Random Graph G(n,p)

Threshold Functions for Trees and Cycles

- Trees of order k

$$
t(n)=n^{\frac{-k}{k-1}}
$$

- Cycles of order k

$$
t(n)=n^{-1}
$$

- Complete graphs K_{k}

$$
t(n)=n^{-2 /(k-1)}
$$

G(1000,0.2/1000)

0
00

00000
0
0

00

G(1000,0.5/1000)

G(1000,1.5/1000)

Recap: The Evolution from $p=0$ to $p=1 / n$

The Giant Component

- Threshold function for giant component: $t(n)=1 / n$
- More precise: set $p(n)=c / n$
- $\mathrm{c}>1$: unique giant component
- c<1: only small components
- $c=1$: need to define even more fine scaling

Small Components for $\mathrm{c}<1$

. Theorem:

- If $\mathrm{c}<1$, then the largest component of $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$ has a.a.s. at most

$$
\frac{3}{1-c^{2}} \log (\mathrm{n})
$$

vertices

- Proof:
- $c=1-\varepsilon$
- Y_{i} : total number of vertices visited so far (saturated and active)
- Y_{i} : Markov chain with $Y_{i+1}-Y_{i} \sim \operatorname{Binom}\left(n-Y_{i}, p\right)$
- Define Y_{i}^{+}: random walk with increments Binom(n,p)
- $\mathrm{Y}_{\mathrm{i}}^{+} \sim \operatorname{Binom}(\mathrm{ni}, \mathrm{p})$
- Y_{i}^{+}stochastically dominates Y_{i}

Large Component for c>1

- Theorem:
- There is a unique giant component for $\mathrm{c}>1$: The largest component of $\mathrm{G}(\mathrm{n}, \mathrm{p})$ has $\theta(\mathrm{n})$ vertices, and the second-largest has $\mathrm{O}(\log \mathrm{n})$ vertices
- Proof has three parts:
- Part 1: each component is either small or quite large
- Part 2: Large component is unique
- Part 3: Large component has size $\theta(n)$

Component Exposure Process for c>1

Connectivity

- Theorem:
- $t(n)=\log n / n$ is a threshold function for the disappearance of isolated vertices
- Intuition:
- When only a small number of isolated vertices left: P(vertex connected) $=q \ll 1$
- P (component of size k isolated) $\sim q^{k}$

G(1000,5/1000)

G(1000,8/1000)

G(1000,2/1000): Giant Component + Trees

Recap: The Evolution of $\mathrm{G}(\mathrm{n}, \mathrm{p})$

Connectivity

- Theorem:
- $t(n)=\log n / n$ is a threshold function for the disappearance of isolated vertices
- Intuition:
- When only a small number of isolated vertices left: P(vertex connected) $=q \ll 1$
- P (component of size k isolated) $\sim q^{k}$

Connectivity (cont.)

- Theorem:
- $\mathrm{t}(\mathrm{n})=\log \mathrm{n} / \mathrm{n}$ is a threshold function for connectivity
- Proof:
- Show that P (component of size $<\mathrm{n} / 2$ appears) is small
- Cayley's formula: \# labeled trees of order $\mathrm{k}=\mathrm{k}^{\mathrm{k}-2}$
$\mathbb{P}\{G(n, p)$ contains component of order $k\}$
$\leq\binom{ n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)}$

$\leq k^{-2} \exp \left[k(\log n+1)+(k-1)\left(\log \left(\omega_{n} \log n\right)-\log n\right)-k \omega_{n} \log n+\frac{k^{2}}{n} \omega_{n} \log n\right]$
$\leq n k^{-2} \exp \left[k+k \log \left(\omega_{n} \log n\right)-\frac{1}{2} k \omega_{n} \log n\right]$
$\leq n k^{-2} \exp \left[-(1 / 3) \omega_{n} k \log n\right] \quad$ (for n large enough)
$=k^{-2} n^{1-k \omega_{n} / 3}$,

Random Regular Graph G(n,r)

- $G(n, r)$ is uniformly sampled from set of all graphs of order n and constant degree r
- Note: edges dependent -> probability space harder to describe
- Detour: simpler model that generates $G(n, r)$ with nonzero probability

The Pairing Model

- Pairing model:
- r labeled stubs (half-edge) per vertex
((1,2),(4,3))
Vertices and stubs

The Pairing Model (cont.)

