distributed data centers

u Focus on business, science, governance rather
than IT maintenance

u Sign a contract to use a service
u Offerings from Microsoft, Amazon, Google, …

CLSPW– Spring 2018 Lec.01 - Slide 154

Cloud Service Models

CRM

LotusLive

App Engine

IC Cluster

CLSPW– Spring 2018 Lec.01 - Slide 155

Example: Microsoft Azure

Live
Services

CLSPW– Spring 2018 Lec.01 - Slide 156

Services

Application

Development

Platform

Storage

Hosting

Cloud Model Service Layers [src: Mark Baker]

Description
Services – Complete business services such as PayPal,
OpenID, OAuth, Google Maps, Alexa

Services

Application
Focused

Infrastructure
Focused

Application – Cloud based software that eliminates the
need for local installation such as Google Apps,
Microsoft Online

Storage – Data storage or cloud based NAS such as
CTERA, iDisk, CloudNAS

Development – Software development platforms used
to build custom cloud based applications (PAAS &
SAAS) such as SalesForce

Platform – Cloud based platforms, typically provided
using virtualization, such as Amazon ECC, Sun Grid

Hosting – Physical data centers such as those run by
IBM, HP, NaviSite, etc.

156

CLSPW– Spring 2018 Lec.01 - Slide 157

u Run multiple operating systems and user applications
on the same hardware
o E.g., run both Windows and Linux on the same laptop

u The OSes are completely isolated from each other

u Complete control over your own “guest” OS

What is virtualization?

CLSPW– Spring 2018 Lec.01 - Slide 158

u Server consolidation
o Run a web server and a mail server on the same physical server

u Easier development
o Develop critical operating system components (file system, disk driver)

without affecting computer stability

u Quality Assurance
o Testing a network product (e.g., a firewall) may require tens of computers
o Try testing thoroughly a product at each pre-release milestone

u Cloud computing
o Buy computing as a service
o You pay for e.g., 2 CPU cores for 3 hours plus 10GB of network traffic

Uses of virtualization

CLSPW– Spring 2018 Lec.01 - Slide 159

u Definitions
o Hypervisor (or VMM – Virtual Machine Monitor) is a software

layer that allows several virtual machines to run on a physical
machine

o Physical OS and hardware are called the Host
o Virtual machine OS and applications are called the Guest

Two Types of Virtualization

VMware ESX, Microsoft Hyper-V, Xen

Hardware

Hypervisor

VM1 VM2

Type 1 (bare-metal)

Host

Guest

Hardware

OS

Process Hypervisor

VM1 VM2

Type 2 (hosted)

VMware Workstation, Microsoft Virtual PC, Sun
VirtualBox, QEMU, KVM

Host

Guest

CLSPW– Spring 2018 Lec.01 - Slide 160

u Emulate
o Interpret every guest instruction, real slow
o E.g., BOCHS

u Dynamic binary translation
o Most code will run native (like JAVA JIT)
o Sensitive code will call the hypervisor (trapping into host)
o E.g., Vmware, QEMU

u Paravirtualization
o Modified guest OS works directly with the hypervisor
o E.g., Xen

How to run a VM (also called a container)?

CLSPW– Spring 2018 Lec.01 - Slide 161

Hundreds of Data Breaches in 2016

161

CLSPW– Spring 2018 Lec.01 - Slide 162

Cloud Security

162

CLSPW– Spring 2018 Lec.01 - Slide 163

ü Reduced exposure
ü Auditing/testing
ü Automatic management
ü Redundancy
ü Disaster recovery

✗ Trusting vendors
✗ Accountability
✗ Opaque technologies
✗ Loss of physical control

Advantages vs. Challenges

163

source: Peter Mell, Tim Grance, NIST, Information Technology Laboratory, 2009

www.nist.gov

CLSPW– Spring 2018 Lec.01 - Slide 164

End of Safe Harbor

Born: 2000
RIP: 6.10.2015

No longer a valid
legal basis in CH

Need new legal frameworks for IT!

CLSPW– Spring 2018 Lec.01 - Slide 165

Digital Sovereignty

u Bought server & software
u Local usage (in office/building)
u Governed privately
ü Digital Sovereignty

Yesterday: IT Products Today+: IT Services

Technologies & legal frameworks to enable transition?

§ Cloud services
§ Global resources
§ Governed by country
✗ Loss of Sovereignty

CLSPW– Spring 2018 Lec.01 - Slide 166

Implications for Switzerland

u #1 ICT spend per capita [World Bank, 2013]
● 7.2% of GDP with strong consumer and enterprise spend

● 70% service-based economy
● Top ten knowledge-based

u Living in private clouds with legacy technologies is a risk

Major stake holder in cloud technologies!

CLSPW– Spring 2018 Lec.01 - Slide 167

Summary

uWe now live in a Digital Universe
uTechnology roadmap ➔ Centralization
uClouds & datacenters are the only path forward
● Leverage massive data analytics
●Benefit from economies of scale

uChallenges
●Technologies to scale platforms
● Frameworks to guarantee sovereignty

