Objectives for today:

- Bagging
- Dropout
- What are good units for hidden layers?
- Rectified linear unit (RELU)
- Shifted exponential linear (ELU and SELU)
- BackProp: Initialization
- Linearity problem, vanishing gradient problem, bias problem
- Batch normalization

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch 7.4, 7.8, 7.11 and 7.12,
- Ch. 8.4

Further Reading for this Lecture:

Paper: Klaumbauer, ..., Hochreiter (2017) Self-normalizaing neural networks https://arxiv.org/pdf/1706.02515.pdf

Aim of learning:
Adjust connections such that output is correct (for each input image, even new ones)

本本相

$$
g(a)=\frac{1}{1+e^{-a}}
$$

Rule of thumb： for $a=3$ ：$g(3)=0.95$ for $a=-3$ ：$g(-3)=0.05$

https：／／en．wikipedia．org／wiki／Logistic＿function

Review: Modern Neural Networks

output layer

use sigmoidal unit (single-class) or softmax (exclusive mutlti-class)
hidden layer

Why?

use rectified linear unit in $N+1$ dim.

Rectified Linear (RELU) vs. Sigmoidal

$$
\boldsymbol{x} \in R^{N+1}
$$

Exponential Linear vs. Sigmoidal

$\boldsymbol{x} \in R^{N+1}$

Exponential Linear (ELU) vs. Sigmoidal

Question 1 for this week:

What are good models for hidden neurons?
... and why?

output

0. Initialization of weights

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{align*}
& x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}\\
& \text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
\end{align*}
$$

3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\begin{equation*}
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)} \tag{3}
\end{equation*}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

BackProp

0. Initialization of weights
1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{equation*}
x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}
\end{equation*}
$$

output $\hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}$
3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

Calculate output error

0. Initialization of weights

BackProp

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{align*}
& x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}\\
& \text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
\end{align*}
$$

3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\begin{equation*}
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)} \tag{3}
\end{equation*}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.
update all weights

Question 2 for this week:
Why does the initatialization or normalization matter in backprop?

婌が絍＋＊

$\hat{y}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]$

vector x

$$
d(\boldsymbol{x})=\sum_{k} w_{k} x_{k}-\vartheta=0
$$

Big Multilayer perceptrons are flexible and can be trained by BackProp to minimize classification error
... but is flexibility always good?

Network has to work on future data: test data base

Question 3 for this week:
What are good models for regularization?
... and why?

We start with this question!

1. Bagging

$$
\hat{y}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]
$$

vector x

$$
d(\boldsymbol{x})=\sum_{k} w_{k} x_{k}-\vartheta=0
$$

$$
\hat{y}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]
$$

Find best (approximate) linear separation

$$
\hat{y}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]
$$

Find best (approximate) linear separation

$$
\hat{y}_{1}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]
$$

Find best (approximate) linear separation

$$
\hat{y}_{2}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]
$$

Find best (approximate) linear separation

$$
\hat{y}_{K}=0.5\left[1+\tanh \left(\sum_{k} w_{k} x_{k}-\vartheta\right)\right]
$$

Find best (approximate) linear separation

co

$$
\hat{y}_{b a g}=\frac{1}{K} \sum_{k=1}^{K} \widehat{y}_{k}
$$

Find average (nonlinear) separation

Given: Training data set $\left\{\left(x^{\mu}, t^{\mu}\right), 1 \leq \mu \leq P 1 \quad\right.$ \};
1 Generate K different training sets
for $k=1, \ldots, K$
pick $P 1$ times into your data set with replacement
(your can pick the same data point several times)
2 Initialize K different variants of your model
3 Train model k on data set k up to criterion
4 For a future data point (test set)
for $k=1, \ldots, K$
put input x into model k, read out \hat{y}_{k}
5 Report average $\hat{y}_{\text {bag }}=\frac{1}{K} \sum_{k=1}^{K} \widehat{y}_{k}$

Blackboard: Bagging

Model k

$$
\hat{y}_{k}=0.5\left[1+\tanh \left(\sum_{j} w_{j} x_{j}-\vartheta\right)\right]
$$