Random matching

$\mathrm{G}^{*}(\mathrm{n}, \mathrm{r})$: random regular multigraph

Projection: forget the edge labels

- Note:
- \# pairings = (nr-1)!! = (nr-1)(nr-3)... 3

Appearance of H in $\mathrm{G}^{*}(\mathrm{n}, \mathrm{r})$

- Theorem:
- $Z_{k}=\#$ of k-cycles in $G^{*}(n, r)$
- Random variables $\left\{Z_{k}\right\}, k>=1$ converge in distribution to independent random variables $\mathrm{Po}\left((\mathrm{r}-1)^{\mathrm{k}} / 2 \mathrm{k}\right)$
- Proof:
- View $G^{*}(n, r)$ as projection of pairing model
- Probability p_{k} that set of k labeled edges is in a random pairing:

$$
p_{k}=\frac{(r n-2 k-1)!!}{(r n-1)!!}=\frac{1}{(r n-1)(r n-3) \ldots(r n-2 k+1)}
$$

- Show convergence of all moments

Appearance of H in $\mathrm{G}^{*}(\mathrm{n}, \mathrm{r})$ (cont.)

- Union of cycles

$\mathrm{v}=\mathrm{e}$

$\mathrm{v}<\mathrm{e}$

Appearance of H in $\mathrm{G}^{*}(\mathrm{n}, \mathrm{r})$ (cont.)

- $E\left[Z_{k}\right]$: expected number of $k-c y c l e s$
- $E\left[\left(Z_{k}\right)_{2}\right]$: expected number of ordered pairs of distinct k-cycles
- $\mathrm{E}\left[\left(\mathrm{Z}_{\mathrm{k}}\right)_{2}\right]=\mathrm{S}_{0}+\mathrm{S}_{\text {, }}$
. $S_{>}=$sum of terms $S_{\mathrm{v}, \mathrm{e}}$
. v: \# vertices in intersection
- e: \# edges in intersection
- Number of terms $\mathrm{S}_{\mathrm{v}, \mathrm{e}}$ does not depend on n
- S_{0} :

$$
\binom{n}{k} \frac{k!}{2 k}\binom{n-k}{k} \frac{k!}{2 k}(r(r-1))^{2 k}=\left(\frac{n^{k} r^{k}(r-1)^{k}}{2 k}\right)^{2}
$$

The Random Regular Graph G(n,r) (finally!)

. Theorem:

- The random variables $\left(Z_{k}\right)$ converge in distribution to a collection of independent $\mathrm{Po}\left((\mathrm{r}-1)^{\mathrm{k}} / 2 \mathrm{k}\right)$
- Theorem:
- $P(G(n, r)$ is simple $)=\exp \left(-\left(r^{2}-1\right) / 4\right)$
. Proof:
- $P(G$ is simple $)=P\left(Z_{1}=Z_{2}=0\right)$
- Theorem:
- Any a.a.s. property for $\mathrm{G}^{*}(\mathrm{n}, \mathrm{r})$ is also an a.a.s. Property of $\mathrm{G}(\mathrm{n}, \mathrm{r})$; the converse is false

Connectivity of $\mathrm{G}(\mathrm{n}, \mathrm{r})$

- Theorem:
- For $r>2, G(n, r)$ is connected a.a.s.
- Proof:

G(n,D): Generalized Degree Distribution

- Model for generalized degree distribution
- $d_{i}(n)$: number of vertices of degree i
$-d_{i}(n) / n->\lambda_{i}$
- Generate $G(n, D)$ through generalized version of pairing model

Condition for Giant Cluster in $\mathrm{G}(\mathrm{n}, \mathrm{D})$

- Theorem:

$$
Q(D)=\sum i(i-2) \lambda_{i}
$$

- If $Q(D)>0$, then there is a unique giant cluster
- If $Q(D)<0$, then the largest cluster is $O(\log n)$

