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Regularization and Tricks of the Trade in  deep networks
Objectives for today:
- Bagging
- Dropout
- What are good units for hidden layers? 
- Rectified linear unit (RELU)
- Shifted exponential linear (ELU and SELU)
- BackProp: Initialization 
- Linearity problem, vanishing gradient problem, bias problem
- Batch normalization



Reading for this lecture:

Goodfellow et al.,2016  Deep Learning

- Ch 7.4, 7.8, 7.11 and 7.12,
- Ch. 8.4 

Paper: Klaumbauer, …, Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

Further Reading for this Lecture:

https://arxiv.org/pdf/1706.02515.pdf


review: Artificial Neural Networks for classification

input

output
car dog

Aim of learning:
Adjust connections such
that output is correct
(for each input image,
even new ones)
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https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:
for a= 3: g(3) =0.95
for a=-3: g(-3)=0.05

𝑔𝑔 𝑎𝑎 =
1

1 + 𝑒𝑒−𝑎𝑎

Review. sigmoidal output = logistic function
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output layer
use sigmoidal unit (single-class)
or softmax (exclusive mutlti-class)

Review:  Modern Neural Networks

hidden layer
use rectified linear unit in N+1 dim.

f(x)=x for x>0
f(x)=0 for x<0 or x=0

Why?

Better choices?
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Rectified Linear (RELU) vs. Sigmoidal

f(a)=a for a>0

𝜀𝜀 𝛼𝛼

a
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Exponential Linear vs. Sigmoidal

f(a)=a for a>0

𝜀𝜀 𝛼𝛼

a

+1

-1
f(a)=exp(a)-1 for a<0
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Exponential Linear (ELU) vs. Sigmoidal

Shifted ReLU (SReLU)
Leaky ReLu (LReLU)

Clevert et al.
ICML 2016



What are good models for hidden neurons?

… and why?

Question 1 for this week:
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BackProp
output
activity

input
pattern
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BackProp Calculate output error 
𝛿𝛿
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BackProp update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)



Why does the initatialization or normalization
matter in backprop?

Question 2 for this week:
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Review:  Single-Layer networks/simple perceptron 
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Review: Classification as a geometric problem

x
x

xx

x
xx

o oo
o

o

o o o

x

x
o



Review: The problem of overfitting
Big Multilayer perceptrons are flexible and can be 
trained by BackProp to minimize classification error

… but is flexibility always good? x
x
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Network has to work on future data:

test data base 



What are good models for regularization?

… and why?

Question 3 for this week:

We start with this question!
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Tricks of the Trade in  deep networks
1. Bagging
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1. Bagging Example: simple perceptron 

vector x
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1. Bagging  Example: simple perceptron for noisy data 

vector x
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1. Bagging  Idea: (i) Repeat variants of your model K times
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1. Bagging  Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦1 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 ]
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… x
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1. Bagging  Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦2 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 ]
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separation
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1. Bagging  Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦𝐾𝐾 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 ]
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1. Bagging  Idea: (iii) Average over all K variants

o

o
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Find average (nonlinear)
separation

… 
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1 Generate K different training sets
for k=1,…,K 

pick 𝑃𝑃𝑃 times into your data set with replacement
(your can pick the same data point several times)

2 Initialize K different variants of your model
3 Train model k on data set k up to criterion
4 For a future data point (test set)

for k=1,…,K 
put input x into model k, read out 

5  Report average 

1. Bagging : Algorithm
Given: Training data set { 𝒙𝒙𝜇𝜇, 𝑡𝑡𝜇𝜇 , 1 ≤ 𝜇𝜇 ≤ 𝑃𝑃𝑃 };
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1. Bagging: Theory
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Blackboard: Bagging
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1. Bagging : Theory Blackboard: Bagging
Claim: bagged output has smaller quadratic error

than a typical individual model
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1. Bagging : Result
assumption: the average delta-difference, defined as

1
𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 [δ

𝑘𝑘
𝜇𝜇] = d 

is the same for all K copies of the model.

THEN
- bagged output has smaller quadratic error

than a typical individual model

- if all K individual models are uncorrelated, the gain
in performance scales as 1/K 



1. Bagging: each of the models can be a deep network

… 
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1. Bagging: each of the models sees a different data set

… 
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Goodfellow et al.
2016



Quiz:
[ ] If you want to win a machine learning competition,

it is better to average the prediction on new data
over ten different models, rather than just using the model
that is best on your validation data.

