
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

Objectives for today:

- XOR problem and the need for multiple layers

- understand backprop as a smart algorithmic

implementation of the chain rule

- hidden neurons add flexibility, but flexibility is

not always good: the problem of generalization

- training base, validation and test base: the need to

predict well for future data

Lecture starts at 10h45

Previous slide.

The simple perceptron from last week is restricted to linearly separable problems. This

week we will go beyond and look at neural networks with several layers. As an example

we construct a solution of the XOR problem.

Updating parameters in a multi-layer network requires an efficient application of the

chain rule known as backpropagation algorithm

Adding more neurons and layers is not necessarily good because the network needs to

be used on future data that were not used during training. The problem of

generalization is in practice handled by splitting the data base into two or even three

parts, as known from introduction courses to machine learning.

review: Artificial Neural Networks for classification

input

output

car dog

Aim of learning:

Adjust connections such

that output is correct

(for each input image,

even new ones)

Previous slide.

As we have seen in week 1, artificial neural networks are often organized in layers. In

the context of a classification task the output units indicate the class to which an input

belongs.

To train the network we adjust the connection weights of the network.

Review: Data base for Supervised learning (single output)

input

car =yes

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

target output

𝑡𝜇 = 1

P data points

𝑡𝜇 = 0 car =no

Previous slide.

To train the network, we make use of a data based of supervised learning where each

input pattern 𝒙𝜇 is associated with the appropriate label 𝑡𝜇which we consider as target

output.

review: Supervised learning

input

car (yes)

Classifier
Techerteacher

𝒙𝜇

 𝑦𝜇 = 0.6𝑡𝜇 = 1target output classifier outputerror

Previous slide.

The comparison between the target output 𝑡𝜇 and the actual output 𝑦𝜇 enables us to

train the network.

The result of the comparison can be formulated as an ‘error function’ also called ‘loss

function’.

Review: Classification as a geometric problem

Task of Classification

= find a separating surface in the high-dimensional input space

x
x

xx

x
xx

ooo
o o
o o o

x

x
o

d(x)=0

x
x

xx

x
xx

ooo
o o
o

o

o
x

x

o

linearly

separable

problem

d(x)=0

𝑑 𝒙𝜇 > 0

Previous slide.

After training, all positive examples 𝑡𝜇=+1 (green crosses) should lie on the same side

of a separating surface which is defined as the set of points where the discriminant

function is zero. All negative examples 𝑡𝜇=0 should lie on the other side.

Review: Classification as a geometric problem

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

Previous slide.

As an illustration we have used a classification of cars against all non-car images.

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

Simple perceptron

imposes a linear

separation

Review: Single-Layer networks: simple perceptron

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑠𝑔𝑛 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

𝑑 𝒙 =

𝑘

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

Previous slide.

For a network consisting of a single neuron, the discriminant function is a hyperplane.

x
x

x
x

o
o

o

o

Review: remove threshold: add extra input

𝑤𝑖𝑘

𝑥𝑘

𝑑 𝒙 =

𝑘=1

𝑁

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

𝒙 ∈ 𝑅𝑁

x

x
x

o
o

o
o

x

-1

0

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝑑 𝒙 =

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 0

Previous slide.

After a switch from input dimension N to dimension N+1, this hyperplane runs through

the origin.

Review: Single-Layer networks

a simple perceptron

- can only solve linearly separable problems

- imposes a separating hyperplane

- in N+1 dimensions hyperplane always

goes through origin

- Adapt weights by gradient descent

(perceptron algo and other algos)

Previous slide.

As we have seen last week, a simple perceptron can only solve linearly separable

problems. In N+1 dimensions each update step of an interative algorithm corresponds

to a rotation of the separating hyperplane.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent Methods

Previous slide.

Almost all learning algorithms approach a minimum of the error function iteratively,

typically by gradient descent or variants thereof.

In a batch rule, a single update step is implemented after all patterns have been used

once, whereas in an online rule the a single update step is implemented after each

pattern.

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑡
𝜇

− 𝑦
𝜇 2

Quadratic error

gradient descent

Review: gradient descent

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇

Batch rule:

one update after all patterns

(normal gradient descent)

Online rule:

one update after one pattern
(stochastic gradient descent)

Previous slide.

For the special case of a quadratic error function in a simple perceptron, we have

already derived last week gradient descent in its batch and online version. The true

gradient yields the batch rule; the online version is called stochastic gradient descent.

Modern gradient descent methods no longer make this strict separation between online

or batch and often use minibatches.

𝐸(𝒘)

Some error function,

also called loss function

gradient descent

Modern gradient descent

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Batch rule:

one update after all P patterns

(normal gradient descent)

Online rule:

one update after one pattern
(stochastic gradient descent)

Mini Batch rule:

one update after P’=P/K patterns
(minibatch update)

1 epoch = all patterns applied once.

