### Wulfram Gerstner **Artificial Neural Networks: Lecture 3** EPFL, Lausanne, Switzerland Statistical classification by deep networks

## **Objectives for today:**

- loss function for classification tasks output unit for classification tasks
- The cross-entropy error is the optimal - The sigmoidal (softmax) is the optimal - Multi-class problems and '1-hot coding' - Under certain conditions we may interpret the
- output as a probability
- The rectified linear unit (RELU) for hidden layers

## **Reading for this lecture:**

### **Bishop 2006**, Ch. 4.2 and 4.3 Pattern recognition and Machine Learning

Or

## **Bishop 1995**, Ch. 6.7 – 6.9

Neural networks for pattern recognition

## Or Goodfellow et al., 2016 Ch. 5.5, 6.2, and 3.13 of Deep Learning

## Miniproject1: soon!

## You will work with

- regularization methods
- cross-entropy error function
- sigmoidal (softmax) output
- rectified linear hidden units
- 1-hot coding for multiclass
- batch normalization
- Adam optimizer

ods function output n units ticlass (see last week) This week

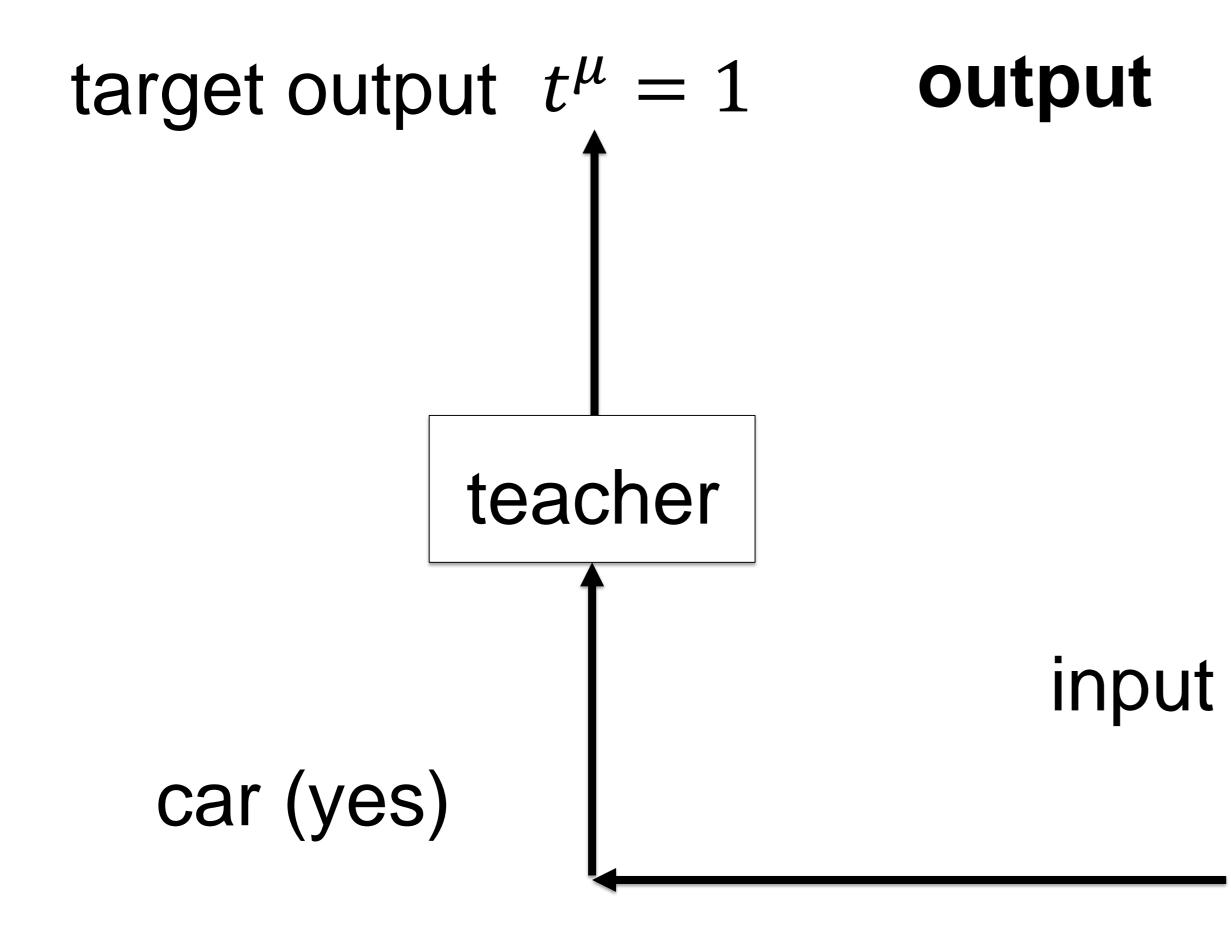
Next week

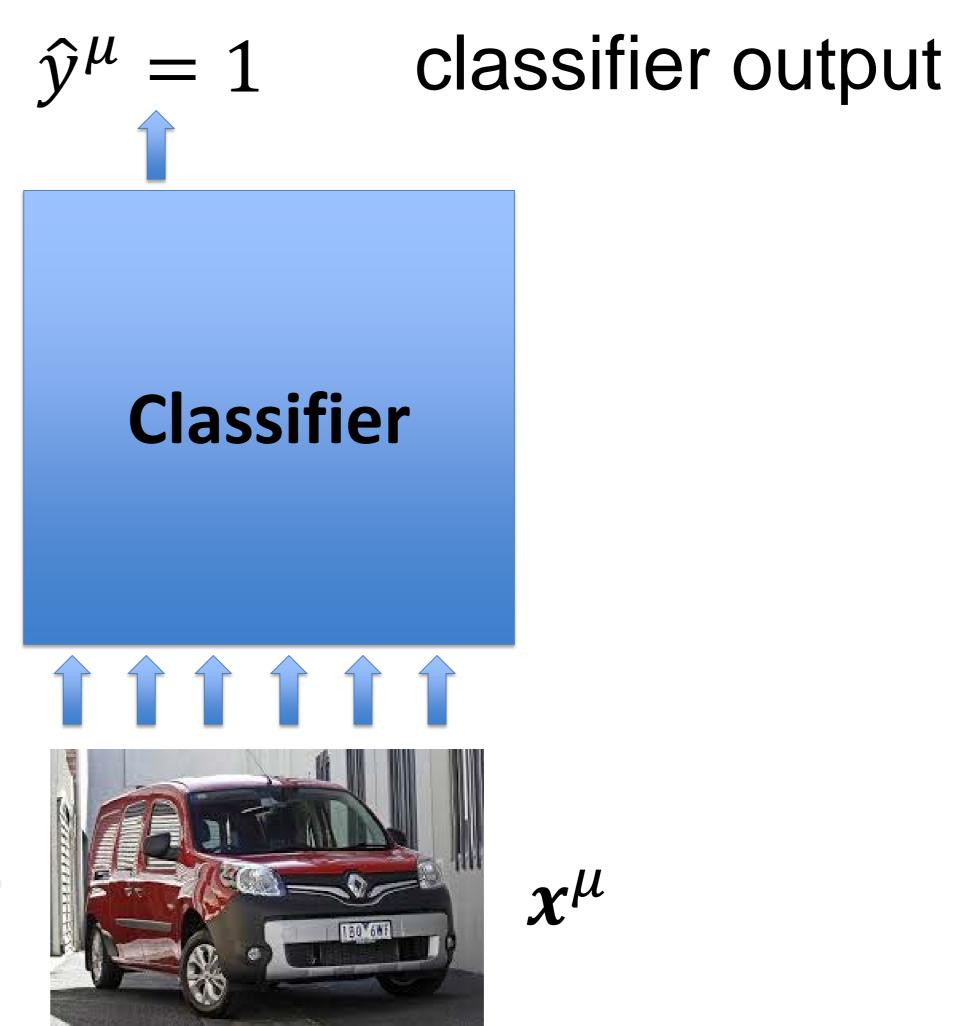
## **Review:** Data base for Supervised learning (single output)

## $P \text{ data points} \quad \{ \begin{array}{c} (x^{\mu}, t^{\mu}) \\ | \end{array}, \begin{array}{c} 1 \leq \mu \leq P \end{array} \};$ input target output