Bagged output
$\widehat{\boldsymbol{y}}_{\text {bag }}=\frac{1}{K} \sum_{k=1}^{K} \widehat{y}_{k}$

$$
\delta_{k}^{\mu}=t_{k}^{\mu}-\hat{y}_{k}^{\mu}=\sigma(a)
$$

Claim: bagged output has smaller quadratic error than a typical individual model
bagged output $\widehat{y}_{\text {bag }}=\frac{1}{K} \sum_{k=1}^{K} \widehat{y}_{k}$
assumption: the average delta-difference, defined as

$$
\frac{1}{P} \sum_{\mu=1}^{P}\left[\delta_{k}^{\mu}\right]=\mathrm{d}
$$

is the same for all K copies of the model.

THEN

- bagged output has smaller quadratic error than a typical individual model
- if all K individual models are uncorrelated, the gain in performance scales as $1 / K$

$$
\hat{y}=\frac{1}{K} \sum_{k=1}^{K} \hat{y}_{k}
$$

$$
\hat{y}=\frac{1}{K} \sum_{k=1}^{K} \widehat{y}_{k}
$$

(9) (6) (8)
(8) (6) (8) $\rightarrow(9 \rightarrow 0$
(9) (9) (8) \rightarrow (0)

Figure 7.5

Goodfellow et al.

* $\boldsymbol{x}_{1} \boldsymbol{1}+$

[] If you want to win a machine learning competition, it is better to average the prediction on new data over ten different models, rather than just using the model that is best on your validation data.
[] If you want to win a machine learning competition, it is better to hand in 10 contributions (using different author names) rather than a single contribution

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Bagging
2. Dropout

-

$$
\boldsymbol{x} \in R^{N+1}
$$

$\boldsymbol{x} \in R^{N+1}$

$$
\boldsymbol{x} \in R^{N+1}
$$

$\boldsymbol{x} \in R^{N+1}$

$$
\boldsymbol{x} \in R^{N+1}
$$

For test:

- full network
- but multiply output weights from hidden units

$$
\text { by } 1 / 2
$$

\rightarrow Total input to each unit is roughly same as during training

1. An approximate, but practical implementation of bagging
2. A tool to enforce representation sharing in the hidden neurons

Dropout can be seen as a practical application of the ideas of bagging to deep networks

Differences to standard bagging:

- not a fixed data base for each 'dropout' configuration
- models not independent: share weights
- output not a 'sum over model outputs'

Feature sharing:

$\boldsymbol{x} \in R^{N+1}$

Take 2 times as many neurons, But make sure they all solve similar tasks
'robust'

1. An approximate, but practical implementation of bagging
2. A tool to enforce representation sharing in the hidden neurons
\rightarrow useful regularization method,
\rightarrow simple to implement

Dataset Augmentation

Goodfellow et al. 2016

Go back to weights where validation error was minimal

Example: MNIST data base, see Goodfellow et al. 2016

1. Bagging
2. Dropout
3. Other simple regularization methods
4. Weight initialization and choice of hidden units

4. Choice of units

-different patterns give different activation of same neuron (red)
-same input pattern gives different activation of different neurons (red, blue) $\quad \boldsymbol{x} \in R^{N+1}$

Normalization of data base:
(1) $\left\langle x_{j}\right\rangle=\frac{1}{P} \sum_{\mu=1}^{P} x_{j}^{\mu}=0$

Random initialization of weights:
(2) $\left\langle w_{i j}^{(n)}\right\rangle=0$

$$
\boldsymbol{x} \in R^{N+1}
$$

How should you choose the variance?