Training over many epochs

Previous slide.

If there are P patterns in total, a minibatch is of size P’ = P/K. An update step is

implemented after each minibatch.

A minibatch is a useful practical compromise: it is closer to true gradient descent

(‘batch’) than the online stochastic gradient descent algorithm, but is easier to

implement than a regular batch algorithm for modern databases with millions of data

points.

An ‘epoch’ is defined the number of iterations such that each pattern is used once. With

a batch rule each update step is an epoch; with an online rule P update steps are one

epoch. With a minibatch rule K steps are one epoch.

𝐸(𝒘)

Some error function, also

called loss function

gradient descent

Modern gradient descent

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Convergence

- To local minimum

- No guarantee to find global

minimum

- Learning rate needs to be

sufficiently small

- Learning rate can be further

decreased once you are

close to convergence

 See course: Machine Learning

(Jaggi-Urbanke)

Previous slide.

None of the gradient descent algorithm comes with a guarantee that it finds the global

minimum: if there are many local minima, it typically converges to one of these.

Because of the finite step size 𝛾 (learning rate), the algorithm will always show a bit of

jitter around the minimum. Decreasing the learning rate 𝛾 over the course of many

iterations helps to reduce the jitter

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent Methods

2. XOR problem

Previous slide.

A famous example of a task that is not linearly separable is the XOR problem

2. The XOR problem

just 4 data points (or many)

𝑥1

𝑥2

x

o x

o

1,0

0,1
1,1

0,0 𝑥1

𝑥2

x

o
x

o

x
x
x

x

xx
x
x

x
o

o

oo
o

oo
o

o o
o

Blackboard 1:

solution of XOR

Previous slide.

The XOR problem derives its name from the logical operator XOR (left) with only four

patterns, but the term is also used for groups of patterns that show an XOR-like

configuration (right).

Blackboard 1:

solution of XOR

Your notes.

𝒙 ∈ 𝑅𝑁+1

2. Solution of XOR problem

−1

−1

hidden layer

input layer

output neuron

Previous slide.

For the blue and the red neurons in the hidden layer, we construct, separating

hyperplanes in input space.

We then construct, for the green neuron, a separating hyperplane in the space of the

hidden neurons.

Conclusion: a neural network with one hidden layer can solve the XOR problem

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent Methods

2. XOR problem

3. Multilayer Perceptron

Previous slide.

A multilayer perceptron (or multi-layer network) has one or several hidden layers

between input layer and output layer.

3. Multi-layer perceptron

- OK, can solve the

XOR problem

(by construction)

- But is there an

algorithm to find the

weights in more

complicated cases?

𝒙 ∈ 𝑅𝑁+1

−1

−1

hidden layer

input layer

output neuron

Previous slide.

Neural networks with hidden layers are much more powerful, because they can solve

problems that are not linearly separable.

However, we need to answer the question of how we find a solution in cases where we

cannot construct the solution geometrically.

3. Supervised learning with sigmoidal output

input

output

Techerteacher

𝒙7

 𝑦7 = 0.2𝑡7 = 1target output classifier output
error!

Classifier

𝒇(𝒙7)

Previous slide.

To this end we start with an error function defined via the comparison of the actual

output with the target outpt.

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

3. Multilayer Perceptron: notation

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑎

1

0

𝑔(𝑎)

Previous slide.

For the actual output we have an explicit formula.

Notation:

- upper index in parenthesis = layer of network

- Lower index = neuron in the layer

- = weight from neuron j in layer (n-1) to neuron 1 in layer n 𝑤1,𝑗
(𝑛)

Quadratic error

gradient descent

𝑤𝑘

𝐸

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸

𝑑𝑤𝑗𝑘
(1)

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑖

𝑡𝑖
𝜇
− 𝑦𝑖

𝜇 2

3. Multilayer Perceptron: gradient descent

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

local

minimum

Previous slide.

To reduce the error in the output we can use gradient descent.

Exercise 1 now: Calculate gradient!

Use Chain rule, be smart!

 𝑦1
𝜇

 𝑦2
𝜇

𝑤2𝑙
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

−1

−1

𝑤𝑗𝑘
(2)

𝑥𝑘
(1)

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑖

𝑡𝑖
𝜇
− 𝑦𝑖

𝜇 2

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸

𝑑𝑤𝑗𝑘
(1)

with
 𝑦𝑖
𝜇

= 𝑔(3)(

𝑗

𝑤𝑖𝑗
(3)

𝑥𝑗
(2)

)

We continue in 8 minutes!