 $t^{\mu} = 1$  car =yes  $t^{\mu} = 0$  car =no

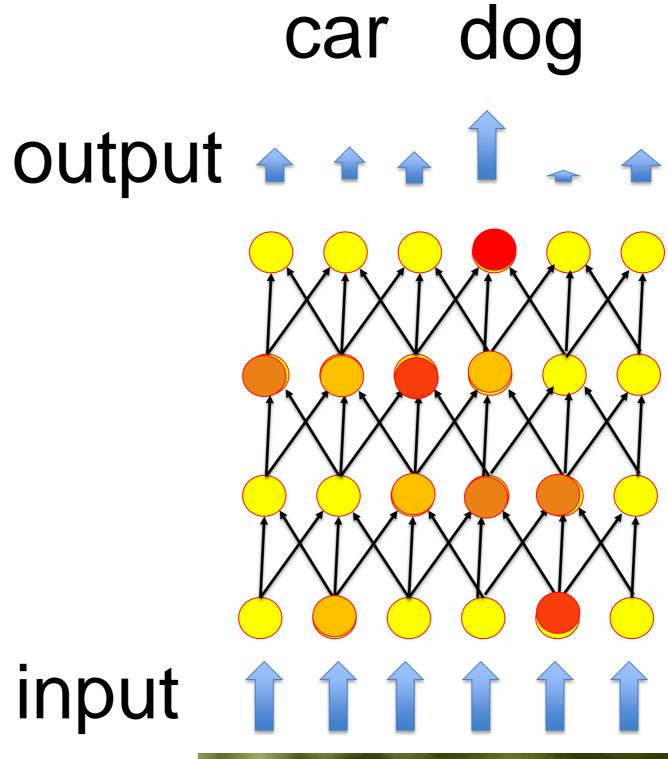
## review: Supervised learning



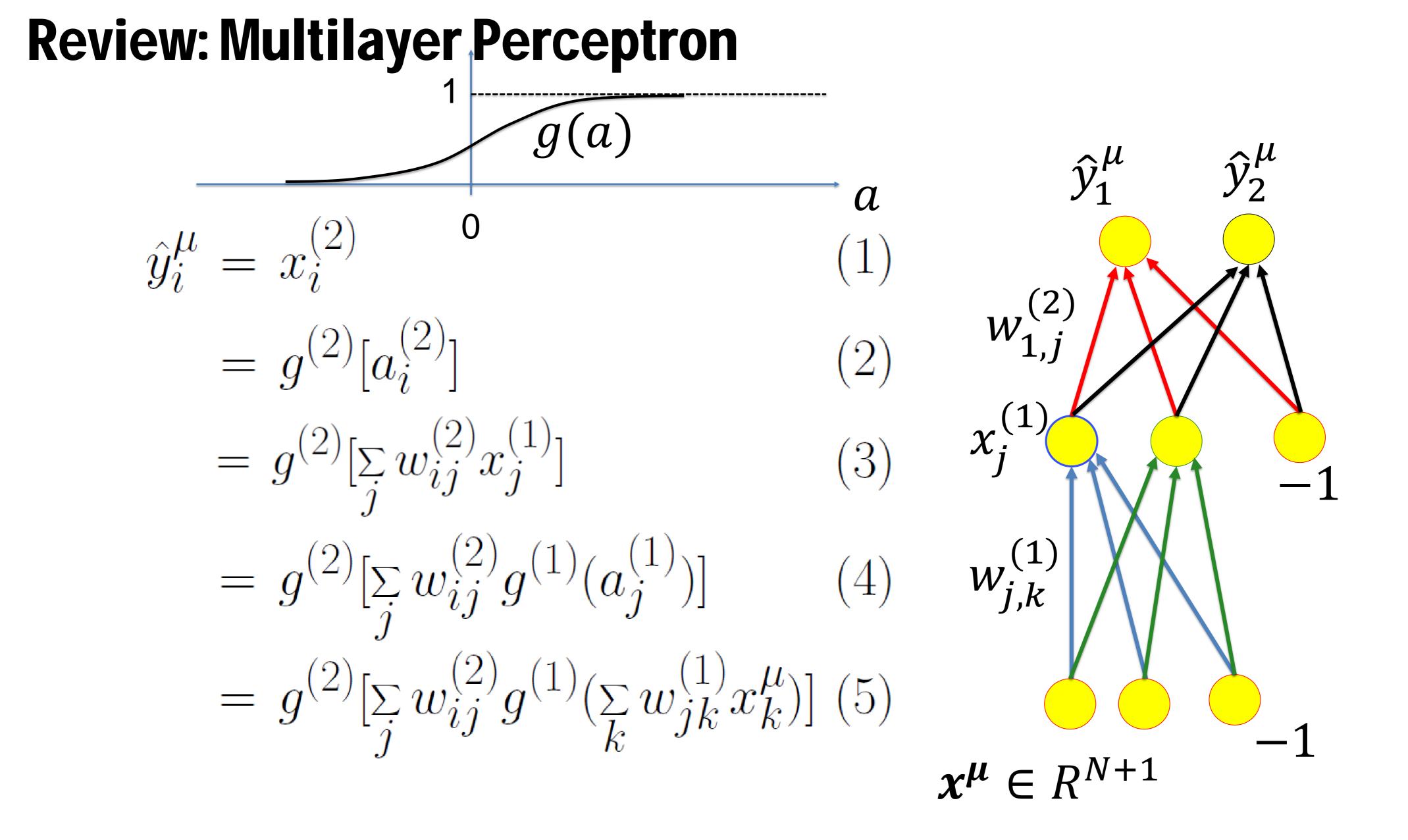


## review: Artificial Neural Networks for classification

### Aim of learning: Adjust connections such that output is correct input (for each input image, even new ones)







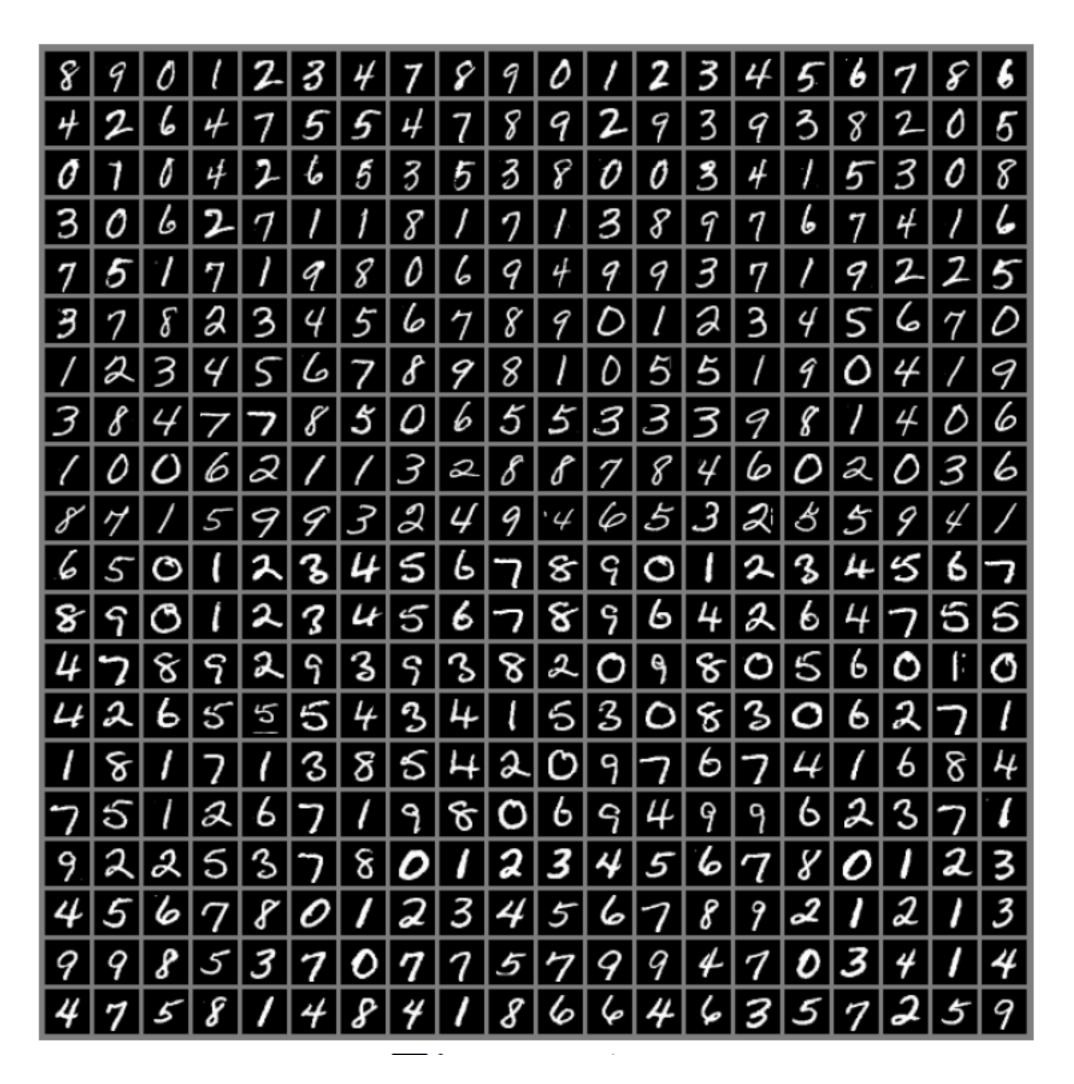
## **Review: Example MNIST**



- images 28x28
- Labels: 0, ..., 9
- 250 writers
- 60 000 images in training set

Picture: Goodfellow et al, 2016 Data base: http://yann.lecun.com/exdb/mnist/

### MNIST data samples



## review: data base is noisy

- 9 or 4?

9 or 4?

- training data is always noisy the future data has different noise

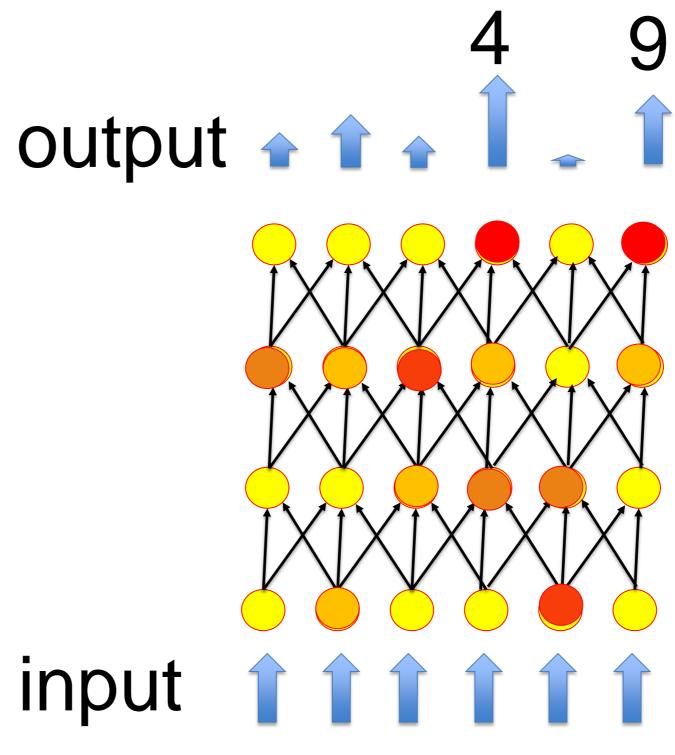
 Classifier must extract the essence  $\rightarrow$  do not fit the noise!!

> What might be a 9 for reader A Might be a 4 for reader B

## **Question for today**

May we interpret the outputs our network as a probability?

input





### Wulfram Gerstner **Artificial Neural Networks: Lecture 3** EPFL, Lausanne, Switzerland **Statistical Classification by Deep Networks**

1. The statistical view: generative model

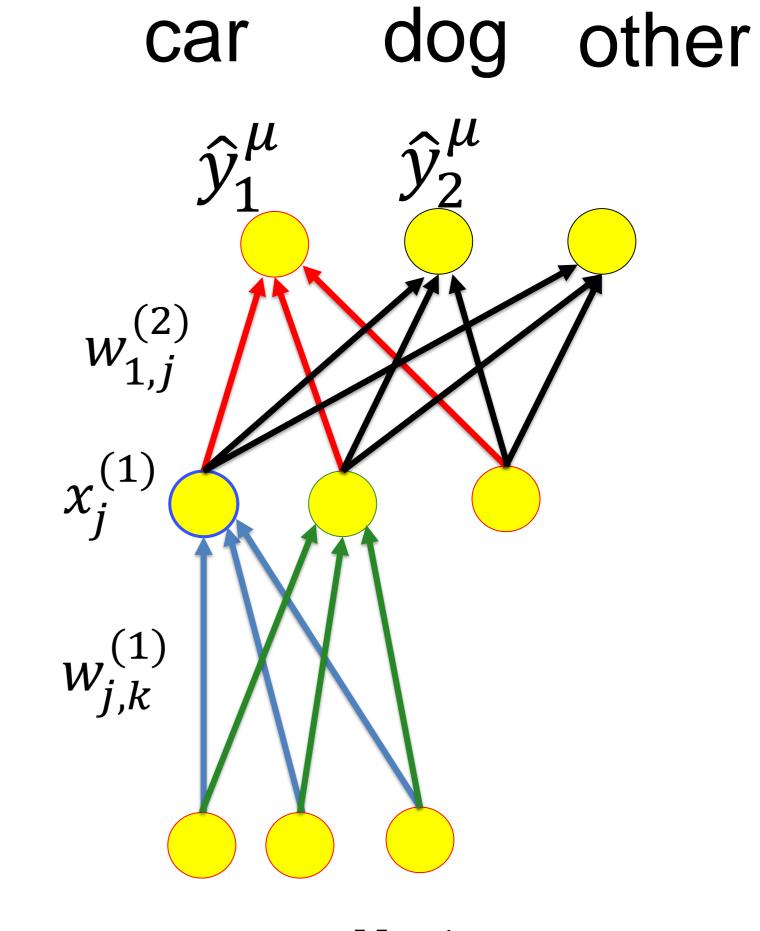
## **1. The statistical view**

### Idea:

interpret the output  $\hat{y}_{k}^{\mu}$ as the probability that the novel input pattern  $x^{\mu}$ should be classified as class k

$$\hat{y}_k^{\mu} = P(C_k | \boldsymbol{x}^{\mu})$$
 pattern from c

 $\hat{y}_k = P(C_k | \mathbf{x})$  arbitrary novel pattern



data base

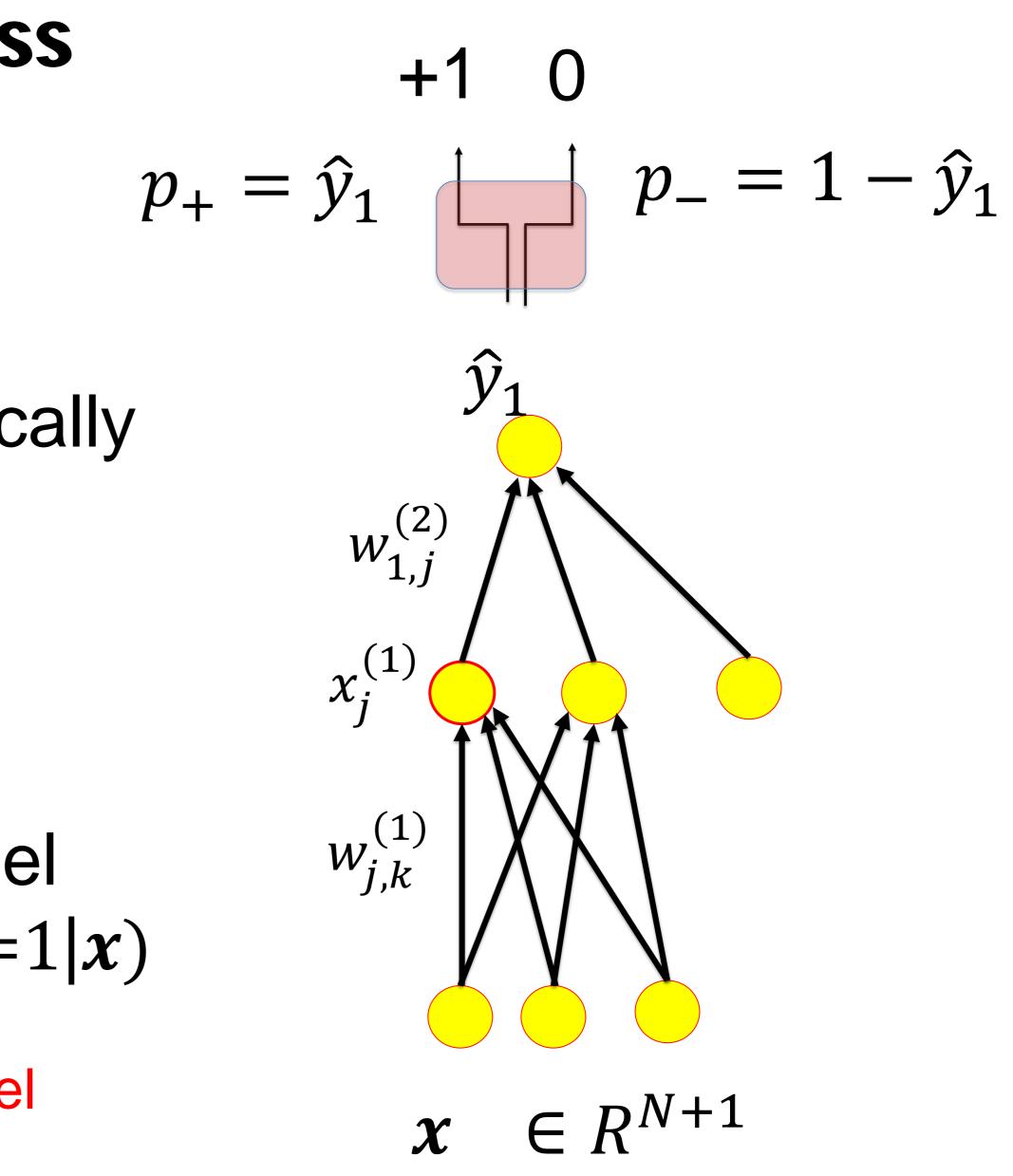
 $x^{\mu} \in R^{N+1}$ 

## 1. The statistical view: single class

# Take the output $\hat{y}_1$ and generate predicted labels $\hat{t}_1$ probabilistically

 $y_1$ → generative model for class label with  $\hat{y}_1 = P(C_1|x) = P(\hat{t}_1 = 1|x)$ 

predicted label



### Wulfram Gerstner **Artificial Neural Networks: Lecture 3** EPFL, Lausanne, Switzerland **Statistical Classification by Deep Networks**

