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Regularization and Tricks of the Trade in  deep networks
Objectives for today:
- Bagging
- Dropout
- What are good units for hidden layers? 
- Rectified linear unit (RELU)
- Shifted exponential linear (ELU and SELU)
- BackProp: Initialization 
- Linearity problem, vanishing gradient problem, bias problem
- Batch normalization



Reading for this lecture:

Goodfellow et al.,2016  Deep Learning

- Ch 7.4, 7.8, 7.11 and 7.12,
- Ch. 8.4 

Paper: Klaumbauer, …, Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

Further Reading for this Lecture:

https://arxiv.org/pdf/1706.02515.pdf


review: Artificial Neural Networks for classification

input

output
car dog

Aim of learning:
Adjust connections such
that output is correct
(for each input image,
even new ones)
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https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:
for a= 3: g(3) =0.95
for a=-3: g(-3)=0.05

𝑔𝑔 𝑎𝑎 =
1

1 + 𝑒𝑒−𝑎𝑎

Review. sigmoidal output = logistic function
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output layer
use sigmoidal unit (single-class)
or softmax (exclusive mutlti-class)

Review:  Modern Neural Networks

hidden layer
use rectified linear unit in N+1 dim.

f(x)=x for x>0
f(x)=0 for x<0 or x=0

Why?

Better choices?
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Rectified Linear (RELU) vs. Sigmoidal

f(a)=a for a>0

𝜀𝜀 𝛼𝛼

a
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Exponential Linear vs. Sigmoidal

f(a)=a for a>0

𝜀𝜀 𝛼𝛼

a

+1

-1
f(a)=exp(a)-1 for a<0
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Exponential Linear (ELU) vs. Sigmoidal

Shifted ReLU (SReLU)
Leaky ReLu (LReLU)

Clevert et al.
ICML 2016



What are good models for hidden neurons?

… and why?

Question 1 for this week:
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BackProp
output
activity

input
pattern
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BackProp Calculate output error 
𝛿𝛿
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BackProp update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)



Why does the initatialization or normalization
matter in backprop?

Question 2 for this week:



x
x

xx
xxx

oooo o
o

o

o
x

x

o
Simple perceptron
imposes a linear

separation

Review:  Single-Layer networks/simple perceptron 
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Review: Classification as a geometric problem
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Review: The problem of overfitting
Big Multilayer perceptrons are flexible and can be 
trained by BackProp to minimize classification error

… but is flexibility always good? x
x
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Network has to work on future data:

test data base 



What are good models for regularization?

… and why?

Question 3 for this week:

We start with this question!
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Tricks of the Trade in  deep networks
1. Bagging
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1. Bagging Example: simple perceptron 

vector x
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1. Bagging  Example: simple perceptron for noisy data 

vector x
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1. Bagging  Idea: (i) Repeat variants of your model K times
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1. Bagging  Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦1 = 0.5[1 + 𝑡𝑡𝑎𝑎𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 ]
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1. Bagging  Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦2 = 0.5[1 + 𝑡𝑡𝑎𝑎𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 ]
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separation

… 



x
x

xx
xxx

oooo o
o

o

o
x

x

o

1. Bagging  Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦𝐾𝐾 = 0.5[1 + 𝑡𝑡𝑎𝑎𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 ]
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1. Bagging  Idea: (iii) Average over all K variants

o

o
x
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Find average (nonlinear)
separation

… 

1/K
1/K

1/K
+
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1 Generate K different training sets
for k=1,…,K 

pick 𝑃𝑃𝑃 times into your data set with replacement
(your can pick the same data point several times)

2 Initialize K different variants of your model
3 Train model k on data set k up to criterion
4 For a future data point (test set)

for k=1,…,K 
put input x into model k, read out 

5  Report average 

1. Bagging : Algorithm
Given: Training data set { 𝒙𝒙𝜇𝜇, 𝑡𝑡𝜇𝜇 , 1 ≤ 𝜇𝜇 ≤ 𝑃𝑃𝑃 };
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1. Bagging: Theory
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Blackboard: Bagging
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1. Bagging : Theory Blackboard: Bagging
Claim: bagged output has smaller quadratic error

than a typical individual model

�𝒚𝒚𝐛𝐛𝐛𝐛𝐛𝐛 =
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1. Bagging : Result
assumption: the average delta-difference, defined as

1
𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 [δ

𝑘𝑘
𝜇𝜇] = d 

is the same for all K copies of the model.