𝑥𝑗
(2)

= 𝑔(2)(

𝑘

𝑤𝑗𝑘
(2)

𝑥𝑘
(1)

)

𝑥2
(1)

= 𝑔(1)(𝑎2
(1)

) = 𝑔(1)(𝑙 𝑤2𝑙
(1)

𝑥𝑙
(0)

)

−1

𝑤1𝑗
(3)

𝑥2
(1)

Your notes.

In the image

refers to the j’th component of the weight vector converging onto the first neuron in

layer 3. You can put a comma or not.

𝑤1𝑗
(3)

= 𝑤1,𝑗
(3)

Blackboard 2:

calculate gradient

Your notes.

Calculating a gradient in multi-layer networks:

- write down chain rule

- analyze dependency graph

- store intermediate results

- update intermediate results

while proceeding through graph

- update all weights together at the end

3. Multilayer Perceptron: gradient descent

compare with

dynamic programming

Previous slide.

The chain rule in a multi-layer network gives rise to many, many terms.

Because of the nature of the chain rule, some terms depend on others. It is important to

analyze these dependencies.

The dependency graph indicates which values or variables will be important to calculate

other values or variables.

Just as in dynamic programming, the trick consists in storing those intermediate

variables or values that can be reused.

The actual weight update is done only at the end.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent Methods

2. XOR problem

3. Multilayer Perceptron

4. BackProp Algorithm

Previous slide.

The above ideas on implementing the chain rule with storage of intermediate values

gives rise to the PackProp algorithm. In other words, BackProp is just an (efficient)

implementation of the chain rule.

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp
output

activity

input

pattern

 𝑦𝑖
𝜇
− 𝑡𝑖

𝜇

∆𝑤𝑖𝑗
(𝑛)

= −𝛾

Previous slide.

Backprop (online rule/stochastic gradient descent)

1. We select a pattern and apply it as an input (activity in layer zero), and store the

activity in layer zero.

2. Knowing the activity in layer n, we calculate the activity in layer n+1 and store the

result (FORWARD pass)

3. We transform the mismatch for each neuron in the output layer into a delta-signal.

4. Knowing the delta signal for each neuron in layer n, we calculate the delta signal in

for each neuron in layer n-1 and store the result (BACKWARD pass)

5. We update ALL weights.

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp Calculate output error

𝛿

∆𝑤𝑖𝑗
(𝑛)

= −𝛾∆𝑤𝑖𝑗
(𝑛)

= −𝛾

 𝑦𝑖
𝜇
− 𝑡𝑖

𝜇

Previous slide.

The name backpropagation of errors arises since in the backward path the information

about delta-signals propagates backward.

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp update all weights

∆𝑤𝑖𝑗
(𝑛)

= −𝛾

 𝑦𝑖
𝜇
− 𝑡𝑖

𝜇

Previous slide.

The update of the weights needs the delta-signals AND the activation signals.

Important, ALL weights can be updated once we have calculated the intermediate

variables 𝛿𝑖
(𝑛)

and 𝑥𝑗
(𝑛−1)

for all neurons in all layers.

4. Backprop versus direct numerical evaluation

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸

𝑑𝑤𝑗𝑘
(1)

= −𝛾
𝐸 𝑤𝑗𝑘

1
+ 𝜀 − 𝐸 𝑤𝑗𝑘

1
− 𝜀

2𝜀

calculate

 calculate for one pattern 𝑦𝑖
𝜇

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑖

𝑡𝑖
𝜇
− 𝑦𝑖

𝜇 2

Previous slide.

Backprop (exploitation of the chain rule) is very efficient compared to a direct numerical

calculation of the gradient.

Blackboard 3:

algorithmic complexity 𝐸 𝑤𝑗𝑘
1

+ 𝜀 − 𝐸 𝑤𝑗𝑘
1

− 𝜀

2𝜀

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑖

𝑡𝑖
𝜇
− 𝑦𝑖

𝜇 2

Your notes.

4. Direct numerical evaluation: complexity

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸 𝑤𝑗𝑘

1
+ 𝜀 − 𝑑𝐸 𝑤𝑗𝑘

1
− 𝜀

2𝜀

calculate

1) calculate for one pattern 𝑦𝑖
𝜇

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑖

𝑡𝑖
𝜇
− 𝑦𝑖

𝜇 2

 each weight is touched once

2) for each change of weight,

evaluate E twice

3) For n weights, order n-square!!!

Previous slide.

The forward pass is the same as in Backprop, but we need to run the forward pass

twice, once with the current weights PLUS a small correction and once with the current

weights MINUS a small correction (or without).

Since each weight is touched once during the forward pass, the order of complexity is

n, where n is the number of weights.