1. The statistical view: generative model 2. The likelihood of data under a model

## 2. The likelihood of a model (given data)

## Overall aim: What is the probability that my set of *P* data points

## could have been generated by my model?

## $\{ (x^{\mu}, t^{\mu}), 1 \le \mu \le P \};$

## 2. The likelihood of a model **Detour:**

What is the probability that a set of *P* data points

$$\left\{ \boldsymbol{x}^{k} \text{ ; } 1 \leq k \leq P \right\}$$

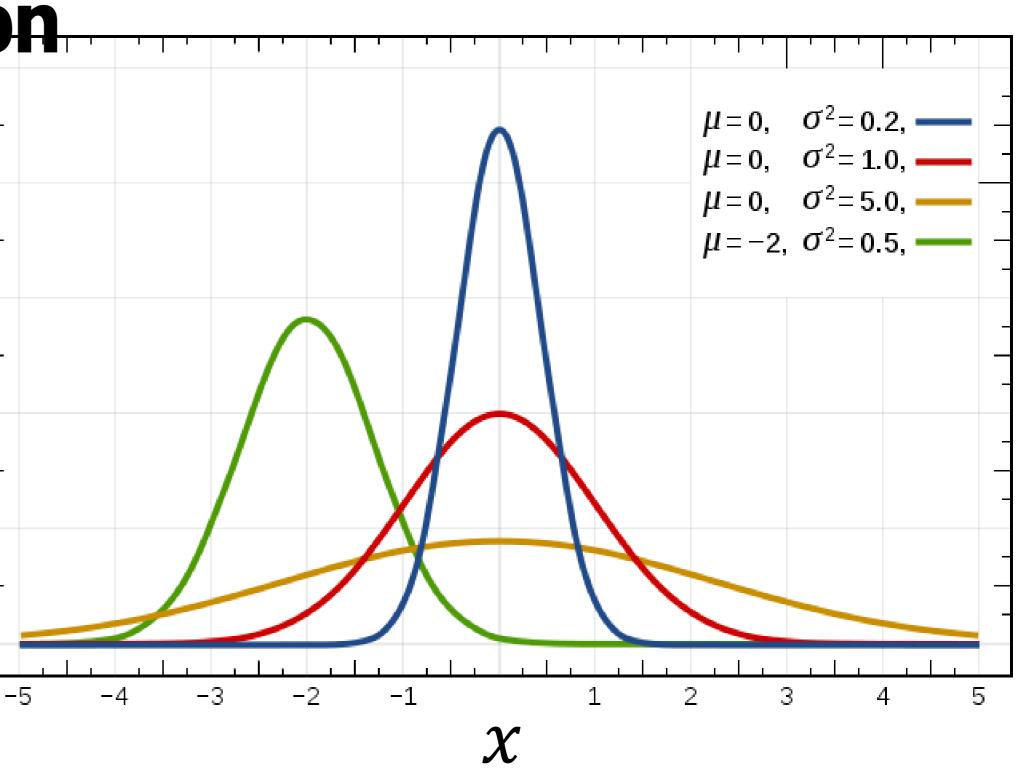
could have been generated by my model?

# forget about labeled data, and just think of input patterns

**}**;

2. Example: Gaussian distribution 0.8 0.6  $p(x) = \frac{1}{\sqrt{2\pi\sigma}} exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\}_1$ 0.4 0.2 this depends on 2 parameters 0.0

$$\{w_{1,}w_{2,}\} = \{\mu,\sigma\}$$
center width



https://en.wikipedia.org/wiki/Gaussian\_function#/media/

## 2. Random Data Generation Process

Probability that a random data generation process draws one sample k with value  $x^k$  is

 $\sim p(x^k)$ 

**Example:** for the specific case of the Gaussian  $p(x^k) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{\frac{-(x^k - \mu)^2}{2\sigma^2}\right\}$ 

What is the probability to generate P data points?



 $p(x^k) \quad p(x)$ 

## Blackboard 1: generate P data points

# **2. Likelihood function (beyond Gaussian)** Suppose the probability for generating a data point $x^k$ using my model is proportional to

- Suppose that data points are generated independently.
- Then the likelihood that **my actual data** set  $X = \{x^k; 1 \le k \le P \};$

 $p(\mathbf{x}^k)$ 

**could have been generated** by my model is  $p_{model}(\mathbf{X}) = p(\mathbf{x}^1) p(\mathbf{x}^2) p(\mathbf{x}^3) \dots p(\mathbf{x}^P)$ 

## 2. Maximum Likelihood (beyond Gaussian)

$$p_{model}(\mathbf{X}) = p(\mathbf{x}^1) p(\mathbf{x}^2) p(\mathbf{x}^3) \dots p(\mathbf{x}^P)$$

BUT this likelihood depends on the parameters of my model

$$p_{model}(\mathbf{X}) = p_{model}(\mathbf{X}|\{w_{1,}w_{2,}$$
$$| |$$

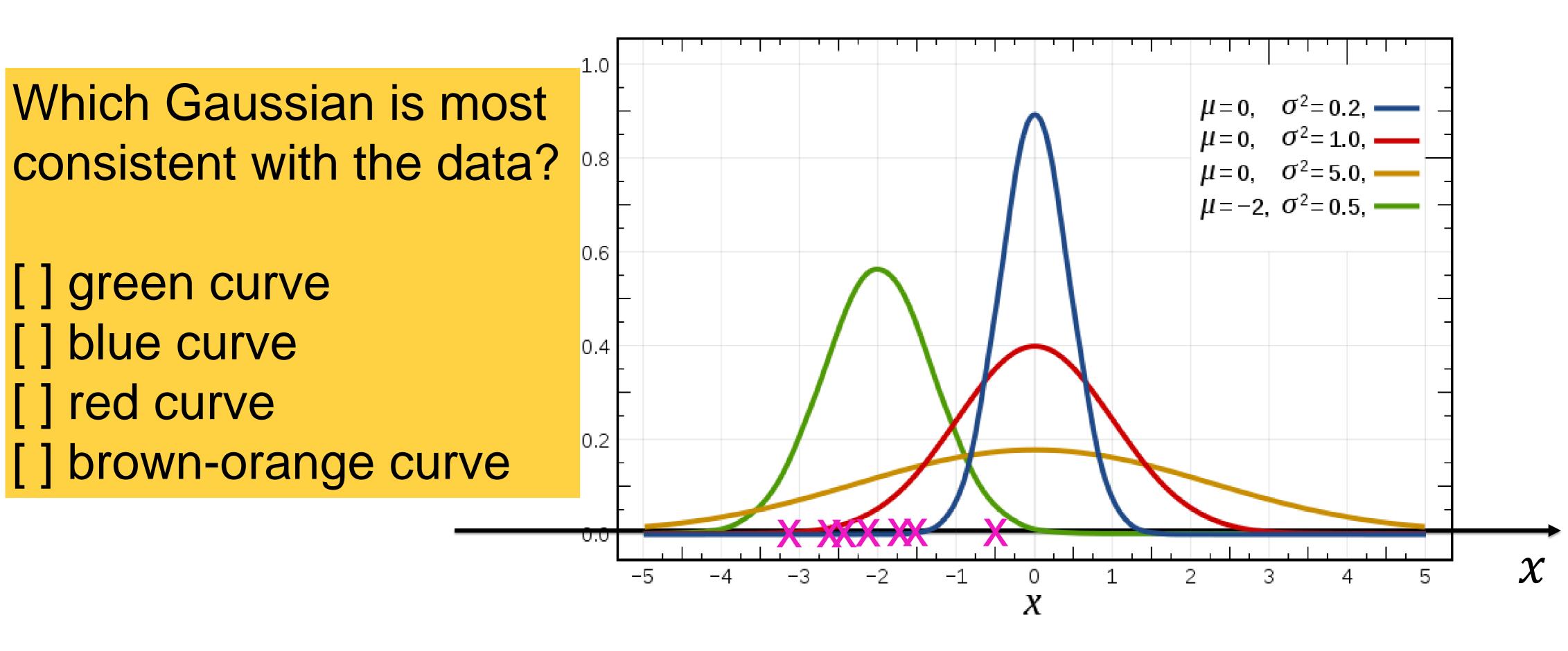
Choose the parameters such that the likelihood is maximal!

$$\dots w_{n,}\})$$

# meters

## 2. Example: Gaussian distribution

Likelihood of point  $x^k$  is  $p(x^k) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{\frac{-(x^{\kappa}-\mu)^2}{2\sigma^2}\right\}$ 



## 2. Example: Gaussian

$$p_{model}(\boldsymbol{X}) = p(\boldsymbol{x}^1) p(\boldsymbol{x}^2) p(\boldsymbol{x}^2)$$

The likelihood depends on the 2 parameters of my Gaussian

$$p_{model}(\boldsymbol{X}) = p_{model}(\boldsymbol{X}|\{w_{1,}w_{2}\})$$
$$p_{model}(\boldsymbol{X}) = p_{model}(\boldsymbol{X}|\{\mu,\sigma\})$$

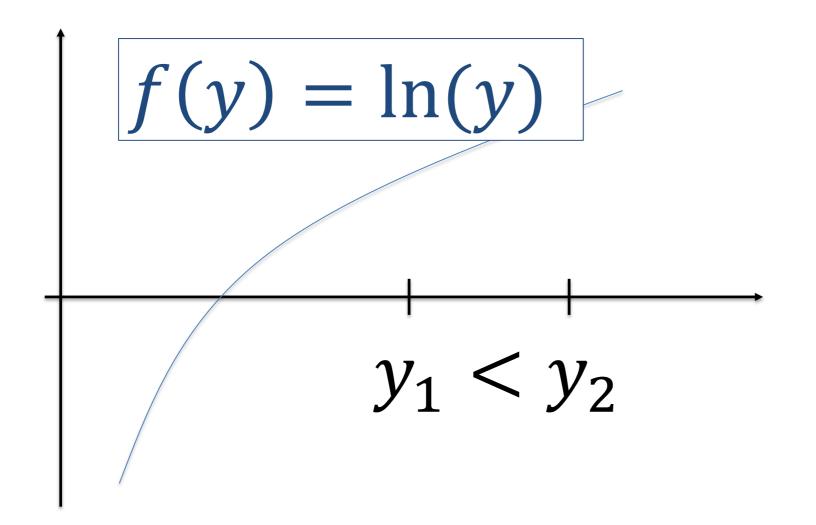
Exercise 1 NOW! (8 minutes): you have P data points Calculate the optimal choice of parameter  $\mu$ : To do so maximize  $p_{model}(X)$  with respect to  $\mu$ 

 $(\mathbf{x}^3) \dots p(\mathbf{x}^P)$ 

## Blackboard 2: Gaussian: best parameter choice for center

# 2. Maximum Likelihood (general) Choose the parameters such that the likelihood $p_{model}(\boldsymbol{X}|\{w_{1,}w_{2,}\dots w_{n,}\}) = p(\boldsymbol{x}^{1}) \ p(\boldsymbol{x}^{2}) \ p(\boldsymbol{x}^{3})\dots p(\boldsymbol{x}^{P})$

is maximal



## Note: Instead of maximizing $p_{model}(X|param)$ you can also maximize $\ln(p_{model}(X|param))$

2. Maximum Likelihood (general) Choosing the parameters such that the likelihood  $p_{model}(X|\{w_1, w_2, \dots, w_n, \}) = p(x^1)$ is maximal is equivalent to maximizing the log-likelihood  $LL(\{w_1, w_2, ..., w_n, \}) = \ln(p_{model}) = \sum_k \ln p(\mathbf{x}^k)$ 

"Maximize the likelihood that the given data could have been generated by your model" (even though you know that the data points were generated by a process in the real world that might be very different)

$$p(x^2) p(x^3) \dots p(x^P)$$

2. Maximum Likelihood (general) Choose the parameters such that the likelihood  $p_{model}(X|\{w_1, w_2, \dots, w_n, \}) = p(x^1)$ is maximal is equivalent to maximizing the log-likelihood  $LL(\{w_1, w_2, ..., w_n, \}) = \ln(p_{model}) = \sum_k \ln p(\mathbf{x}^k)$ 

Note: some people (e.g. David MacKay) use the term 'likelihood' ONLY IF we consider LL(w) as a function of the parameters w. 'likelihood of the model parameters in view of the data'

$$p(x^2) p(x^3) \dots p(x^P)$$

# Artificial Neural Networks: Lecture 3Wulfram GerstnerStatistical Classification by Deep NetworksEPFL, Lausanne, Switzerland

- 1. The statistical view: generative model
- 2. The likelihood of data under a model
- 3. Application to artificial neural networks