[ ] If you want to win a machine learning competition,
it is better to hand in 10 contributions (using different author names)
rather than a single contribution

[x ]

[x]



Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in  deep networks
1. Bagging
2. Dropout



2. Dropout: suppress 50 percent of hidden units during training 
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2. Dropout: suppress 50 percent of hidden units during training 
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2. Dropout: suppress 50 percent of hidden units during training 
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2. Dropout: suppress 50 percent of hidden units during training 

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1
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2. Dropout: use full network for validation and test

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
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For test:
- full network
- but multiply  output weights 

from hidden units
by 1/2

 Total input to each unit is roughly
same as during training



2. Dropout: two different interpretations

1. An approximate, but practical
implementation of bagging

2. A tool to enforce representation sharing
in the hidden neurons



2. Dropout as approximate bagging

Differences to standard bagging:
- not a fixed data base for each ‘dropout’ configuration
- models not independent: share weights
- output not a ‘sum over model outputs’

Dropout can be seen as a practical application 
of the ideas of bagging to deep networks



2. Dropout as forced feature sharing

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)
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xx x
x

x

xx
x

Feature sharing:
Take 2 times as many neurons,
But make sure they all solve

similar tasks

‘robust’



2. Dropout: two different interpretations

1. An approximate, but practical
implementation of bagging

2. A tool to enforce representation sharing
in the hidden neurons

 useful regularization method,
 simple to implement
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods



3. Other easy regularization methods: dataset augmentation

Goodfellow et al. 2016



3. Other easy regularization methods: early stopping

Go back to weights where validation error was minimal

Example: MNIST data base, see Goodfellow et al. 2016
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Tricks of the Trade in  deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Weight initialization and choice of hidden units



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1
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4. Choice of units 

f(x)=x for x>0

𝜀𝜀 𝛼𝛼

a

-different patterns give different activation
of same neuron (red)

-same input pattern gives different activation
of different neurons (red, blue)



4. Initialization (input layer) Blackboard

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

Claim: square root of N is important

Normalization of data base:
(1) < 𝑥𝑥𝑗𝑗 >= 1

𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 𝑥𝑥𝑗𝑗

𝜇𝜇 =0

Random initialization of weights:
(2)

How should you choose the variance?

< 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛)> = 0



Blackboard: Initialization

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

Claim: square root of N is important



4. Initialization (input layer)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

 Distribution of 𝑥𝑥𝑗𝑗
(1) in layer 1 

Normalization of data base:
(1) < 𝑥𝑥𝑗𝑗 >= 1

𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 𝑥𝑥𝑗𝑗

𝜇𝜇 =0

Random initialization of weights:
(2)

And standard deviation propto

< 𝑤𝑤𝑖𝑖𝑖𝑖
(1)> = 0

1/ 𝑁𝑁

 Distribution of 𝑥𝑥𝑗𝑗
(𝑘𝑘) in layer k
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BackProp
output
activity
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pattern
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BackProp Calculate output error 
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Why does the initatialization or normalization
matter in backprop?



4. Forward pass: Linear and nonlinear processing

input
pattern

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

𝜀𝜀

a

𝛼𝛼−𝛼𝛼 −𝜀𝜀



4. Forward pass: Linear and nonlinear processing
Observations:

if all patterns in all layers touch the linear
regime of g(a), then the whole network is linear

 different patterns should touch different regions
of g(a).

- this is automatically true for ReLu, 
if the mean (across patterns) is  a=0

- this is automatically true for sigmoidals, if
the variance (across patterns) is > 2

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀



https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:
for a= 3: g(3) =0.95
for a=-3: g(-3)=0.05

𝑔𝑔 𝑎𝑎 =
1

1 + 𝑒𝑒−𝑎𝑎

Review. sigmoidal output = logistic function



4. Forward pass: exploit nonlinearities (‘linearity problem’)

To exploit nonlinearities of all units in the network, we must

1. Make sure that the initialization of weights is well chosen
 expectation (across patterns) of the  activation variable 

0 = < 𝑎𝑎𝑗𝑗
𝑛𝑛 >; 𝑎𝑎𝑗𝑗

𝑛𝑛 = ∑𝑘𝑘 𝑤𝑤𝑗𝑗,𝑘𝑘
𝑛𝑛 𝑥𝑥𝑘𝑘

𝑛𝑛−1

 standard deviation of the activation variable 
𝑎𝑎𝑗𝑗
𝑛𝑛 of order 1.