However, after n calculations we can just update a single one of the weights, the one to

which we had applied the weight perturbation.

To update all the n weights, we therefore need n-square steps.

3. Backprop: complexity

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Exercise 2 at home: show algo is of order n

∆𝑤𝑖𝑗
(𝑛)

= −𝛾

 𝑦𝑖
𝜇
− 𝑡𝑖

𝜇

Previous slide.

However, with the Backprop algorithm the update of all the weights requires only n

steps since the intermediate results for the deltas and the activations are stored and

reused for all weights.

4. Conclusions: Multilayer Perceptron and Backprop

- A multilayer Perceptron can solve the XOR problem

- Hidden neurons increase the flexibility of the

separating surface

- Weigths are the parameters of the separating surface

- Weights can be adapted by gradient descent

- Backprop is an implementation of gradient descent

- Gradient descent converges to a local minimum

Big Multilayer perceptrons are flexible and can be

trained by BackProp to minimize classification error

Previous slide.

Thus multi-layer perceptrons are more powerful than simple perceptrons and can be

trained using backprop, a gradient descent algorithm.

4. Backprop: Quiz

Your friend claims the following; do you agree?

[] BackProp is nothing else than the chain rule, handled well.

[] BackProp is just numerical differentiation

[] BackProp is a special case of automatic algorithmic differentiation

[] BackProp is an order of magnitude faster than numerical differentiation

[x]

[]

[x]

[x]

Your notes.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent Methods

2. XOR problem

3. Multilayer Perceptron

4. BackProp Algorithm

5. The problem of overfitting

Previous slide.

The problem of overfitting is not specific to neural networks but occurs in all cases

where a model if fitted to a finite amount of data.

5. The problem of overfitting

Big Multilayer perceptrons are flexible and can be

trained by BackProp to minimize classification error

… but is flexibility always good?

Previous slide.

As we have seen, multilayer networks are more powerful than simple perceptrons. They

can implement flexible separating surfaces – but is this always good?

The answer is negative – as is well known. In the following a quick repetition of the

problem of generalization that is treated in any introductory class to machine learning or

data science.

5. Classification of new inputs

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

x

x

x

o

o

o

Aim: predict classification for new

inputs, not seen during trainingx x
x

x

o

X = ‘car’ o = ‘not car’

= ‘new image’

more data to learn from

Previous slide.

The aim of training a neural network is always that in the end it should make correct

predictions on NEW patterns.

Classifier

𝒙𝜇

 𝑦𝑖
𝜇

To
John Smith
1012 Lausanne

140

5. Classification of new inputs: Example

Task: Read Postal Code

10 output units

must work on future data!

Previous slide.

A famous example is the automatic recognition of addresses on letters.

5. Classification of new inputs: Example

- images 28x28

- Labels: 0, …, 9

- 250 writers

- 60 000 images in training set

MNIST data samples

Picture: Goodfellow et al, 2016

Data base:

http://yann.lecun.com/exdb/mnist/

Previous slide.

The MNIST data base contains about 60 000 sample images of handwritten digits each

one with the correct label.

5 9

5. Classification of new inputs: Example

- training data is always noisy

- the future data has different noise

- Classifier must extract the essence

 do not fit the noise!!

Your notes.

5. The problem of overfitting

Big Multilayer perceptrons are flexible and can be

trained by BackProp to minimize classification error

… but is flexibility always good?

 Flexibility is not good for noisy data

Danger of overfitting!

Control of overfitting by ‘regularization’

Previous slide.

All data bases are noisy, even MNIST.

But for noisy data we have to be careful to avoid overfitting.

5. Detour: polynomial curve fitting

target data points

= f(x) + noise

f(x) = sin(x)

fit with 𝑦 = 𝑤0

𝑦 = 𝑤0+𝑤1𝑥 +𝑤2 𝑥2

+𝑤3𝑥
3

𝑦 = 𝑤0+𝑤1𝑥
Picture: Bishop, 2006

𝑦 = 𝑤0+𝑤1𝑥
2 …+ 𝑤9 𝑥9

10 parameters4 parameters

new data point

Previous slide.

Polynomials are the standard example to illustrate the problem of overfitting.

10 data points were generated from a sinusoidal function with a small amount of added

noise, but we do not know this.

Fitting with 4 free parameters gives a reasonable approximation, whereas a polynomial

with 10 terms and 10 free parameters exhibits overfitting.

5. Curve fitting: Quiz

[] 20 data points can always be

perfectly well fit by a polynomial with 20 parameters

[] The prediction for future data is best if the past data is perfectly fit

[] A sin-function on [0,2p] can be well approximated by a

polynomial with 10 parameters

[x]

[]

[x]

Your notes.