## ative model er a model **eural networks**

## 3. The likelihood of data under a neural network model

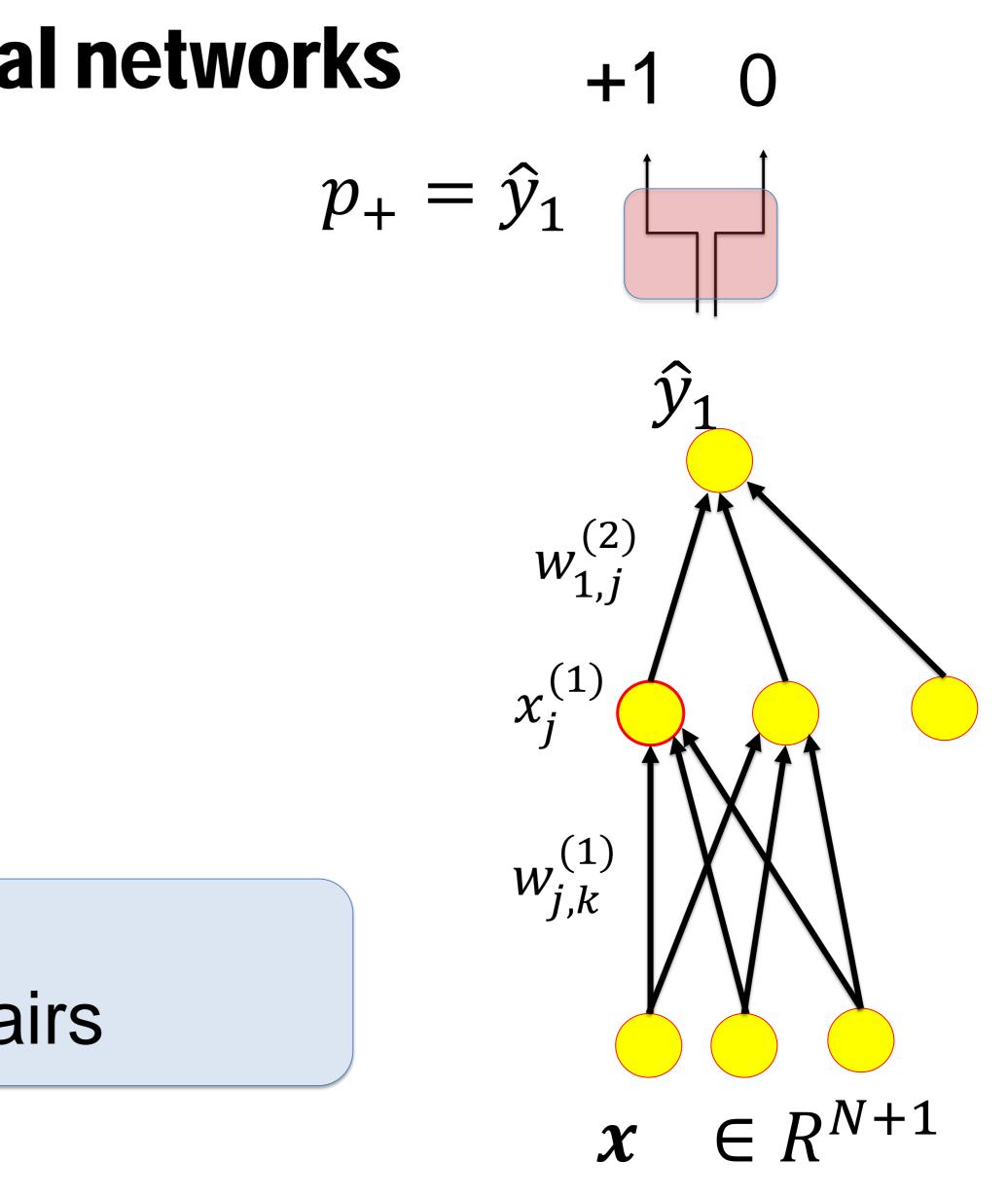
## Overall aim: What is the likelihood that my set of P data points

## could have been generated by my model?

- $\{ (x^{\mu}, t^{\mu}), 1 \le \mu \le P \};$

## 3. Maximum Likelihood for neural networks

## Blackboard 3: Likelihood of P input-output pairs

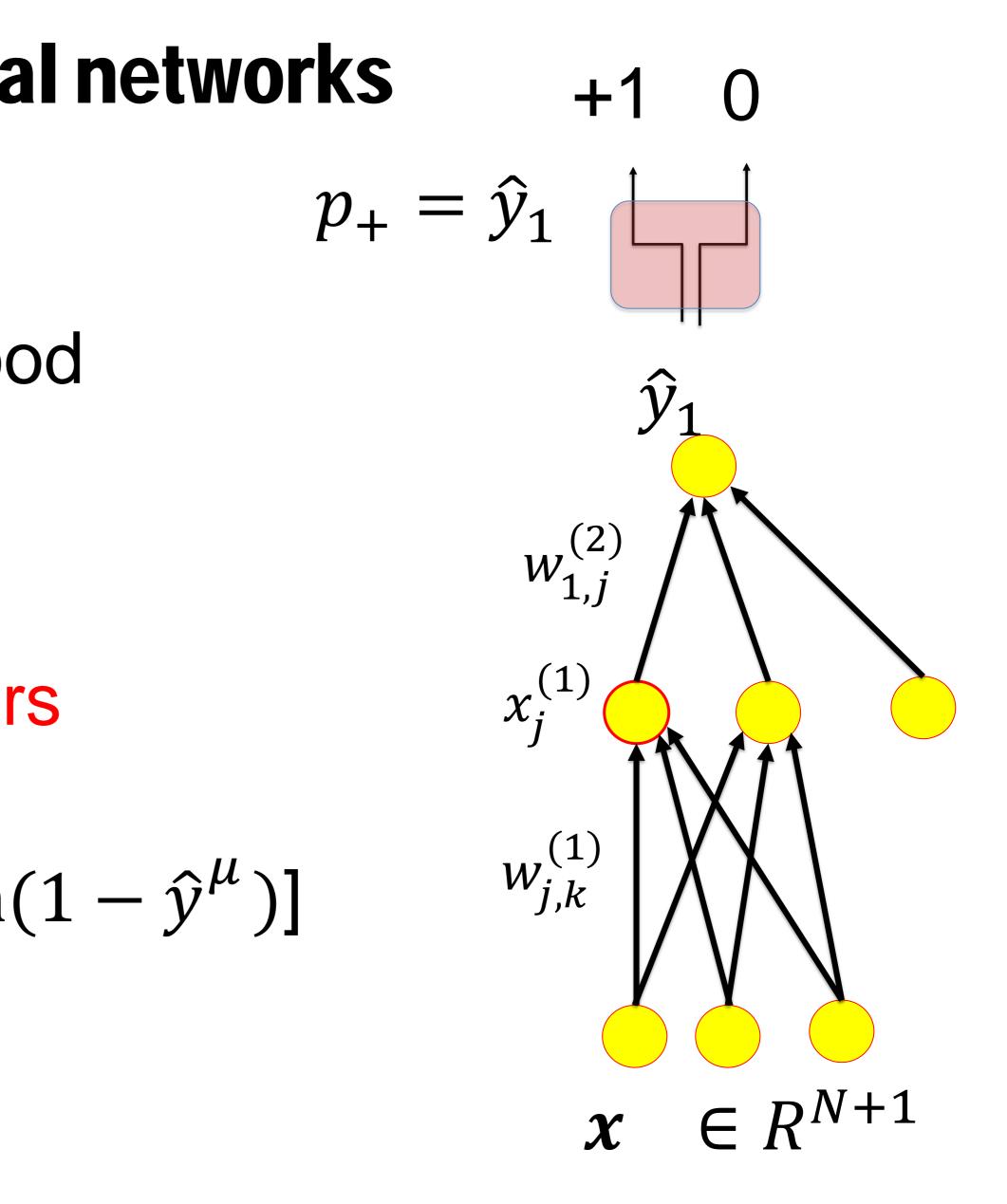


## Blackboard 3: Likelihood of P input-output pairs



## 3. Maximum Likelihood for neural networks

Minimize the negative log-likelihood  $E(w) = -LL = -\ln(p_{model})$ parameters = all weights, all layers  $E(\mathbf{w}) = -\sum_{\mu} [t^{\mu} \ln \hat{y}^{\mu} + (1 - t^{\mu}) \ln(1 - \hat{y}^{\mu})]$ 



## 3. Cross-entropy error function for neural networks

Suppose we minimize the cross-entropy error function  $E(\mathbf{w}) = -\sum_{\mu} [t^{\mu} \ln \hat{y}^{\mu} + (1 - t^{\mu}) \ln(1 - \hat{y}^{\mu})]$ 

Can we be sure that the output  $\hat{y}^{\mu}$  will represent the probability?

Intuitive answer: No, because

A We will need enough data for training (not just 10 data points for a complex task) B We need a sufficiently flexible network (not a simple perceptron for XOR task)

## **3. Output = probability**? Suppose we minimize the cross-entropy error function $E(\mathbf{w}) = -\sum_{\mu} [t^{\mu} \ln \hat{y}^{\mu} + (1 - t^{\mu}) \ln(1 - \hat{y}^{\mu})]$

Assume A We have enough data for training B We have a sufficiently flexible network

> Blackboard 4: From Cross-entropy to output probabilities

## Blackboard 4: From Cross-entropy to output probabilities

**QUIZ: Maximum likelihood solution** means [] find the unique set of parameters that generated the data [] find the unique set of parameters that best explains the data [] find the best set of parameters such that your model could have generated the data

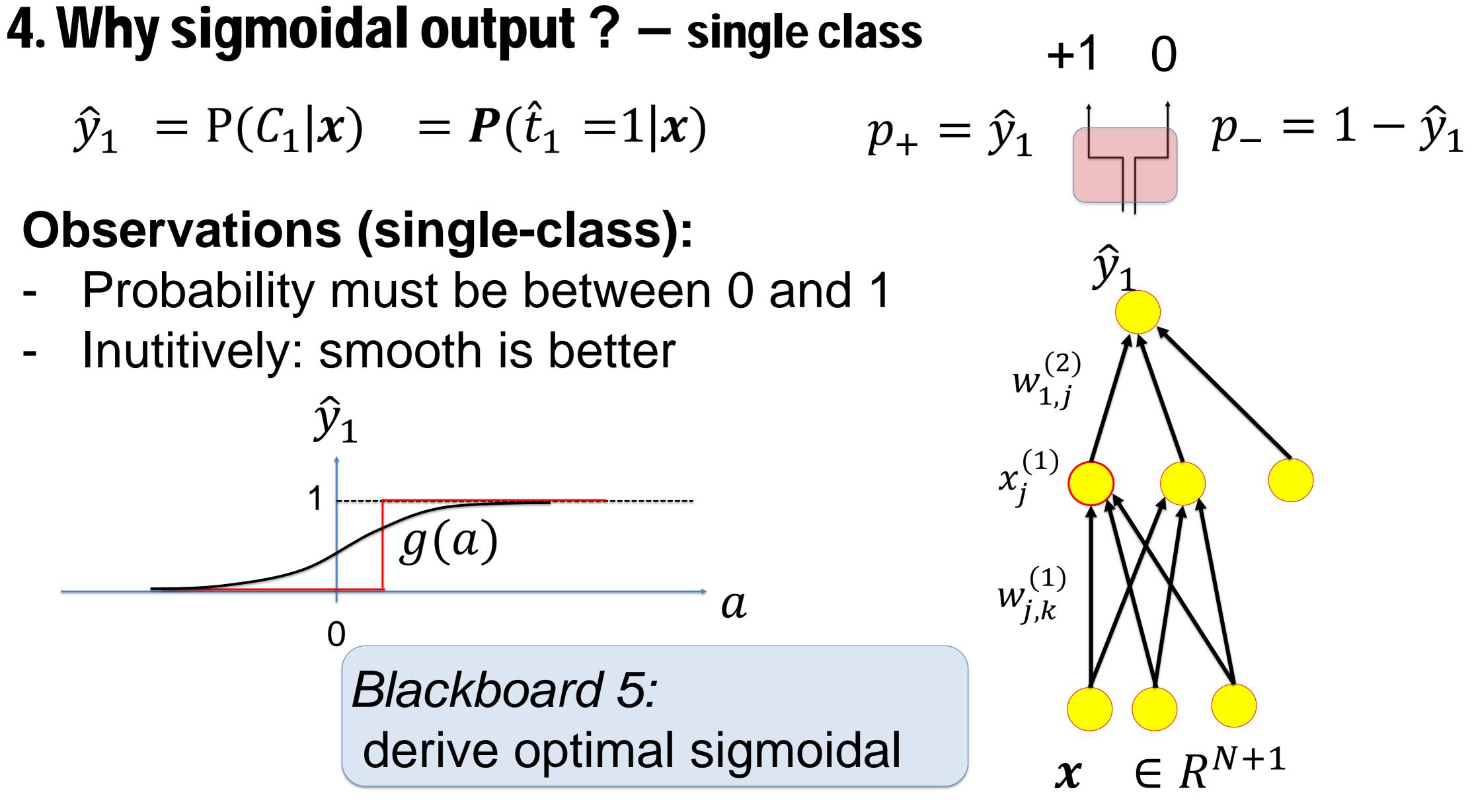
Miminization of the cross-entropy error function for single class output [] is consistent with the idea that the output  $\hat{y}_1$  of your network can be interpreted as  $\hat{y}_1 = P(C_1|x)$ 

[] guarantees that the output  $\hat{y}_1$  of your network can be interpreted as  $\hat{y}_1 = P(C_1|x)$ 