THEN
- bagged output has smaller quadratic error

than a typical individual model

- if all K individual models are uncorrelated, the gain
in performance scales as 1/K 



1. Bagging: each of the models can be a deep network

… 
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1. Bagging: each of the models sees a different data set

… 
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Goodfellow et al.
2016



Quiz:
[ ] If you want to win a machine learning competition,

it is better to average the prediction on new data
over ten different models, rather than just using the model
that is best on your validation data.

[ ] If you want to win a machine learning competition,
it is better to hand in 10 contributions (using different author names)
rather than a single contribution

[x ]

[x]
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout



2. Dropout: suppress 50 percent of hidden units during training 
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𝑤𝑤𝑗𝑗1
(1)



2. Dropout: suppress 50 percent of hidden units during training 
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2. Dropout: suppress 50 percent of hidden units during training 
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2. Dropout: suppress 50 percent of hidden units during training 

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1
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2. Dropout: use full network for validation and test

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗1
(1)

For test:
- full network
- but multiply  output weights 

from hidden units
by 1/2

 Total input to each unit is roughly
same as during training



2. Dropout: two different interpretations

1. An approximate, but practical
implementation of bagging

2. A tool to enforce representation sharing
in the hidden neurons



2. Dropout as approximate bagging

Differences to standard bagging:
- not a fixed data base for each ‘dropout’ configuration
- models not independent: share weights
- output not a ‘sum over model outputs’

Dropout can be seen as a practical application 
of the ideas of bagging to deep networks



2. Dropout as forced feature sharing

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗1
(1)

xx x
x

x

xx
x

Feature sharing:
Take 2 times as many neurons,
But make sure they all solve

similar tasks

‘robust’



2. Dropout: two different interpretations

1. An approximate, but practical
implementation of bagging

2. A tool to enforce representation sharing
in the hidden neurons

 useful regularization method,
 simple to implement
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods



3. Other easy regularization methods: dataset augmentation

Goodfellow et al. 2016



3. Other easy regularization methods: early stopping

Go back to weights where validation error was minimal

Example: MNIST data base, see Goodfellow et al. 2016
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Weight initialization and choice of hidden units



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗1
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4. Choice of units 

f(x)=x for x>0

𝜀𝜀 𝛼𝛼

a

-different patterns give different activation
of same neuron (red)

-same input pattern gives different activation
of different neurons (red, blue)



4. Initialization (input layer) Blackboard

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

Claim: square root of N is important

Normalization of data base:
(1) < 𝑥𝑥𝑗𝑗 >= 1

𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 𝑥𝑥𝑗𝑗

𝜇𝜇 =0

Random initialization of weights:
(2)

How should you choose the variance?

< 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑛𝑛)> = 0



Blackboard: Initialization

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

Claim: square root of N is important



4. Initialization (input layer)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

 Distribution of 𝑥𝑥𝑗𝑗
(1) in layer 1 

Normalization of data base:
(1) < 𝑥𝑥𝑗𝑗 >= 1

𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 𝑥𝑥𝑗𝑗

𝜇𝜇 =0

Random initialization of weights:
(2)

And standard deviation propto

< 𝑤𝑤𝑖𝑖𝑗𝑗
(1)> = 0

1/ 𝑁𝑁

 Distribution of 𝑥𝑥𝑗𝑗
(𝑘𝑘) in layer k
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BackProp
output
activity

input
pattern
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BackProp Calculate output error 
𝛿𝛿
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BackProp update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗
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Why does the initatialization or normalization
matter in backprop?



4. Forward pass: Linear and nonlinear processing

input
pattern

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗1
(1)

𝜀𝜀

a

𝛼𝛼−𝛼𝛼 −𝜀𝜀



4. Forward pass: Linear and nonlinear processing
Observations:

if all patterns in all layers touch the linear
regime of g(a), then the whole network is linear

 different patterns should touch different regions
of g(a).