5. Detour: polynomial curve fitting

𝑦 = 𝑤0+𝑤1𝑥
2 …+ 𝑤9 𝑥9

Picture: Bishop, 2006

Fit with P=100 data points

If we have enough data points,

10 parameters are not too much!

10 paramters

Previous slide.

Fitting the sinusoidal with a polynomial with 10 free parameters does work very well, if

we have 100 data points.

5. Detour: curve fitting

- flexibility increases with number of parameter

- flexibility is bad for noisy data

- flexibility OK if we have LARGE amounts of data

- for finite amounts of data, we need to control flexibility!

 See course: Machine Learning

(Jaggi-Urbanke)

Previous slide.

Summary:

The flexibility depends on the number of parameters. Flexibility if bad if we have small

number of noisy data points but is OK if we have a really large amount of data.

The flexibility can be controlled by the number of parameters or by methods of

regularization.

5. The problem of overfitting

Big Multilayer perceptrons are flexible and can be

trained by BackProp to minimize classification error

… but is flexibility always good?

 Flexibility is bad for noisy data

Danger of overfitting!

Control flexibility!

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

x

x

x

o

o

o

x x
x

x

o

Previous slide.

How to control the flexibility is the topic of the next section.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Methods

2. XOR problem

3. Multilayer Perceptron

4. BackProp Algorithm

5. The problem of overfitting

6. Training base and Validation base

Previous slide.

In practice the control of flexibility always requires a split of the data base in two or

three subgroups. We start with a split in two groups: training base and validation base.

6. Training base and validation base

input

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

target output

P data points

Our data base contains

Split data base P= P1 + P2

 𝒙𝜇, 𝑡𝜇 , 𝑃1 + 1 ≤ 𝜇 ≤ 𝑃 ; 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃1 ;

Training base, used

to optimize parameters

Validation base, used

to mimic ‘future data’

Previous slide.

P1 data points are randomly selected and put into the training base. This data is used

to optimize parameters, for example by training the weights via gradient descent.

P2 data points are set apart and put into the validation base. This data plays the role of

‘data in the future’.

The validation set is used to check the performance once training is finished.

6. Error function on training data and validation data

 𝑦 = 𝑤0+𝑤1𝑥
2 …+ 𝑤9 𝑥9

Picture: Bishop, 2006

Fit with P=100 data points

𝐸(𝒘) =
1

2

𝜇=1

𝑃1

𝑖

𝑡
𝜇

− 𝑦
𝜇 2 𝑡

𝜇

𝑥
𝜇

Minimize error on training set

Validation error on new data (validation set)

𝐸(𝒘) =
1

2

𝜇=𝑃1+11

𝑃

𝑖

𝑡
𝜇

− 𝑦
𝜇 2val

10 paramters

Previous slide.

An error on the validation base that is much larger than the error on the training base is

a signature of overfitting.

6. Error function on training data and validation data

Picture: Bishop, 2006

Example: polynomial curve fitting with

P1=10 (training data size)

Number of parameters
1 4 7 10

parameters

optimized to

minimize training

Error E

generalization

measured as

Val. error E
val

Previous slide.

In the example of the 10 data points, polynomials with 3-8 parameters show an error on

the validation base that it only slightly larger than the one of the training base; however,

a polynomial with 10 parameters clearly exhibits overfitting

6. Error function on training data and validation data

Picture: Goodfellow et al., 2016

Flexibility of network

parameters

optimized to

minimize training

Error E

generalization

measured as

test error E
test

best choice

Previous slide.

More generally, the correct flexibility of the network is the one where the error on the

validation set is minimal.

Here flexibility is used as a generic term because flexibility can be controlled not only

be the explicit number of parameters but also by early stopping or penalty terms, to be

discussed below.

6. The problem of overfitting (revisited)

Big Multilayer perceptrons are flexible and can be

trained by BackProp to minimize classification error

… but is flexibility always good?

 Flexibility is bad for noisy data

Danger of overfitting!

Control flexibility!

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

x

x

x

o

o

o

x x
x

x

o

We can control overfitting by splitting

into training base and validation base

Previous slide.

Always split the data base into training base and validation base.

6. The problem of overfitting (revisited)

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

x

x

x

o

o

o

x x
x

x

o

We can control overfitting by splitting

into training base and validation base

 See course: Machine Learning

(Jaggi-Urbanke)

Previous slide.

This holds for curve fitting as well as for generalization as well as for all problems of

learning from data.

6. Control of flexibility with Artificial Neural networks

1 Change flexibility (several times)

Choose number of hidden neurons and number of layers

2 Split data base into training base and validation base

3 Optimize parameters (several times):

Initialize weights

4 Iterate until convergence

Gradient descent on training error

Report training error and validation error

Report mean training and validation error and standard dev.