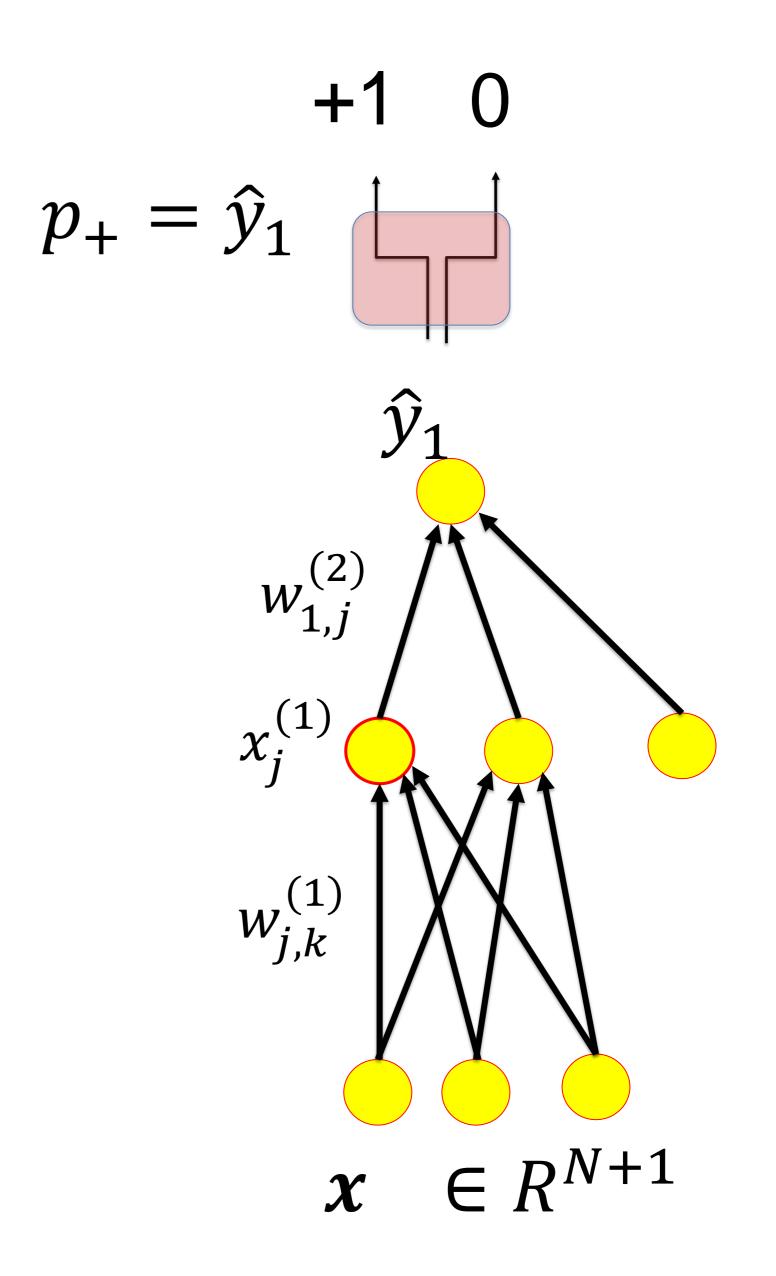
#### Wulfram Gerstner **Artificial Neural Networks: Lecture 3** EPFL, Lausanne, Switzerland **Statistical Classification by Deep Networks**

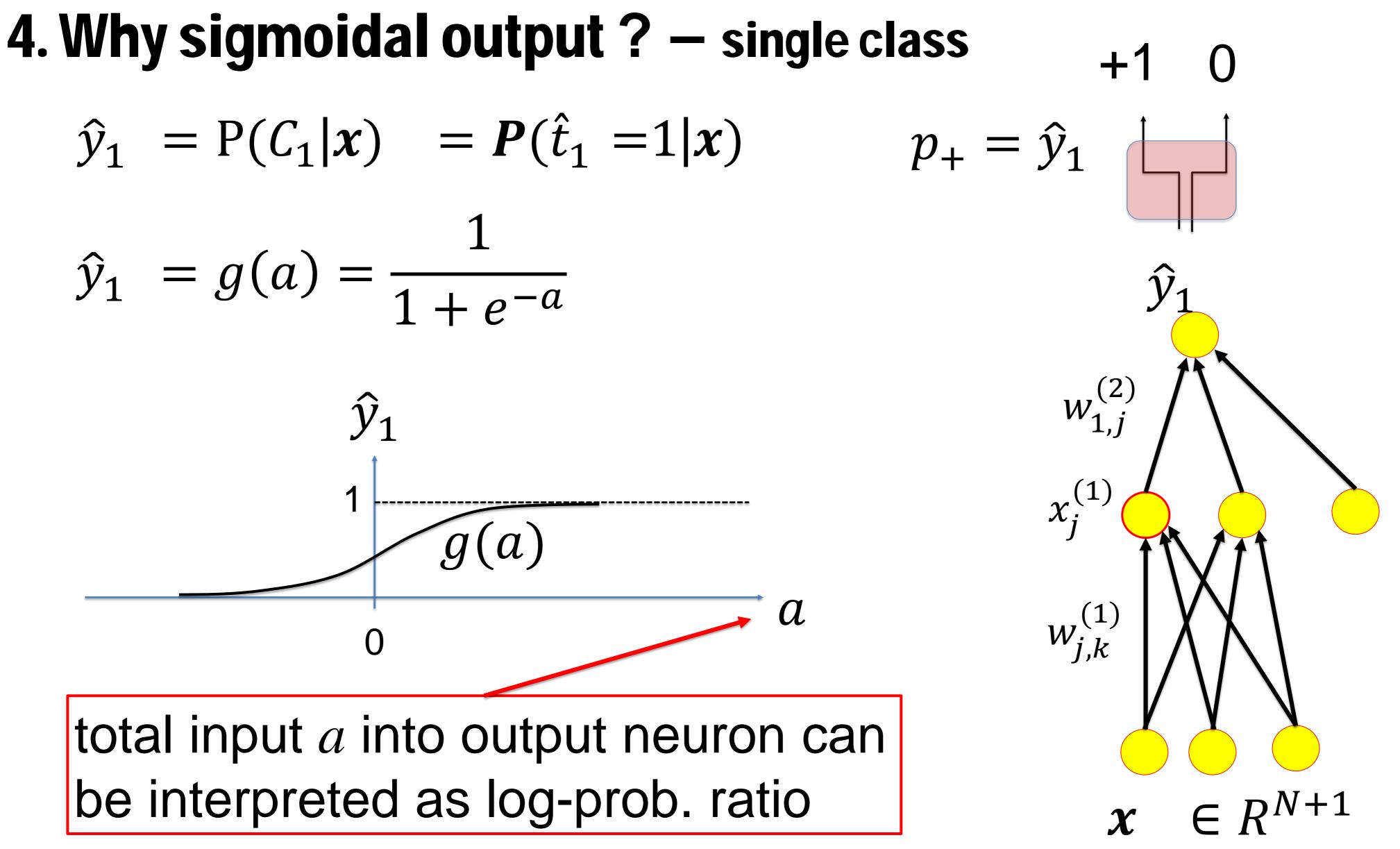
- 1. The statistical view: generative model 2. The likelihood of data under a model Application to artificial neural networks 3. Sigmoidal as a natural output function 4.

## **Observations (single-class):**



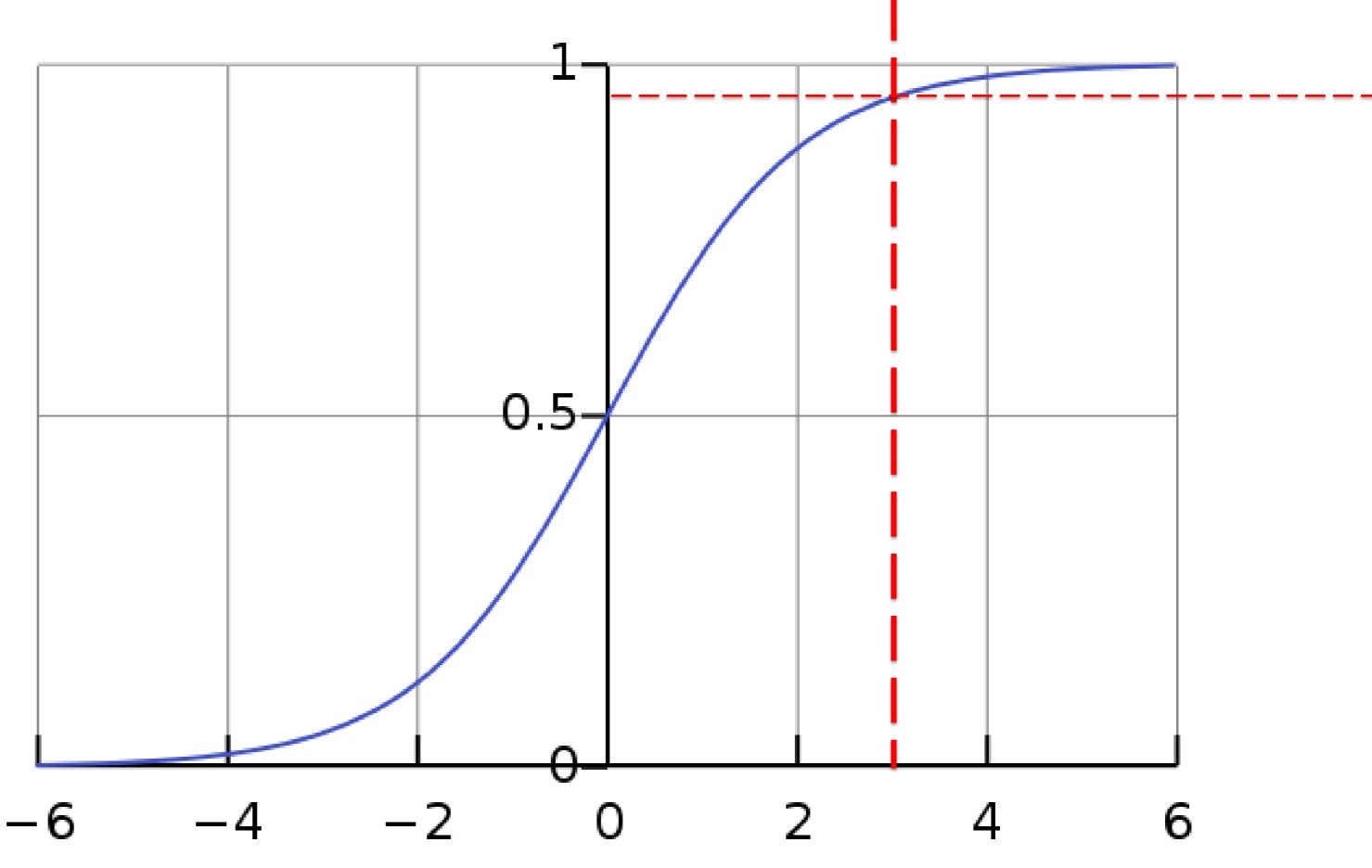
### Blackboard 5: derive optimal sigmoidal





# 4. sigmoidal output = logistic function

 $g(a) = \frac{1}{1 + e^{-a}}$ Rule of thumb: for a = 3: g(3) = 0.95for a = -3: g(-3) = 0.05



https://en.wikipedia.org/wiki/Logistic\_function

# Artificial Neural Networks: Lecture 3Wulfram GerstnerStatistical Classification by Deep NetworksEPFL, Lausanne, Switzerland

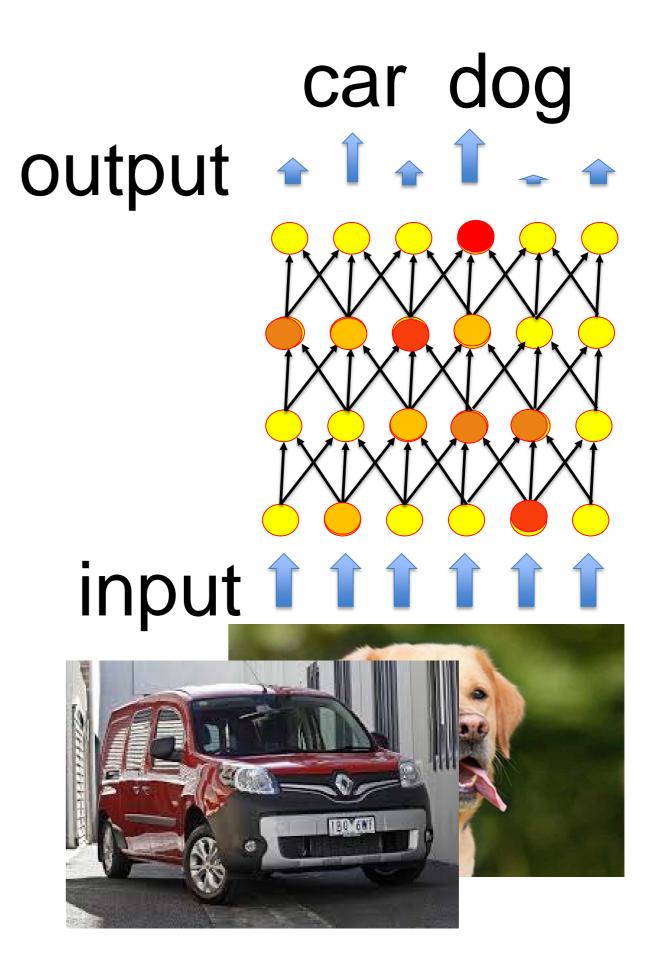
- 1. The statistical view: generative model
- 2. The likelihood of data under a model
- 3. Application to artificial neural networks
- 4. Sigmoidal as a natural output function
- 5. Multi-class problems
- ative model er a model ral networks put function

# **5. Multiple Classes** multiple attributes

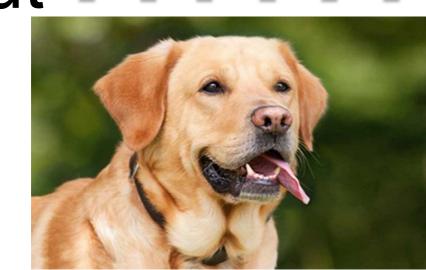
# teeth dog ears output 🔹 î 🖕 î input



### mutually exclusive classes



#### 5. Multiple Classes: Multiple attributes $\mathbf{O}$ 1 Multiple attributes: teeth dog ears $\hat{y}_{3}$ $\hat{y}_1$ output 🔹 î 🖕 î equivalent to several single-class decisions $x_i^{(1)}$ $w_{j,k}^{(1)}$ input