- this is automatically true for ReLu, 
if the mean (across patterns) is  a=0

- this is automatically true for sigmoidals, if
the variance (across patterns) is > 2

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀



https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:
for a= 3: g(3) =0.95
for a=-3: g(-3)=0.05

𝑔𝑔 𝑎𝑎 =
1

1 + 𝑒𝑒−𝑎𝑎

Review. sigmoidal output = logistic function



4. Forward pass: exploit nonlinearities (‘linearity problem’)

To exploit nonlinearities of all units in the network, we must

1. Make sure that the initialization of weights is well chosen
 expectation (across patterns) of the  activation variable 

0 = < 𝑎𝑎𝑗𝑗
𝑛𝑛 >; 𝑎𝑎𝑗𝑗

𝑛𝑛 = ∑𝑘𝑘 𝑤𝑤𝑗𝑗,𝑘𝑘
𝑛𝑛 𝑥𝑥𝑘𝑘

𝑛𝑛−1

 standard deviation of the activation variable 
𝑎𝑎𝑗𝑗
𝑛𝑛 of order 1.

2. Make sure  that weight updates do not shift mean
(and standard deviation) of distribution too much
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Choice of hidden units and initialization: ‘linearity problem’ 
5. Vanishing gradient problem



𝑤𝑤𝑗𝑗,𝑘𝑘
(𝑁𝑁−1)

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(𝑁𝑁)

𝑥𝑥𝑗𝑗
(𝑁𝑁−1)

BackProp 𝛿𝛿 = 0.5

𝑥𝑥𝑗𝑗
(𝑁𝑁−2)



5. Backward pass: Vanishing gradient problem

𝛿𝛿𝑖𝑖
(𝑛𝑛−1) = �

𝑗𝑗

𝑤𝑤𝑗𝑗𝑖𝑖
(𝑛𝑛)𝑔𝑔′(𝑛𝑛−1)(𝑎𝑎𝑖𝑖

(𝑛𝑛−1))𝛿𝛿𝑗𝑗
(𝑛𝑛)

𝛿𝛿𝑖𝑖
(1)~𝑔𝑔′(1)𝑔𝑔′(2) …𝑔𝑔′(𝑁𝑁−1) 𝛿𝛿𝑗𝑗

(𝑁𝑁)

After N layers: each path contributes 

Many  terms to be summed,
but most terms are tiny if N large

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀 𝑤𝑤𝑗𝑗,𝑘𝑘

(𝑁𝑁−1)

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(𝑁𝑁)

𝑥𝑥𝑗𝑗
(𝑁𝑁−1)

𝛿𝛿2
(𝑁𝑁) = 0.5

𝑥𝑥𝑗𝑗
(𝑁𝑁−2)



5. Vanishing gradient problem

Observations:
- for each single path many terms g’
- g’ is small for sigmoidal at −𝛼𝛼 or +𝛼𝛼 (|a|=4)
- g’ vanishes for ReLu if one inactive unit sits in path
- g’=1 for all ReLu on ‘active paths’ 
 for ReLu highly active forward paths coincide

with good gradient transmission on backward path

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀



5. Vanishing gradient problem
Conclusion:

Sucessful forward pass 
 needs to avoid the linearity problem.

(‘exploit nonlinearities’)

Successful backward pass
 needs to avoid the vanishing gradient problem.

A good hidden units must be good for 
forward  and backward pass!  

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Initialization and choice of hidden units are important.
5. Vanishing gradient problem
6. Weight update: mean input and bias problem



6. Weight update step
update all weights

𝑤𝑤𝑗𝑗,𝑘𝑘
(𝑛𝑛−1)

𝑤𝑤1,𝑗𝑗
(𝑛𝑛)

𝑥𝑥𝑗𝑗
(𝑛𝑛−1)

𝑥𝑥𝑗𝑗
(𝑛𝑛−2)

𝛿𝛿2
(𝑛𝑛−1)Weights onto the same neuron (red)

are all updated with same delta
 if 𝑥𝑥𝑗𝑗

(𝑛𝑛−2) are all positive,
all the weights onto red neuron
increase or decrease together

∆𝑤𝑤𝑖𝑖,𝑗𝑗
(𝑛𝑛−1)= 𝛿𝛿𝑖𝑖

(𝑛𝑛−1)𝑥𝑥𝑗𝑗
(𝑛𝑛−2)



6. Weight update step
update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛−1)= 𝛿𝛿𝑖𝑖
(𝑛𝑛−1)𝑥𝑥𝑗𝑗

(𝑛𝑛−2)

Weights onto the same neuron 
are all updated with same delta
 Problem for ReLu and other units with non-negative x
No problem for tanh
No problem for shifted exponential linear Selu