Claim: square root of N is important

Blackboard: Initialization

Claim: square root of N is important

Normalization of data base:
(1) $\left\langle x_{j}\right\rangle=\frac{1}{P} \sum_{\mu=1}^{P} x_{j}^{\mu}=0$

Random initialization of weights:
(2) $\left\langle w_{i j}^{(1)}\right\rangle=0$

And standard deviation propto $1 / \sqrt{N}$

\rightarrow Distribution of $x_{j}^{(1)}$ in layer 1
\rightarrow Distribution of $x_{j}^{(k)}$ in layer \mathbf{k}

output

0. Initialization of weights

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{align*}
& x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}\\
& \text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
\end{align*}
$$

3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\begin{equation*}
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)} \tag{3}
\end{equation*}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

BackProp

0. Initialization of weights
1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{equation*}
x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}
\end{equation*}
$$

output $\hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}$
3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

Calculate output error

0. Initialization of weights

BackProp

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{align*}
& x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}\\
& \text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
\end{align*}
$$

3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\begin{equation*}
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)} \tag{3}
\end{equation*}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.
update all weights

Why does the initatialization or normalization matter in backprop?

$$
\boldsymbol{x} \in R^{N+1} \quad \text { input } \quad \text { pattern }
$$

Observations:
if all patterns in all layers touch the linear
regime of $g(a)$, then the whole network is linear
\rightarrow different patterns should touch different regions of $g(a)$.

- this is automatically true for ReLu, if the mean (across patterns) is $a=0$
- this is automatically true for sigmoidals, if the variance (across patterns) is >2

$$
g(a)=\frac{1}{1+e^{-a}}
$$

Rule of thumb: for $a=3$: $g(3)=0.95$ for $a=-3$: $g(-3)=0.05$

https://en.wikipedia.org/wiki/Logistic_function

To exploit nonlinearities of all units in the network, we must

1. Make sure that the initialization of weights is well chosen
\rightarrow expectation (across patterns) of the activation variable

$$
0=\left\langle a_{j}^{(n)}\right\rangle ; a_{j}^{(n)}=\sum_{k} w_{j, k}^{(n)} x_{k}^{(n-1)}
$$

\rightarrow standard deviation of the activation variable
$a_{j}^{(n)}$ of order 1.
2. Make sure that weight updates do not shift mean (and standard deviation) of distribution too much

1. Bagging

2. Dropout
3. Other simple regularization methods
4. Choice of hidden units and initialization: 'linearity problem'
5. Vanishing gradient problem
6. Initialization of weights

BackProp

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{align*}
& x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}\\
& \text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
\end{align*}
$$

3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\delta_{j}^{(n-1)}=g^{(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.
$\delta=0.5$

$\delta_{i}^{(n-1)}=\sum_{i} w_{i}^{(n)^{(n)}} g^{(n-1)}\left(a_{i}^{(n-1)}\right) \delta_{i}^{(n)}$

After N layers: each path contributes

$$
\delta_{i}^{(1)} \sim g^{\prime(1)} g^{\prime(2)} \ldots g^{\prime(N-1)} \delta_{j}^{(N)}
$$

Many terms to be summed, but most terms are tiny if N large

Observations:

- for each single path many terms g'
-g ' is small for sigmoidal at $-\alpha$ or $+\alpha \quad(|a|=4)$
- g' vanishes for ReLu if one inactive unit sits in path
- g'=1 for all ReLu on 'active paths'
\rightarrow for ReLu highly active forward paths coincide with good gradient transmission on backward path

Conclusion:

Sucessful forward pass

\rightarrow needs to avoid the linearity problem.

('exploit nonlinearities')

Successful backward pass
\rightarrow needs to avoid the vanishing gradient problem.
A good hidden units must be good for forward and backward pass!

1. Bagging

2. Dropout
3. Other simple regularization methods
4. Initialization and choice of hidden units are important.
5. Vanishing gradient problem
6. Weight update: mean input and bias problem
update all weights

$$
\Delta w_{i, j}^{(n-1)}=\delta_{i}^{(n-1)} x_{j}^{(n-2)}
$$

Weights onto the same neuron (red) are all updated with same delta
\rightarrow if $x_{j}^{(n-2)}$ are all positive, all the weights onto red neuron increase or decrease together

update all weights

$$
\Delta w_{i, j}^{(n-1)}=\delta_{i}^{(n-1)} x_{j}^{(n-2)}
$$

Weights onto the same neuron are all updated with same delta
\rightarrow Problem for ReLu and other units with non-negative x
\rightarrow No problem for tanh
\rightarrow No problem for shifted exponential linear Selu