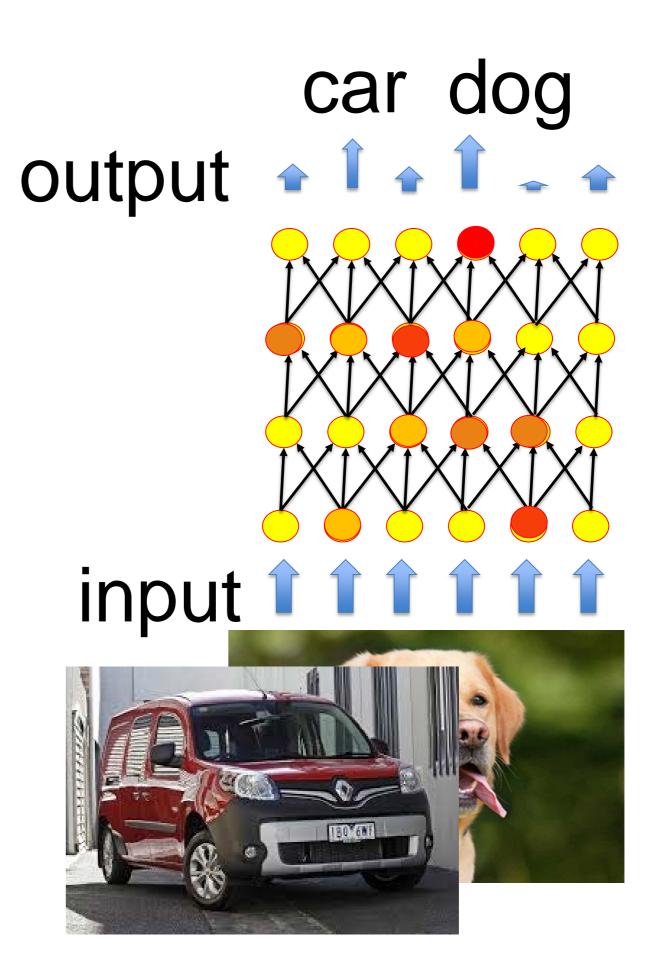


#### $\in R^{N+1}$ X

# 5. Multiple Classes: Mutuall exclusive classes

either car or dog: only one can be true outputs interact

### mutually exclusive classes

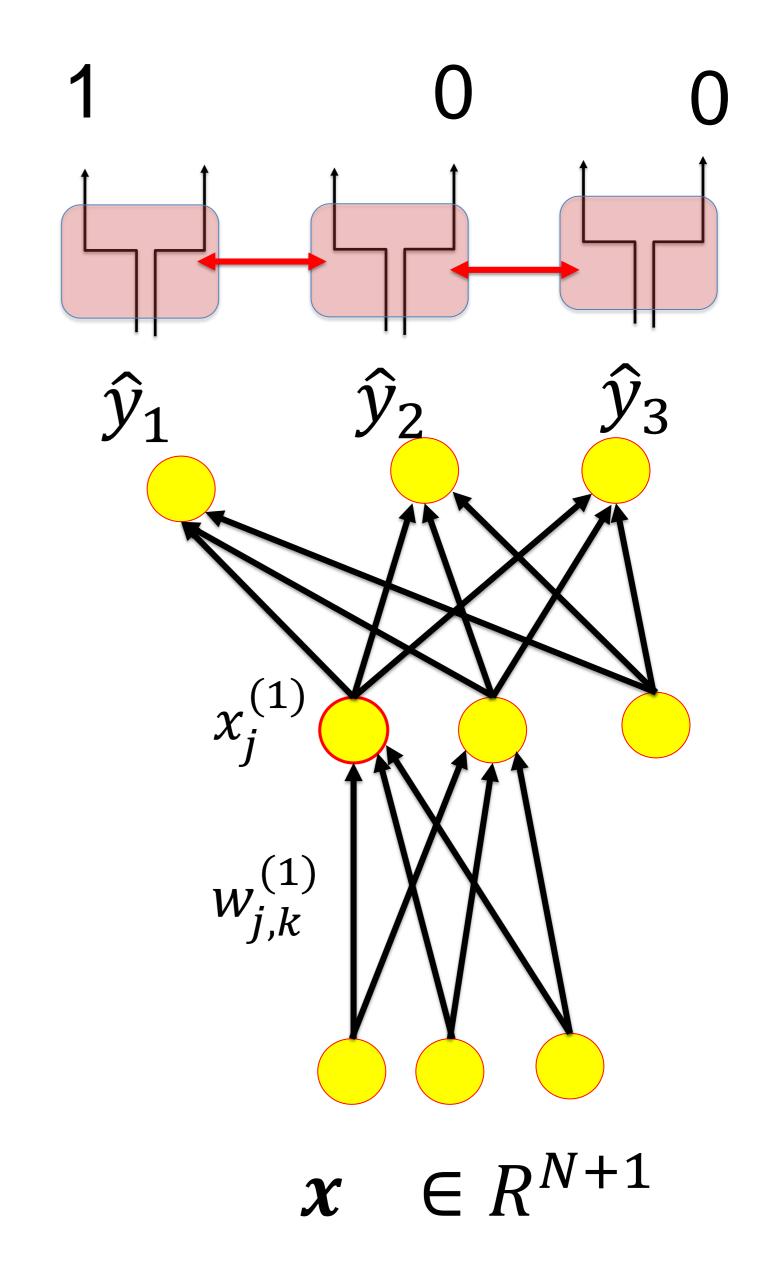


## **5. Exclusive Multiple Classes**

$$\hat{y}_1 = P(C_1|x) = P(\hat{t}_1 = 1|x)$$

1-hot-coding:

$$\hat{t}_k^{\mu} = 1 \rightarrow \hat{t}_j^{\mu} = 0 \text{ for } j \neq k$$

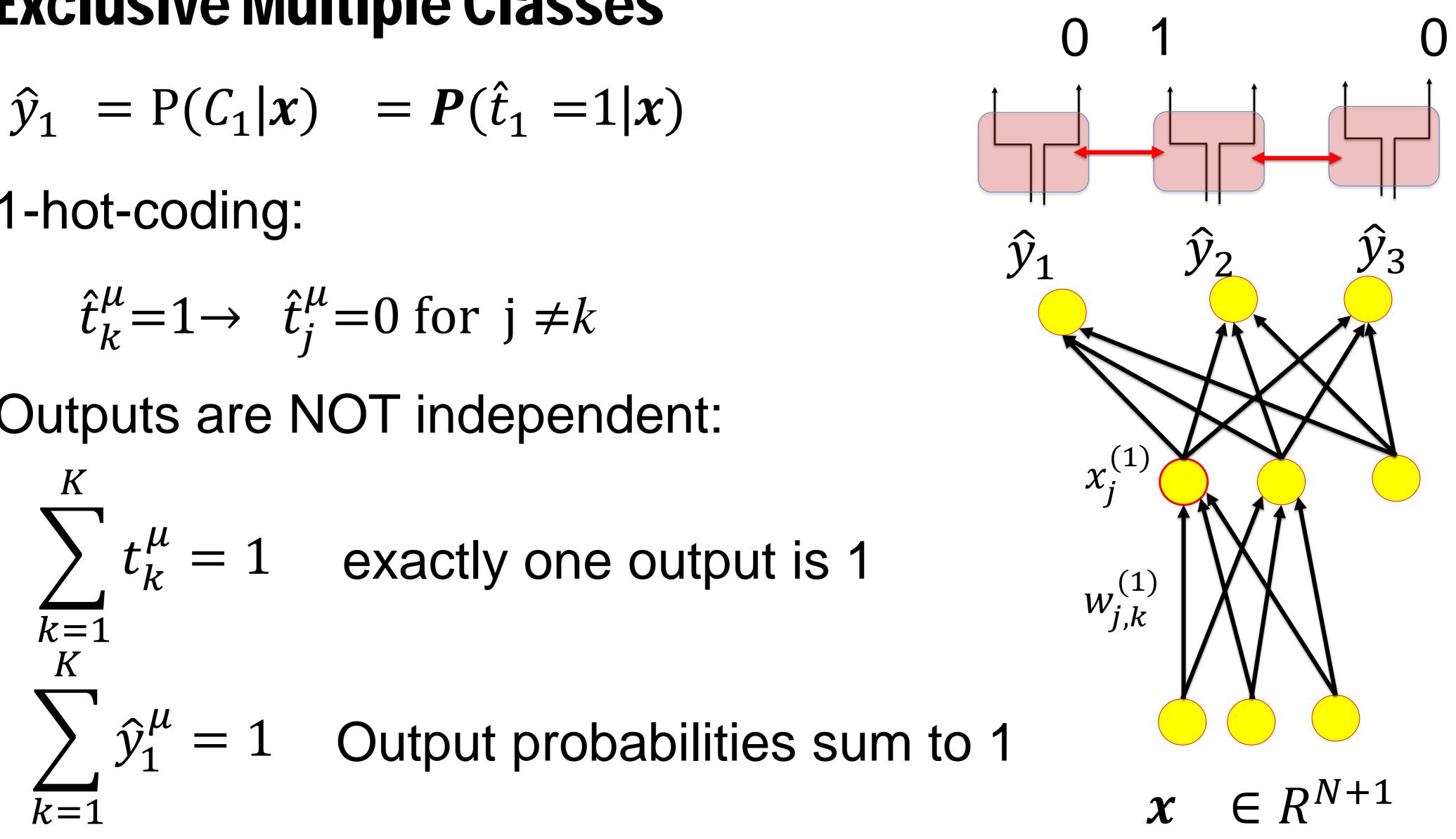


## **5. Exclusive Multiple Classes**

- 1-hot-coding:

$$\hat{t}_k^{\mu} = 1 \rightarrow \hat{t}_j^{\mu} = 0 \text{ for } j \neq k$$

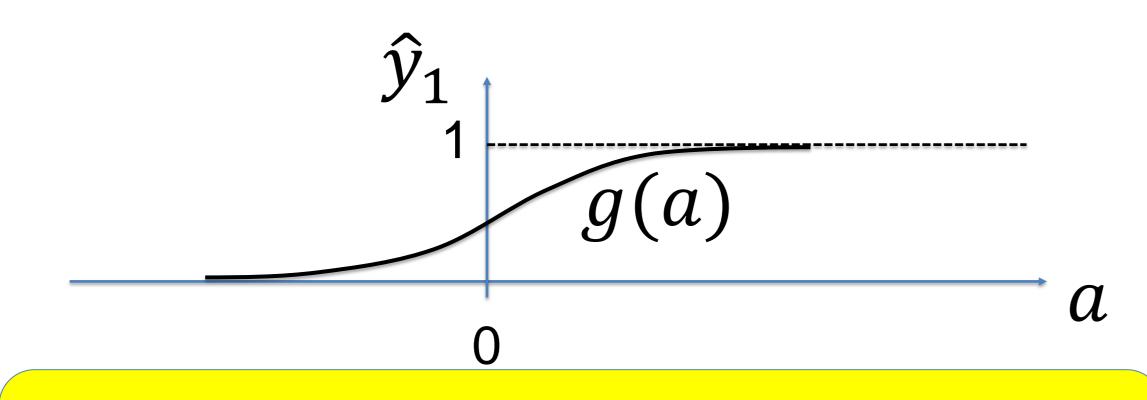
Outputs are NOT independent:



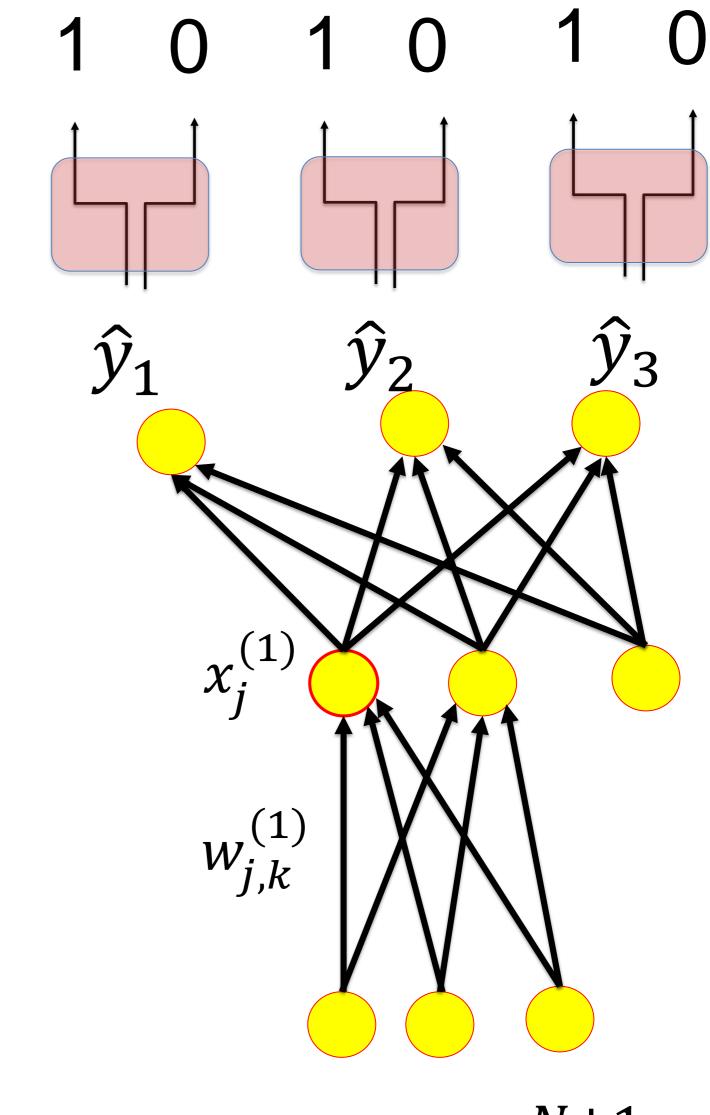
## 5. Why sigmoidal output ?