𝜀𝜀
a

𝛼𝛼−𝛼𝛼−𝜀𝜀

w

𝑤𝑤𝑖𝑖,2
(𝑛𝑛−1)

𝑤𝑤𝑖𝑖,5
(𝑛𝑛−1)



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗1
(1)

Shifted Exponential Linear (SELU) vs. tanh
g(a)= β a for a>0

𝜀𝜀 𝛼𝛼

a

+1

-1
g(a)= γ [exp(a)-1]   for a<0

g(a)= tanh(a) Standard ELU:
γ=β=1



6. Bias problem
update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)

Weights onto the same neuron 
are all updated with same delta
 Problem for ReLu and other units with non-negative x
 The mean changes! (‘bias problem’)
But controlling the mean was important for correct initialization!
 Return of  vanishing gradient and linearity problem! 

Before update

after update
𝑎𝑎𝑖𝑖

(𝑛𝑛) = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑗𝑗
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1) − 𝜗𝜗

𝑎𝑎𝑖𝑖
(𝑛𝑛) = �

𝑗𝑗

[𝑤𝑤𝑖𝑖𝑗𝑗
(𝑛𝑛)+∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)]𝑥𝑥𝑗𝑗
(𝑛𝑛−1) − 𝜗𝜗

same sign for all j
non-negative
( for ReLu etc)



Quiz:
[ ] forward propagation with ReLu leaves only a few active paths
[ ] back propagation with ReLu leaves only a few active paths
[ ] a non-zero weight update step of ReLu shifts most often the mean
[ ] forward propagation with ReLu is always linear on the active paths
[ ] in a ReLu network all patterns are processed with the

same linear filter
[ ] in a sigmoidal network with small weights (and normalized inputs)

all patterns are processed with the same linear filter
[ ] in a sigmoidal network with big weights,  there are active units in the 
forward pass that contribute a vanishing gradient in the backward path
[ ] in a network with SELU,  there are active units in the forward path

which contribute a vanishing gradient in the backward path
[ ] a non-zero the weight update step of SELU shifts the mean

[x]
[x]
[x]
[x]
[  ]

[x]

[x]

[ ]

[ ]



Shifted Exponential Linear vs. tanh



Shifted Exponential Linear (SELU)



6. Conclusion

- initialization is important so as to exploit nonlinearities
- choice of hidden unit is important in initial phase of training
- ReLu has disadvantages in keeping the mean

 batch normalization
- Tanh has problems with vanishing gradient
- Sigmoidal has problems with vanishing gradient and mean
- SELU solves all problems and is currently best choice

Paper: Klaumbauer, …, Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

https://arxiv.org/pdf/1706.02515.pdf
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Hidden units: linearity problem (exploit nonlinearities)
5. Hidden units: Vanishing gradient problem
6. Weight update: bias problem
7. Batch normalization 



7. Batch normalization: Idea

Normalize input on each input line

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

�𝑦𝑦2
𝜇𝜇�𝑦𝑦1

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(3)

−1 Zoom:

𝑥𝑥𝑗𝑗
(𝑘𝑘)

�𝑥𝑥𝑗𝑗
(𝑘𝑘)

𝑉𝑉𝑎𝑎𝑉𝑉[𝑥𝑥𝑗𝑗
𝑘𝑘 ]

𝐸𝐸[𝑥𝑥𝑗𝑗
(𝑘𝑘)]𝑥𝑥𝑗𝑗

(𝑘𝑘) -�𝑥𝑥𝑗𝑗
(𝑘𝑘) =



7. Batch normalization

Ioffe&Szegedi, 2015 

Work with minibatch:
Normalize per

minibatch



7. Batch normalization Ioffe&Szegedi, 2015 

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)



7. Batch normalization Ioffe&Szegedi, 2015 

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)



7. Batch normalization

Ioffe&Szegedi, 2015 



7. Batch normalization Ioffe&Szegedi, 2015 

Necessary for ReLu and other unbalanced hidden units

Normalization step in forward pass is also taken care of 
during backward pass



Objectives for today:

- Bagging: multiple models help always to improve results!
- Dropout: two interpretations

(i) a practical implementation of bagging
(ii) forced feature sharing

- BackProp: Initialization, nonlinearity, and symmetry
- What are good units for hidden layers? 

problems of vanishing gradient and shift of mean
 solved by Shifted exponential linear (SELU)

- Batch normalization  necessary for ReLu



The end
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