2. Make sure  that weight updates do not shift mean
(and standard deviation) of distribution too much
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2. Dropout
3. Other simple regularization methods
4. Choice of hidden units and initialization: ‘linearity problem’ 
5. Vanishing gradient problem



𝑤𝑤𝑗𝑗,𝑘𝑘
(𝑁𝑁−1)

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(𝑁𝑁)

𝑥𝑥𝑗𝑗
(𝑁𝑁−1)

BackProp 𝛿𝛿 = 0.5

𝑥𝑥𝑗𝑗
(𝑁𝑁−2)



5. Backward pass: Vanishing gradient problem

𝛿𝛿𝑖𝑖
(𝑛𝑛−1) = �

𝑗𝑗

𝑤𝑤𝑗𝑗𝑖𝑖
(𝑛𝑛)𝑔𝑔′(𝑛𝑛−1)(𝑎𝑎𝑖𝑖

(𝑛𝑛−1))𝛿𝛿𝑗𝑗
(𝑛𝑛)

𝛿𝛿𝑖𝑖
(1)~𝑔𝑔′(1)𝑔𝑔′(2) …𝑔𝑔′(𝑁𝑁−1) 𝛿𝛿𝑗𝑗

(𝑁𝑁)

After N layers: each path contributes 

Many  terms to be summed,
but most terms are tiny if N large

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀 𝑤𝑤𝑗𝑗,𝑘𝑘

(𝑁𝑁−1)

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(𝑁𝑁)

𝑥𝑥𝑗𝑗
(𝑁𝑁−1)

𝛿𝛿2
(𝑁𝑁) = 0.5

𝑥𝑥𝑗𝑗
(𝑁𝑁−2)



5. Vanishing gradient problem

Observations:
- for each single path many terms g’
- g’ is small for sigmoidal at −𝛼𝛼 or +𝛼𝛼 (|a|=4)
- g’ vanishes for ReLu if one inactive unit sits in path
- g’=1 for all ReLu on ‘active paths’ 
 for ReLu highly active forward paths coincide

with good gradient transmission on backward path

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀



5. Vanishing gradient problem
Conclusion:

Sucessful forward pass 
 needs to avoid the linearity problem.

(‘exploit nonlinearities’)

Successful backward pass
 needs to avoid the vanishing gradient problem.

A good hidden units must be good for 
forward  and backward pass!  

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀
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1. Bagging
2. Dropout
3. Other simple regularization methods
4. Initialization and choice of hidden units are important.
5. Vanishing gradient problem
6. Weight update: mean input and bias problem



6. Weight update step
update all weights

𝑤𝑤𝑗𝑗,𝑘𝑘
(𝑛𝑛−1)

𝑤𝑤1,𝑗𝑗
(𝑛𝑛)

𝑥𝑥𝑗𝑗
(𝑛𝑛−1)

𝑥𝑥𝑗𝑗
(𝑛𝑛−2)

𝛿𝛿2
(𝑛𝑛−1)Weights onto the same neuron (red)

are all updated with same delta
 if 𝑥𝑥𝑗𝑗

(𝑛𝑛−2) are all positive,
all the weights onto red neuron
increase or decrease together

∆𝑤𝑤𝑖𝑖,𝑗𝑗
(𝑛𝑛−1)= 𝛿𝛿𝑖𝑖

(𝑛𝑛−1)𝑥𝑥𝑗𝑗
(𝑛𝑛−2)



6. Weight update step
update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛−1)= 𝛿𝛿𝑖𝑖
(𝑛𝑛−1)𝑥𝑥𝑗𝑗

(𝑛𝑛−2)

Weights onto the same neuron 
are all updated with same delta
 Problem for ReLu and other units with non-negative x
No problem for tanh
No problem for shifted exponential linear Selu