Plot mean training and validation error

Pick optimal number of layers and hidden neurons

Previous slide.

The most obvious way of controlling flexibility is via a control of the number of neurons.

Each additional neuron brings several new parameters (the incoming weights).

Important for gradient descent:

- Since the algorithm can get stuck in local minima, you need to start several times

with different initial conditions.

- Always run until strict convergence. Sometimes the algorithm seems to improve only

very slightly for a long time, but 10 000 steps later there is a further big improvement.

You decide after many runs with different network architecture which one is the best.

For future applications you pick the one with the lowest validation error.

Note: indirect methods of controlling the flexibility will be discussed further below in the

next section.

Objectives for today:

- XOR problem and the need for multiple layers

 hidden layer provide flexibility

- understand backprop as a smart algorithmic

implementation of the chain rule

 algorithmic differentiation is

better than numeric differentiation

- hidden neurons add flexibility, but flexibility is

not always good

 control flexibility: use validation data

Today exercises: XOR with Keras simulator/tutorial

Your notes.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Methods

2. XOR problem

3. Multilayer Perceptron

4. BackProp Algorithm

5. The problem of overfitting

6. Training base and validation base

7. Simple Regularization

Previous slide.

Regularization is an alternative of explicit changes of the number of neurons in the

network.

7. Controling Flexibility

Flexibility = number of free parameters

 Change flexibility = change network structure or

number of hidden neurons

Flexibility = ‘effective’ number of free parameters

 Change flexibility = regularization of network

Previous slide.

Regularization controls the flexibility without changing the explicit number of free

parameters.

7. Regularization by a penalty term

 𝐸(𝒘) =
1

2

𝜇=1

𝑃1

𝑖

𝑡
𝜇

− 𝑦
𝜇 2

Minimize on training set a modified Error function

+ l penalty

assigns an ‘error’

to flexible solutions

check ‘normal’ error on separate data (validation set)

𝐸 𝒘 =
1

2

𝜇=𝑃1+11

𝑃

𝑖

𝑡
𝜇

− 𝑦
𝜇 2val

Previous slide.

Important:

While validation on the validation set is performed using the NORMAL error function,

training is done on the training set using an error function that includes a penalty term.

The penalty term penalizes ‘flexible’ solutions.

7. Regularization by a weight decay (L2 regularization)

 𝐸(𝒘) =
1

2

𝜇=1

𝑃1

𝑖

𝑡
𝜇

− 𝑦
𝜇 2

Minimize on training set a modified Error function

+ l

assigns an ‘error’ to solutions

with large pos. or neg. weights

check ‘normal’ error on separate data (validation set)

𝐸 𝒘 =
1

2

𝜇=𝑃1+11

𝑃

𝑖

𝑡
𝜇

− 𝑦
𝜇 2val

𝑘

(𝑤𝑘)2

Previous slide.

A simple example is to assign a penalty to networks that have many weights with a

large absolute value (L1 regularization) or absolute values squared (L2 regularization).

The logic is that ‘curvy’ separating surface requires big positive and negative weights,

whereas zero weights or tiny weights enable no or very litte curvature only.

The sum in the penalty term runs over all weights, but not the thresholds!!!.

The terminology ‘weight decay’ arises from the update rule of stochastic gradient

descent. Just take the derivative!

7. Regularization: Quiz

If we increase the penalty parameter

[] the flexibility of the fitting procedure increases

[] the flexibility of the fitting procedure decreases

[] the ‘effective’ number of free parameters decreases

[] the ‘effective’ number of free parameters remains the same

[] the ‘explicit’ number of parameters remains the same

l

[]

[x]

[x]

[]

[x]

Your notes.

7. Regularization by a weight decay: curve fitting

 𝐸(𝒘) =
1

2

𝜇=1

𝑃1

𝑖

𝑡
𝜇

− 𝑦
𝜇 2

Minimize on training set a modified Error function

+ l

𝑘

(𝑤𝑘)2

plot ‘normal’ error for both data sets

𝐸 𝒘 =
1

2

𝜇=𝑃1+11

𝑃

𝑖

𝑡
𝜇

− 𝑦
𝜇 2

If we decrease l ,

validation error increases

(overfitting)

Training

error

Curve fitting, 10 data points, 10 parameters (as before)

Picture: Bishop, 2006

decreasing l 

(1/l)ln

increasing flexibility 

Previous slide.

In this example there are always 10 free parameters; however, the flexibility is

controlled by the penalty term. A big penalty term (toward the left of the graph) implies a

unflexible network.

A penalty term close to zero implies a very flexible network prone to overfitting.