 $\hat{y}_1 = P(C_1|x) = P(\hat{t}_1 = 1|x)$ 

# Observations (multiple-classes): Probabilities must sum to one!



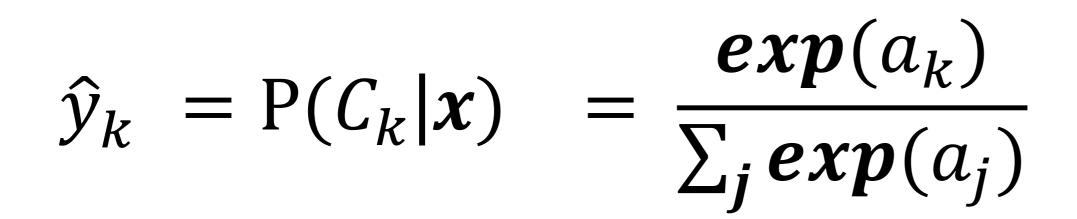
Exercise this week! derive softmax as optimal multi-class output

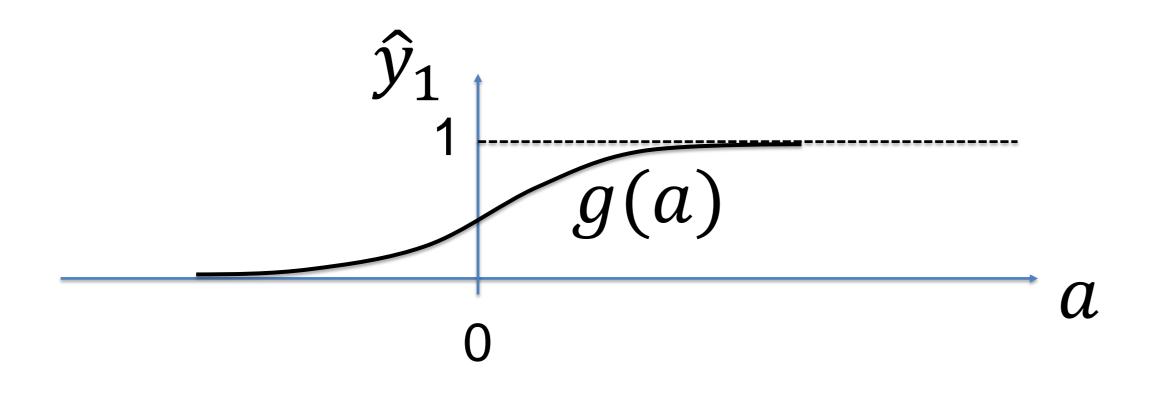


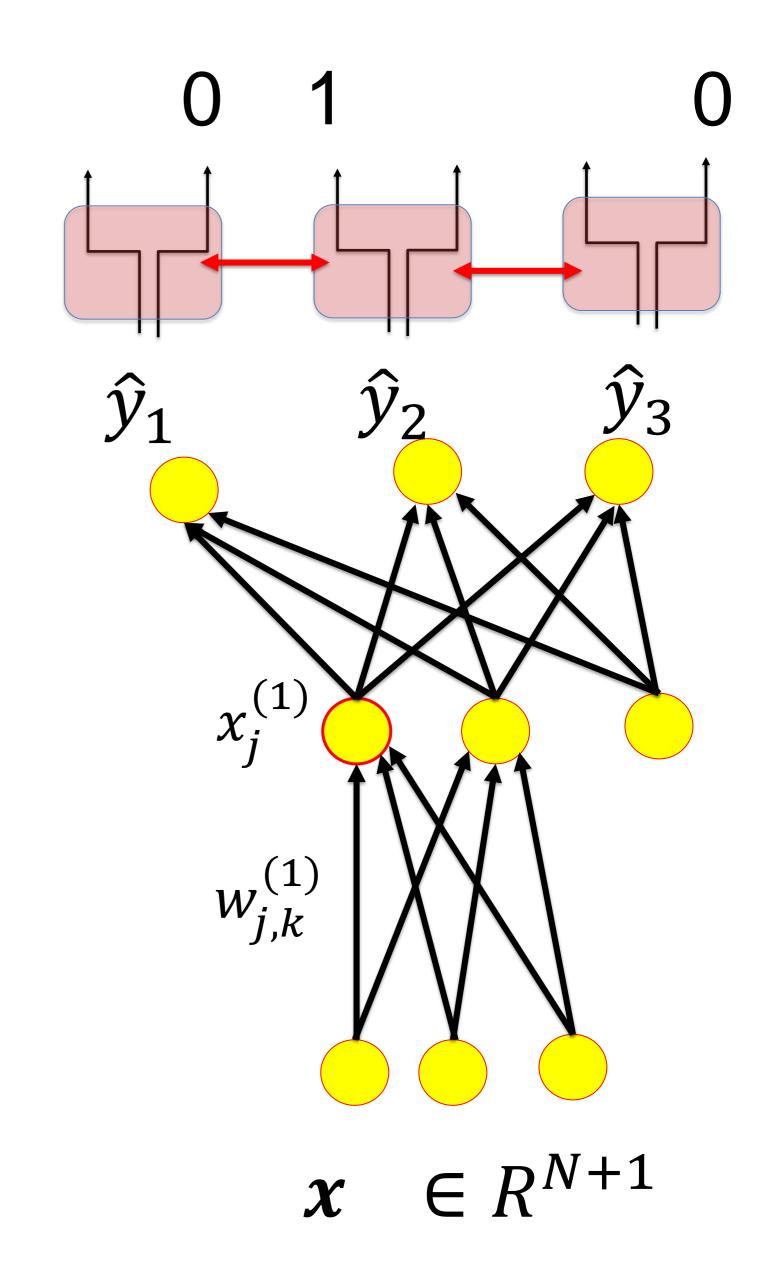
### $\boldsymbol{x} \in R^{N+1}$

## 5. Softmax output

# $\hat{y}_k = P(C_k | \boldsymbol{x}) = \boldsymbol{P}(\hat{t}_k = 1 | \boldsymbol{x})$







## **5. Exclusive Multiple Classes**

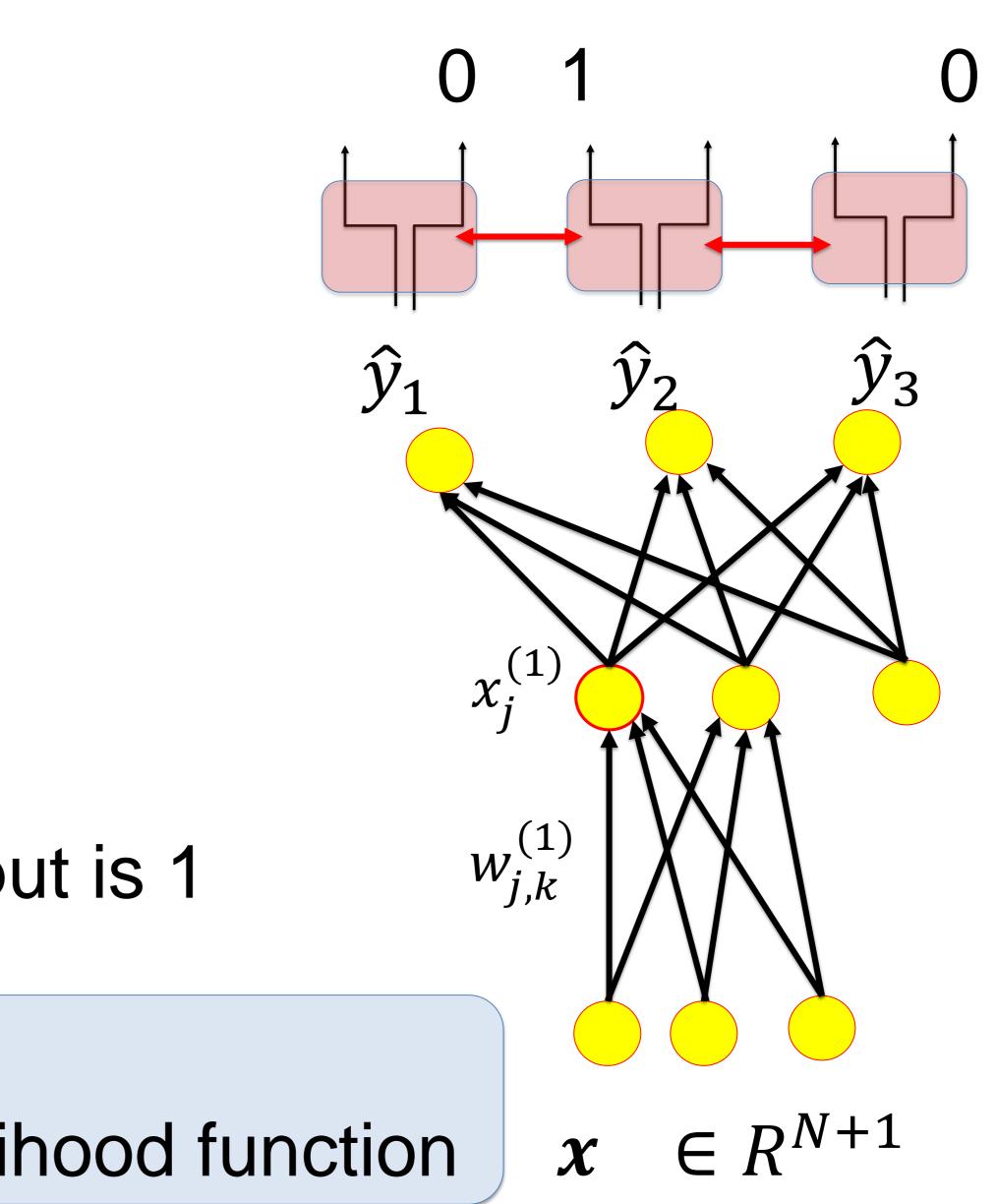
- $\hat{y}_1 = P(C_1|x) = P(\hat{t}_1 = 1|x)$
- 1-hot-coding:

$$\hat{t}_k^{\mu} = 1 \rightarrow \hat{t}_j^{\mu} = 0 \text{ for } j \neq k$$

Outputs are NOT independent:

$$\sum_{k=1}^{K} t_k^{\mu} = 1 \quad \text{exactly one outp}$$

Blackboard 6: probility of target labels and likelihood function



#### Blackboard 6: Probability of target labels: mutually exclusive classes

# 5. Cross entropy error for neural networks: Multiclass

We have a total of K classes (mutually exclusive: either dog or car)

# Minimize\* the cross-entropy $E(\mathbf{w}) = -\sum_{k=1}^{n} \sum_{\mu} [t_k^{\mu} \ln \hat{y}_k^{\mu}]$

parameters= all weights, all layers

Compare: KL divergence between outputs and targets  $\mathsf{KL}(w) = -\{\sum_{k=1}^{K} \sum_{\mu} [t_{k}^{\mu} ln \, \hat{y}_{k}^{\mu}] - \sum_{\mu} [t_{k}^{\mu} ln \, t_{k}^{\mu}]\}$ 

KL(w) = E(w) + constant

\*Minimization under the constraint:  $\sum_{k=1}^{K} \hat{y}_{k}^{\mu} = 1$ 

# Artificial Neural Networks: Lecture 3 Statistical Classification by Deep Networks

- 1. The statistical view: generative model
- 2. The likelihood of data under a model
- 3. Application to artificial neural networks
- 4. Multi-class problems
- 5. Sigmoidal as a natural output function
- 6. Rectified linear for hidden units

