Random Graph G(n,p)

Threshold Functions for Trees and Cycles

• Trees of order k

$$t(n) = n^{\frac{-k}{k-1}}$$

Cycles of order k

$$t(n) = n^{-1}$$

• Complete graphs K_k

$$t(n) = n^{-2/(k-1)}$$

G(1000,0.2/1000)

G(1000,0.5/1000)

G(1000,1.5/1000)

Recap: The Evolution from p=0 to p=1/n

The Giant Component

- Threshold function for giant component: t(n) = 1/n
- More precise: set p(n) = c/n
 - c>1: unique giant component
 - c<1: only small components</p>
 - c=1: need to define even more fine scaling

Small Components for c<1

- Theorem:
 - If c<1, then the largest component of G(n,c/n) has a.a.s. at most

$$\frac{3}{1-c^2}\log\left(n\right)$$

vertices

- Proof:
 - c=1-ε
 - Y_i: total number of vertices visited so far (saturated and active)
 - Y_i : Markov chain with Y_{i+1} - $Y_i \sim Binom(n-Y_i,p)$
 - Define Y_i⁺: random walk with increments Binom(n,p)
 - $Y_i^+ \sim Binom(ni,p)$
 - Y_i⁺ stochastically dominates Y_i

Large Component for c>1

- Theorem:
 - There is a unique giant component for c>1: The largest component of G(n,p) has $\theta(n)$ vertices, and the second-largest has $O(\log n)$ vertices
- Proof has three parts:
 - Part 1: each component is either small or quite large
 - Part 2: Large component is unique
 - Part 3: Large component has size $\theta(n)$

Component Exposure Process for c>1

Connectivity

- Theorem:
 - t(n) = log n/n is a threshold function for the disappearance of isolated vertices
- Intuition:
 - When only a small number of isolated vertices left: P(vertex connected) = q << 1
 - P(component of size k isolated) ~ q^k

Recap: The Evolution of G(n,p)

Connectivity

- Theorem:
 - t(n) = log n/n is a threshold function for the disappearance of isolated vertices
- Intuition:
 - When only a small number of isolated vertices left: P(vertex connected) = q << 1
 - P(component of size k isolated) ~ q^k

Connectivity (cont.)

• Theorem:

- t(n) = log n/n is a threshold function for connectivity

- Proof:
 - Show that P(component of size <n/2 appears) is small
 - Cayley's formula: # labeled trees of order k = k^{k-2}

Random Regular Graph G(n,r)

- G(n,r) is uniformly sampled from set of all graphs of order n and constant degree r
- Note: edges dependent -> probability space harder to describe
 - Detour: simpler model that generates G(n,r) with nonzero probability

The Pairing Model

- Pairing model:
 - r labeled stubs (half-edge) per vertex

The Pairing Model (cont.)

- Note:
 - # pairings = (nr-1)!! = (nr-1)(nr-3)...3

Appearance of H in G*(n,r)

- Theorem:
 - $Z_k = #$ of k-cycles in G*(n,r)
 - Random variables {Z_k}, k>=1 converge in distribution to independent random variables Po((r-1)^k/2k)
- Proof:
 - View G*(n,r) as projection of pairing model
 - Probability p_k that set of k labeled edges is in a random pairing:

$$p_k = \frac{(rn - 2k - 1)!!}{(rn - 1)!!} = \frac{1}{(rn - 1)(rn - 3)\dots(rn - 2k + 1)}$$

- Show convergence of all moments

Appearance of H in G*(n,r) (cont.)

• Union of cycles

Appearance of H in G*(n,r) (cont.)

- $E[Z_k]$: expected number of k-cycles
- $E[(Z_k)_2]$: expected number of ordered pairs of distinct k-cycles
 - $E[(Z_k)_2]=S_0+S_>$
 - $S_{>}$ =sum of terms $S_{v,e}$
 - v: # vertices in intersection
 - e: # edges in intersection
 - . Number of terms $S_{\nu,e}$ does not depend on \boldsymbol{n}

$$\left(\begin{array}{c}n\\k\end{array}\right)\frac{k!}{2k}\left(\begin{array}{c}n-k\\k\end{array}\right)\frac{k!}{2k}(r(r-1))^{2k} = \left(\frac{n^kr^k(r-1)^k}{2k}\right)^2$$

The Random Regular Graph G(n,r) (finally!)

- Theorem:
 - The random variables (Z_k) converge in distribution to a collection of independent Po((r-1)^k/2k)
- Theorem:
 - $P(G(n,r) \text{ is simple}) = exp(-(r^2-1)/4)$
- Proof:
 - $P(G \text{ is simple}) = P(Z_1 = Z_2 = 0)$
- Theorem:
 - Any a.a.s. property for G*(n,r) is also an a.a.s. Property of G(n,r); the converse is false

Connectivity of G(n,r)

- Theorem:
 - For r > 2, G(n,r) is connected a.a.s.
- Proof:

G(n,D): Generalized Degree Distribution

- Model for generalized degree distribution
 - $d_i(n)$: number of vertices of degree i
 - $d_i(n)/n \rightarrow \lambda_i$
- Generate G(n,D) through generalized version of pairing model

Condition for Giant Cluster in G(n,D)

• Theorem:

$$Q(D) = \sum i (i-2)\lambda_i$$

- If Q(D) > 0, then there is a unique giant cluster
- If Q(D) < 0, then the largest cluster is $O(\log n)$