Note: We use the neural network terminology and refer to the parameters of the

polynomial now as ‘weights’.

6. (repeated): Error function on training data and validation

data

Picture: Goodfellow et al., 2016

Flexibility of network

parameters

optimized to

minimize training

Error E

generalization

measured as

test error E
test

best choice

Previous slide.

Same slide as earlier, but now flexibility would be controlled by the penalty term. Big

penalty/small flexibility is on the left; small penalty/large flexibility on the right.

7. Regularization

Conclusion:

- we can keep the real number of parameters

fixed and large, and still change flexibility via l

Application to Artificial Neural Networks:

- we can work with fixed (large) number of hidden neurons

and fixed (deep) network structure

and control flexibility via regularization

 See course: Machine Learning

(Jaggi-Urbanke)

Previous slide.

The advantage of working with a penalty term is that we can always work with a big

network of fixed size and then control the flexibility by a single parameter lambda.

7. Control of flexibility by regularizer

1 Change flexibility (several times)

Choose l

2 Split data base into training set and validation set

3 Optimize parameters (several times):

Initialize weights

4 Iterate until convergence

Gradient descent on modified

training error 𝐸(𝒘)
Report training error E and test error E on validation set

Report mean training and test error and SD

Plot mean training and test error

Pick weights for results with optimal l

val

Previous slide.

Schema analogous to the earlier one. However, we no longer need to change the

network architecture or number of neurons but just a single parameter lambda.

7. Control of flexibility by regularizer

- weights are parameters

- l is also a parameter (hyperparameter)

BUT ATTENTION:

 Test set/validation set is no longer ‘future data’ because

we have used it to optimize l

If you have enough data, and many hyperparameters,

use a double-split

Previous slide.

There could be a potential problem: we added lambda as one of the parameters

(sometimes called a hyper-parameter). To optimize lambda we use the validation base.

But this logically implies that we can not consider the validation based as ‘future data’!

In fact, the same logic also applies to the earlier scheme where we changed the explicit

number of neurons - the neuron number is also a hyperparameter which is optimized

by exploiting the validation base.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent

2. XOR problem

3. Multilayer Perceptron

4. BackProp Algorithm

5. The problem of overfitting

6. Training base and validation base

7. Simple Regularization

8. Careful Cross-validation

Previous slide.

To solve the problem of the optimization of hyperparameters some researchers suggest

a more careful method of cross-validation.

First split of

data base
P= P1 + P2

 (𝒙𝜇, 𝑡𝜇), 𝑃1 + 1 ≤ 𝜇 ≤ 𝑃 ; 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃1 ;

Training base, used

to optimize all parameters
Test base, used

as ‘future data’:

never to be touched

8. Training base, validation base, test base

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃1′ ;

second split

 𝒙𝜇, 𝑡𝜇 , 𝑃1′ + 1 ≤ 𝜇 ≤ 𝑃1 ;

validation data, used

to adjust hyperparameter l

Training data,

for gradient descent

Previous slide.

We first split the data base into two parts:

A training base used to optimize ALL parameters

And a test base that is NEVER to be touched.

The Training base is then further split into the training data (in the narrow sense) and

the validation data. The validation data is used to adjust the hyperparameter lambda

(searching for the lowest error on the validation set) while the training data is used for

gradient descent (on the augmented error function including the penalty term).

8. Example: MNIST Training base, validation base, test base

P1= 60 000

P= P1 + P2 = 70000

P2= 10 000

http://yann.lecun.com/exdb/mnist/

Test base, used

as ‘future data’:

never to be touched

Official training base

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃1′ ;

your private

second split

 𝒙𝜇, 𝑡𝜇 , 𝑃1′ + 1 ≤ 𝜇 ≤ 𝑃1 ;

validation data, used

to adjust hyperparameter lTraining data,

for gradient descent

e.g., P1’=50 000

Imposed first split

Previous slide.

For example, for MNIST a first split is suggested by the designer of the data set who

put some data apart to play the role as ‘future data’.

The second split is done by the user.

8. Training base, validation base, test base

Training base, used

to optimize all parameters

second split

data
First split of

data base

Test base, used

as ‘future data’:

never to be touched

data

data

Previous slide.

For the second split it is recommended to use k-fold cross validation:

You only put a fraction 1/k into the validation set.

You train and validate the usual way.

You write down the result for training and validation.

Training base, used

to optimize all parameters

8. k-fold cross-validation

second split

data
First split of

data base

Test base, used

as ‘future data’:

never to be touched

data

data

Previous slide.

Then you repeat this with a second split (another 1/k of the data as validation set).

You re-initialize, retrain, and validate, and not the results.