Wulfram Gerstner URE 3 EPFL, Lausanne, Switzerland EPFL, Lausanne, Switzerland

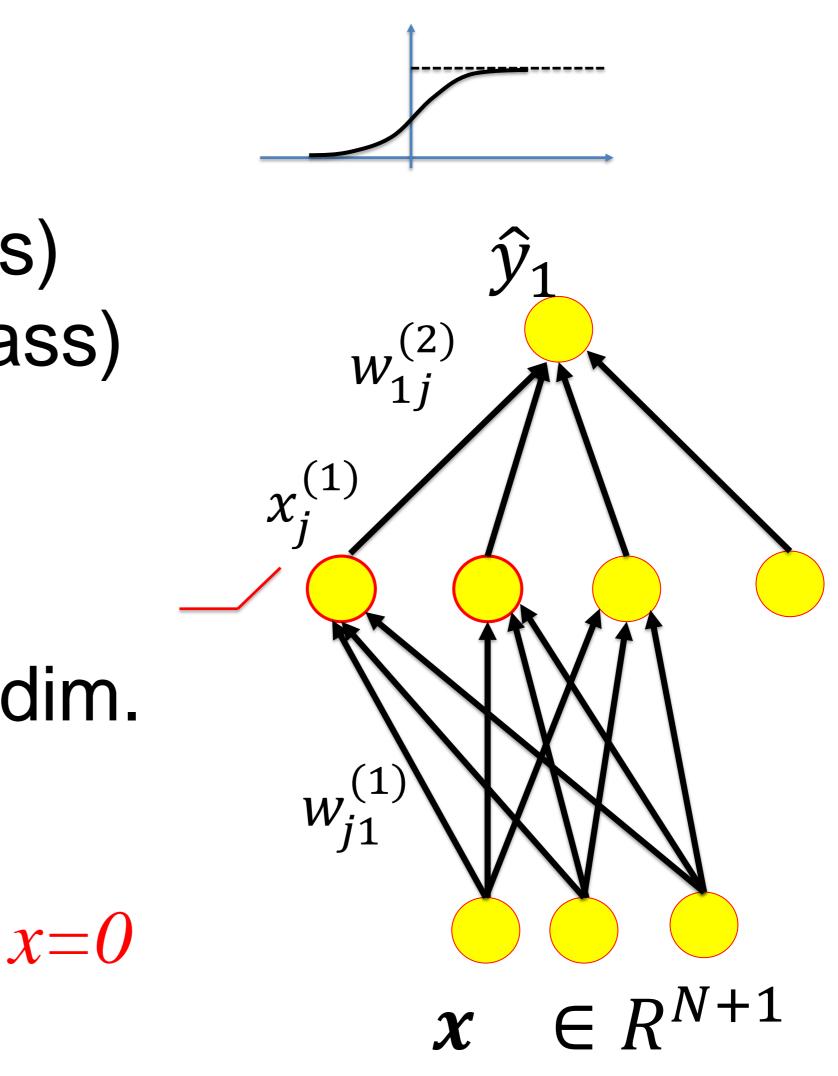
- ative model er a model ral networks
- put function n units

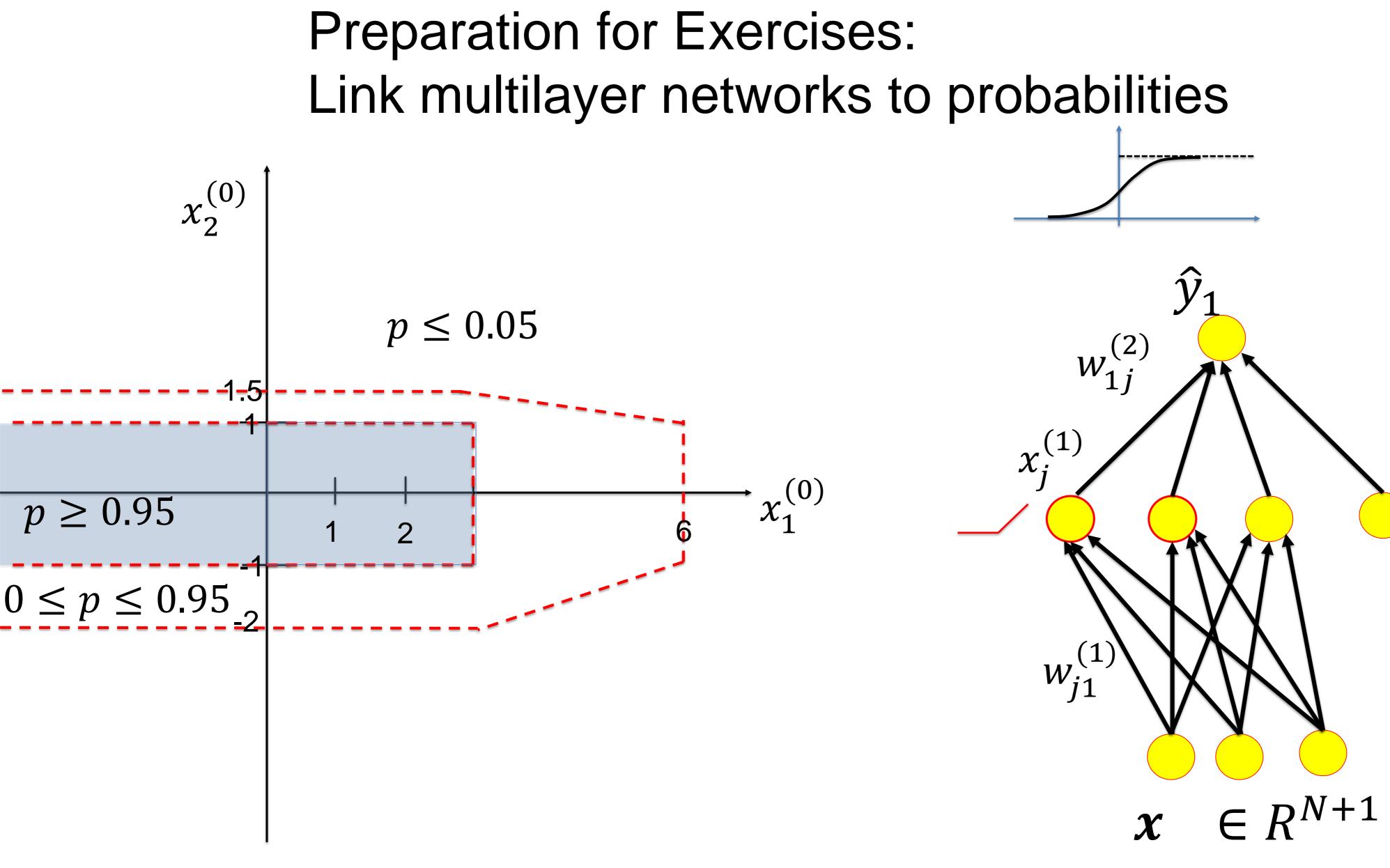
# 6. Modern Neural Networks

### output layer use sigmoidal unit (single-class) or softmax (exclusive mutlit-class)

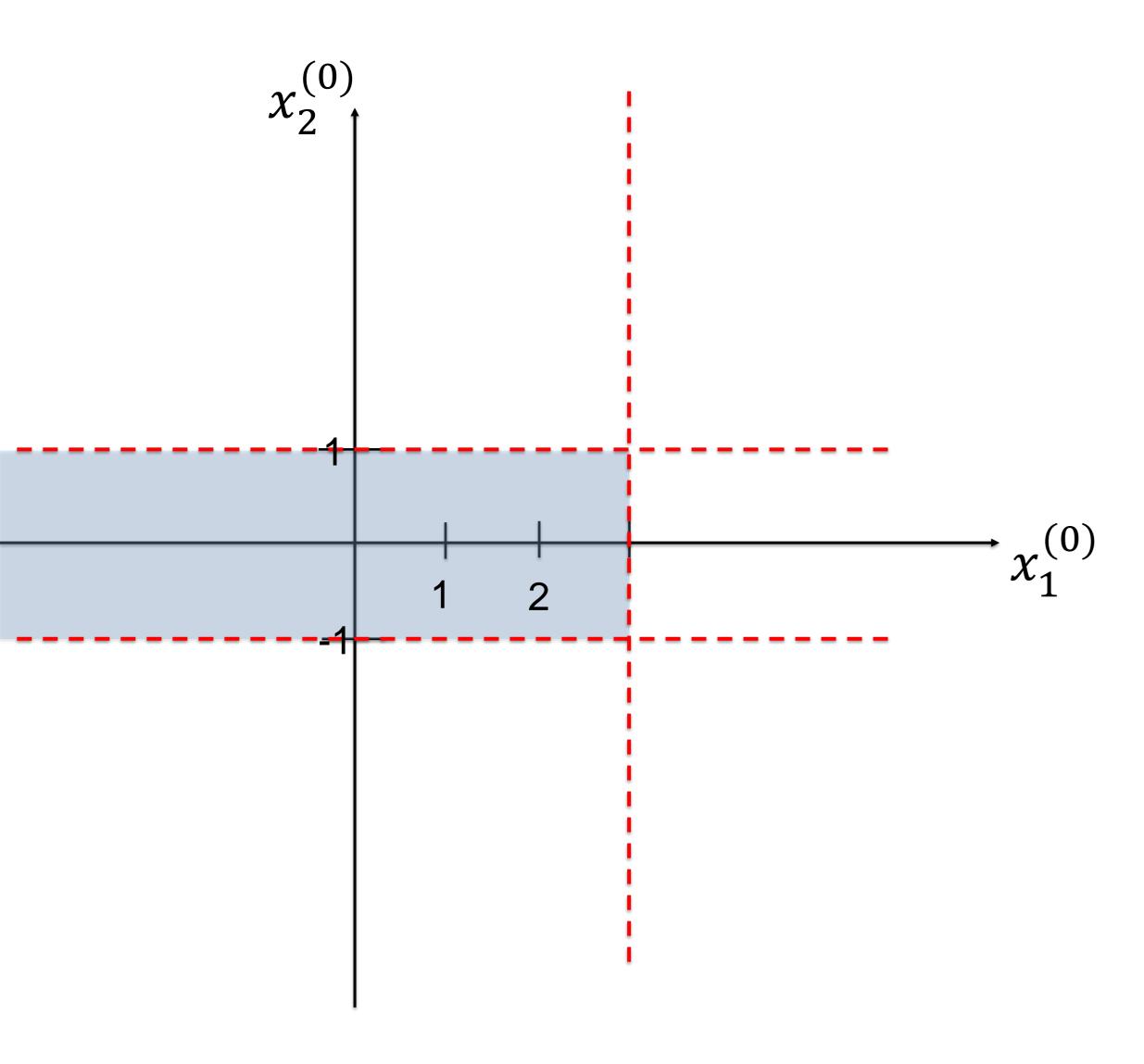
### hidden layer use rectified linear unit in N+1 dim.

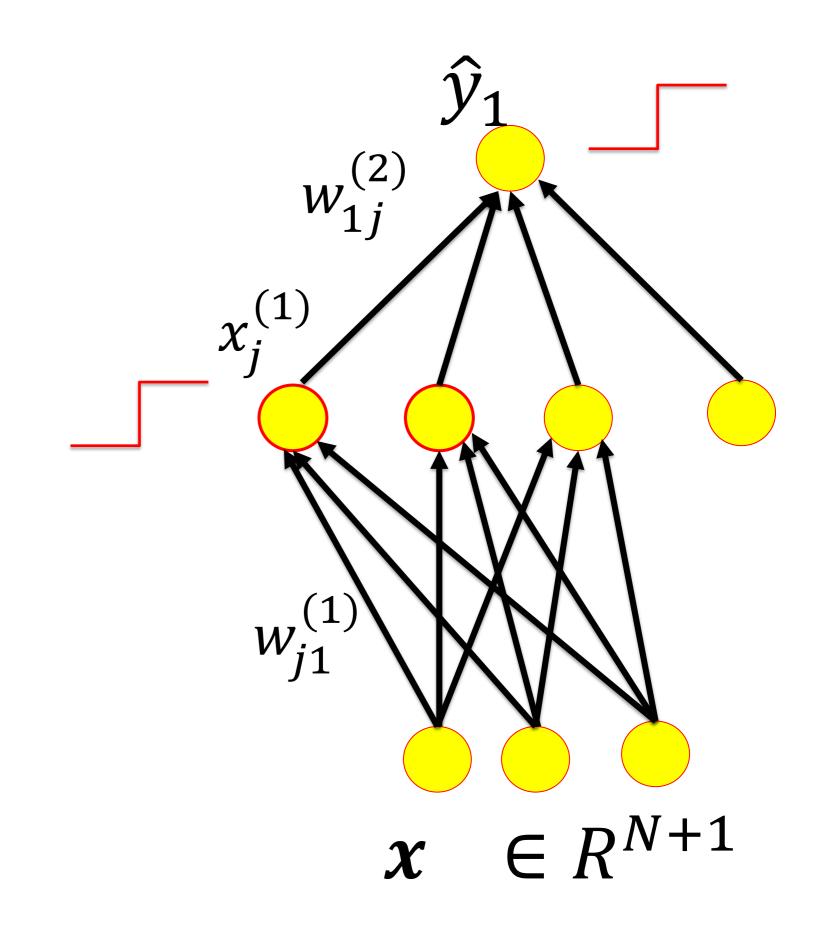
f(x) = x for x > 0f(x) = 0 for x < 0 or x = 0





#### Preparation for Exercises: there are many solutions!!!!





**QUIZ: Modern Neural Networks** [] piecewise linear units should be used in all layers [] piecewise linear units should be used in the hidden layers [] softmax unit should be used for exclusive multi-class in an output layer in problems with 1-hot coding [] sigmoidal unit should be used for single-class problems [] two-class problems (mutually exclusive) are the same as single-class problems [] multiple-attribute-class problems are treated as multiple-single-class [] In neural nets we can interpret the output as a probability,  $\hat{y}_1 = P(C_1 | \boldsymbol{x})$ [] if we are careful in the model design, we may interpret the output as a probability that the data belongs to the class

#### Wulfram Gerstner **Artificial Neural Networks: Lecture 3** EPFL, Lausanne, Switzerland Statistical classification by deep networks

### **Objectives for today:**

- loss function for classification tasks output unit for classification tasks
- The cross-entropy error is the optimal - The sigmoidal (softmax) is the optimal - Exclusive Multi-class problems use '1-hot coding' - Under certain conditions we may interpret the
- output as a probability
- Piecewise linear units are preferable for hidden layers

#### **Reading for this lecture:**

#### **Bishop 2006**, Ch. 4.2 and 4.3 Pattern recognition and Machine Learning

Or

# **Bishop 1995**, Ch. 6.7 – 6.9

Neural networks for pattern recognition

#### Or Goodfellow et al., 2016 Ch. 5.5, 6.2, and 3.13 of Deep Learning