𝜀𝜀
a

𝛼𝛼−𝛼𝛼−𝜀𝜀

w

𝑤𝑤𝑖𝑖,2
(𝑛𝑛−1)

𝑤𝑤𝑖𝑖,5
(𝑛𝑛−1)



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

Shifted Exponential Linear (SELU) vs. tanh
g(a)= β a for a>0

𝜀𝜀 𝛼𝛼

a

+1

-1
g(a)= γ [exp(a)-1]   for a<0

g(a)= tanh(a) Standard ELU:
γ=β=1



6. Bias problem
update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)

Weights onto the same neuron 
are all updated with same delta
 Problem for ReLu and other units with non-negative x
 The mean changes! (‘bias problem’)
But controlling the mean was important for correct initialization!
 Return of  vanishing gradient and linearity problem! 

Before update

after update
𝑎𝑎𝑖𝑖

(𝑛𝑛) = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1) − 𝜗𝜗

𝑎𝑎𝑖𝑖
(𝑛𝑛) = �

𝑗𝑗

[𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛)+∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)]𝑥𝑥𝑗𝑗
(𝑛𝑛−1) − 𝜗𝜗

same sign for all j
non-negative
( for ReLu etc)



Quiz:
[ ] forward propagation with ReLu leaves only a few active paths
[ ] back propagation with ReLu leaves only a few active paths
[ ] a non-zero weight update step of ReLu shifts most often the mean
[ ] forward propagation with ReLu is always linear on the active paths
[ ] in a ReLu network all patterns are processed with the

same linear filter
[ ] in a sigmoidal network with small weights (and normalized inputs)

all patterns are processed with the same linear filter
[ ] in a sigmoidal network with big weights,  there are active units in the 
forward pass that contribute a vanishing gradient in the backward path
[ ] in a network with SELU,  there are active units in the forward path

which contribute a vanishing gradient in the backward path
[ ] a non-zero the weight update step of SELU shifts the mean

[x]
[x]
[x]
[x]
[  ]

[x]

[x]

[ ]

[ ]



Shifted Exponential Linear vs. tanh



Shifted Exponential Linear (SELU)



6. Conclusion

- initialization is important so as to exploit nonlinearities
- choice of hidden unit is important in initial phase of training
- ReLu has disadvantages in keeping the mean

 batch normalization
- Tanh has problems with vanishing gradient
- Sigmoidal has problems with vanishing gradient and mean
- SELU solves all problems and is currently best choice

Paper: Klaumbauer, …, Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

https://arxiv.org/pdf/1706.02515.pdf
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1. Bagging
2. Dropout
3. Other simple regularization methods
4. Hidden units: linearity problem (exploit nonlinearities)
5. Hidden units: Vanishing gradient problem
6. Weight update: bias problem
7. Batch normalization 



7. Batch normalization: Idea

Normalize input on each input line

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

�𝑦𝑦2
𝜇𝜇�𝑦𝑦1

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(3)

−1 Zoom:

𝑥𝑥𝑗𝑗
(𝑘𝑘)

�𝑥𝑥𝑗𝑗
(𝑘𝑘)

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑗𝑗
𝑘𝑘 ]

𝐸𝐸[𝑥𝑥𝑗𝑗
(𝑘𝑘)]𝑥𝑥𝑗𝑗

(𝑘𝑘) -�𝑥𝑥𝑗𝑗
(𝑘𝑘) =



7. Batch normalization

Ioffe&Szegedi, 2015 

Work with minibatch:
Normalize per

minibatch



7. Batch normalization Ioffe&Szegedi, 2015 

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)



7. Batch normalization Ioffe&Szegedi, 2015 

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)



7. Batch normalization

Ioffe&Szegedi, 2015 



7. Batch normalization Ioffe&Szegedi, 2015 

Necessary for ReLu and other unbalanced hidden units

Normalization step in forward pass is also taken care of 
during backward pass



Objectives for today:

- Bagging: multiple models help always to improve results!
- Dropout: two interpretations

(i) a practical implementation of bagging
(ii) forced feature sharing

- BackProp: Initialization, nonlinearity, and symmetry
- What are good units for hidden layers? 

problems of vanishing gradient and shift of mean
 solved by Shifted exponential linear (SELU)

- Batch normalization  necessary for ReLu



The end
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