Training base, used

to optimize all parameters

8. k-fold cross-validation

second split

data
First split of

data base

Test base, used

as ‘future data’:

never to be touched

data

data

Previous slide.

You repeat this procedure k times.

Training base, used

to optimize all parameters

8. k-fold cross-validation

second split

data
First split of

data base

Test base, used

as ‘future data’:

never to be touched

data

data

Previous slide.

In the end, you average over all k ‘folds’.

Repeat for different values of the hyperparameter lambda.

Pick lambda which minimizes the validation error.

If you want you can now retrain with this specific lambda on the full training set.

Since you have ‘regularized’ with the appropriate lambda, overtraining should not

happen.

The final value to report is the performance of the test base. Important, once you have

touched the test base the game is over. You are not allowed to retrain.

In practice, people rarely put aside a test base. Careful k-fold cross-validation is

accepted as a performance measure.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2

Backprop and multilayer perceptrons

1. Modern Gradient Descent

2. XOR problem

3. Multilayer Perceptron

4. BackProp Algorithm

5. The problem of overfitting

6. Training base and validation base

7. Simple Regularization

8. Carful Cross-validation

9. Regularization by early stopping

Previous slide.

Early stopping is a surprisingly simple regularization method. It works well, is easy to

implement, and avoids a formal hyperparameter.

9. Regularization by early stopping

𝐸(𝒘) =
1

2

𝜇=1

𝑃1

𝑖

𝑡
𝜇

− 𝑦
𝜇 2

Every k steps plot error for

both data sets

𝐸 𝒘 =
1

2

𝜇=𝑃1+11

𝑃

𝑖

𝑡
𝜇

− 𝑦
𝜇 2

Minimize training error

stepwise by gradient descent

val
epochs,

training time

𝐸

𝐸
val

* Keep the weights for minimal validation error

*

Previous slide.

At the end of every epoch, or after every 1000 steps of stochastic gradient descent,

you simply measure the performance on the validation set.

You continue for a long time: sometimes the measured validation error is stable,

sometimes it goes down, sometimes it slightly decreases. At the end it always strongly

increases if the network is overall flexible enough.

Whenever you go through a minimum you record the momentary values of all weights –

but you continue training. Once you have finished, you go back to the values which had

the minimal validation error.

This method can also be combined with k-fold cross-validation.

9. Regularization by early stopping

epochs,

training time

𝐸

𝐸
val

*Keep the weights of

minimal validation error

*

-very easy to implement

-control of flexibility via

learning time

-network ‘uses’ its total

flexibility only after lengthy

optimization

 go back to ‘earlier’ solution

 maximal flexibility not exploited

see also: week 3 and 4

Previous slide.

The basic idea of early stopping is that weights are initialized close to zero and move

only slowly to large absolute values. In order to implement a flexible surface with high

curvature, big weights are needed. Therefore the flexibility of a network increases over

training.

Early stopping means stopping before the maximal flexibility is exploited.

9. Regularization by early stopping

epochs,

training time

𝐸

𝐸
val

*Keep the weights of

minimal validation error

*

-control of flexibility via learning time

- store weights

of previous best solution

- continue to convergence

 go back to ‘earlier’ solution:

keep weights of minimal validation error

 maximal flexibility not exploited

see also: week 3 and 4‘Not early stopping, but going back’

Previous slide.

Note that early stopping does not mean actual stopping at the first minimum of the

validation error – because there could be a much better minimum later.

Rater it means: go back later to the ‘earlier’ solution.

9. Example: Noisy XOR problem, as a function of training time

time counter

thanks to

Florian Colombo

100 data points
Validation error

interesting region

low noise
high noise

Previous slide.

Noisy XOR means: the perfect split for an infinite amount of data (or for future data)

would be along horizontal and vertical axis at value 0.5. However, the algorithm

optimizes the separating surface with a data base of only 100 noisy data points.

The time counter indicates how far we are in the gradient optimization.

The validation error the performance on the infinite amount of data.

Objectives for today:

- XOR problem and the need for multiple layers

 hidden layer provide flexibility

- understand backprop as a smart algorithmic

implementation of the chain rule

 algorithmic differentiation is

better than numeric differentiation

- hidden neurons add flexibility, but flexibility is

not always good

 control flexibility by hyperparameters

or early stopping: use validation data

- training base and validation and test base: the need

to predict well for future data

test Error

Reading for this lecture:

Bishop 2006, Ch. 1.1 and 5.3 of

Pattern recognition and Machine Learning

or

Bishop 1995, Ch. 1 and 4.8 of

Neural networks for pattern recognition

or

Goodfellow et al.,2016 Ch. 5.1-5.3 and 6.5 of

Deep Learning

Now exercises (+ XOR with Keras simulator/tutorial)

