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Random Graph G(n,p)
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Threshold Functions for Trees and Cycles
● Trees of order k

● Cycles of order k

● Complete graphs Kk

𝑡 𝑛 = 𝑛
$%
%$&

𝑡 𝑛 = 𝑛$&

𝑡(𝑛) = 𝑛$) (%$&)�⁄



3

G(1000,0.2/1000)
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G(1000,0.5/1000)
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G(1000,1.5/1000)
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Recap: The Evolution from p=0 to p=1/n
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The Giant Component
● Threshold function for giant component: t(n) = 1/n
● More precise: set p(n) = c/n

– c>1: unique giant component
– c<1: only small components
– c=1: need to define even more fine scaling
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Small Components for c<1
● Theorem:

– If c<1, then the largest component of G(n,c/n) has a.a.s. at most 
3

1 − 𝑐) log	(n)
vertices

● Proof:
– c=1-ε
– Yi: total number of vertices visited so far (saturated and active)
– Yi: Markov chain with Yi+1-Yi ~ Binom(n-Yi,p)
– Define Yi

+: random walk with increments Binom(n,p)
– Yi

+ ~ Binom(ni,p)
– Yi

+ stochastically dominates Yi
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Large Component for c>1
● Theorem:

– There is a unique giant component for c>1: The largest component of 
G(n,p) has θ(n) vertices, and the second-largest has O(log n) vertices

● Proof has three parts:
– Part 1: each component is either small or quite large
– Part 2: Large component is unique
– Part 3: Large component has size θ(n)
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Component Exposure Process for c>1
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Connectivity
● Theorem:

– t(n) = log n/n is a threshold function for the disappearance of isolated 
vertices

● Intuition:
– When only a small number of isolated vertices left: P(vertex 

connected) = q << 1
– P(component of size k isolated) ~ qk
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G(1000,5/1000)
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G(1000,8/1000)
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G(1000,2/1000): Giant Component + Trees
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Recap: The Evolution of G(n,p)
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Connectivity
● Theorem:

– t(n) = log n/n is a threshold function for the disappearance of isolated 
vertices

● Intuition:
– When only a small number of isolated vertices left: P(vertex 

connected) = q << 1
– P(component of size k isolated) ~ qk
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Connectivity (cont.)
● Theorem:

– t(n) = log n/n is a threshold function for connectivity
● Proof:

– Show that P(component of size <n/2 appears) is small
– Cayley's formula: # labeled trees of

order k = kk-2
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Random Regular Graph G(n,r)
● G(n,r) is uniformly sampled from set of all graphs of order n and constant 

degree r
● Note: edges dependent -> probability space harder to describe

– Detour: simpler model that generates G(n,r) with nonzero probability
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The Pairing Model
● Pairing model:

– r labeled stubs (half-edge) per vertex

Vertices and stubs

1 2

3 4

1

2
3

((1,2),(4,3))
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The Pairing Model (cont.)
G*(n,r): random regular
multigraphRandom matching

Projection:
forget the edge labels

1 2

3

4

● Note:
– # pairings = (nr-1)!! = (nr-1)(nr-3)...3
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Appearance of H in G*(n,r)
● Theorem:

– Zk = # of k-cycles in G*(n,r)
– Random variables {Zk}, k>=1 converge in distribution to independent 

random variables Po((r-1)k/2k)
● Proof:

– View G*(n,r) as projection of pairing model
– Probability pk that set of k labeled edges is in a random pairing:

– Show convergence of all moments
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Appearance of H in G*(n,r) (cont.)
● Union of cycles

v=e

v<e
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Appearance of H in G*(n,r) (cont.)
● E[Zk]: expected number of k-cycles
● E[(Zk)2]: expected number of ordered pairs of distinct k-cycles

– E[(Zk)2]=S0+S>

● S>=sum of terms Sv,e
● v: # vertices in intersection
● e: # edges in intersection
● Number of terms Sv,e does not depend on n

– S0:
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The Random Regular Graph G(n,r) (finally!)
● Theorem:

– The random variables (Zk) converge in distribution to a collection of 
independent Po((r-1)k/2k)

● Theorem:
– P(G(n,r) is simple) = exp(- (r2-1)/4)

● Proof:
– P(G is simple) = P(Z1=Z2=0)

● Theorem:
– Any a.a.s. property for G*(n,r) is also an a.a.s. Property of G(n,r); the 

converse is false
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Connectivity of G(n,r)
● Theorem:

– For r > 2, G(n,r) is connected a.a.s.
● Proof:

The rest

A
S

T
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G(n,D): Generalized Degree Distribution
● Model for generalized degree distribution

– di(n): number of vertices of degree i
– di(n)/n -> λi

● Generate G(n,D) through generalized version of pairing model
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Condition for Giant Cluster in G(n,D)
● Theorem:

– If Q(D) > 0, then there is a unique giant cluster
– If Q(D) < 0, then the largest cluster is O(log n)
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