Shifted Exponential Linear (SELU) vs. tanh

Before update
update all weights

$$
\Delta w_{i, j}^{(n)}=\delta_{i}^{(n)} x_{j}^{(n-1)}
$$

$$
a_{i}^{(n)}=\sum_{j} w_{i j}^{(n)} x_{j}^{(n-1)}-\vartheta
$$

after update

$$
a_{i}^{(n)}=\sum_{j}\left[w_{i j}^{(n)}+\Delta w_{i, j}^{(n)}\right] x_{j}^{(n-1)}-\vartheta
$$

Weights onto the same neuron are all updated with same delta
\rightarrow Problem for ReLu and other units with non-negative x
\rightarrow The mean changes! ('bias problem')
\rightarrow But controlling the mean was important for correct initialization!
\rightarrow Return of vanishing gradient and linearity problem!

*

[] forward propagation with ReLu leaves only a few active paths
[] back propagation with ReLu leaves only a few active paths
[] a non-zero weight update step of ReLu shifts most often the mean
[] forward propagation with ReLu is always linear on the active paths
[] in a ReLu network all patterns are processed with the same linear filter
[] in a sigmoidal network with small weights (and normalized inputs) all patterns are processed with the same linear filter
[] in a sigmoidal network with big weights, there are active units in the forward pass that contribute a vanishing gradient in the backward path [] in a network with SELU, there are active units in the forward path which contribute a vanishing gradient in the backward path
[] a non-zero the weight update step of SELU shifts the mean

Shifted Exponential Linear vs. tanh

Shifted Exponential Linear (SELU)

- initialization is important so as to exploit nonlinearities
- choice of hidden unit is important in initial phase of training
- ReLu has disadvantages in keeping the mean \rightarrow batch normalization
- Tanh has problems with vanishing gradient
- Sigmoidal has problems with vanishing gradient and mean
- SELU solves all problems and is currently best choice

Paper: Klaumbauer, ..., Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

1. Bagging

2. Dropout
3. Other simple regularization methods
4. Hidden units: linearity problem (exploit nonlinearities)
5. Hidden units: Vanishing gradient problem
6. Weight update: bias problem
7. Batch normalization

Ioffe\&Szegedi, 2015

Work with minibatch:
Normalize per minibatch

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

5: end for
6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters Θ $\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$

Ioffe\&Szegedi, 2015

7: $N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}} / /$ Inference BN network with froze // parameters
8: for $k=1 \ldots K$ do
9: // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc
10: Process multiple training mini-batches \mathcal{B}, each size m, and average over them:

$$
\begin{aligned}
\mathrm{E}[x] & \leftarrow \mathrm{E}_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right] \\
\operatorname{Var}[x] & \leftarrow \frac{m}{m-1} \mathrm{E}_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]
\end{aligned}
$$

1: \quad In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y=\mathrm{BN}_{\gamma, \beta}(x) \mathrm{w}$

$$
y=\frac{\gamma}{\sqrt{\operatorname{Var}[x]+\epsilon}} \cdot x+\left(\beta-\frac{\gamma \mathrm{E}[x]}{\sqrt{\operatorname{Var}[x]+\epsilon}}\right)
$$

end for
Algorithm 2: Training a Batch-Normalized Network

4: Modify each layer in $N_{\mathrm{BN}}^{\mathrm{tr}}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
end for

$x+2=\%$ ITD

Necessary for ReLu and other unbalanced hidden units
Normalization step in forward pass is also taken care of during backward pass

Objectives for today:

- Bagging: multiple models help always to improve results!
- Dropout: two interpretations
(i) a practical implementation of bagging
(ii) forced feature sharing
- BackProp: Initialization, nonlinearity, and symmetry
- What are good units for hidden layers? problems of vanishing gradient and shift of mean
\rightarrow solved by Shifted exponential linear (SELU)
- Batch normalization \rightarrow necessary for ReLu

The end

