
Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Regularization and Tricks of the Trade in deep networks
Objectives for today:
- Bagging
- Dropout
- What are good units for hidden layers?
- Rectified linear unit (RELU)
- Shifted exponential linear (ELU and SELU)
- BackProp: Initialization
- Linearity problem, vanishing gradient problem, bias problem
- Batch normalization

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch 7.4, 7.8, 7.11 and 7.12,
- Ch. 8.4

Paper: Klaumbauer, …, Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

Further Reading for this Lecture:

https://arxiv.org/pdf/1706.02515.pdf

review: Artificial Neural Networks for classification

input

output
car dog

Aim of learning:
Adjust connections such
that output is correct
(for each input image,
even new ones)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝒙𝒙𝝁𝝁 ∈ 𝑅𝑅𝑁𝑁+1

Review: Multilayer Perceptron

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑎𝑎

1

0

𝑔𝑔(𝑎𝑎)

https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:
for a= 3: g(3) =0.95
for a=-3: g(-3)=0.05

𝑔𝑔 𝑎𝑎 =
1

1 + 𝑒𝑒−𝑎𝑎

Review. sigmoidal output = logistic function

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

�𝑦𝑦1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

output layer
use sigmoidal unit (single-class)
or softmax (exclusive mutlti-class)

Review: Modern Neural Networks

hidden layer
use rectified linear unit in N+1 dim.

f(x)=x for x>0
f(x)=0 for x<0 or x=0

Why?

Better choices?

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

Rectified Linear (RELU) vs. Sigmoidal

f(a)=a for a>0

𝜀𝜀 𝛼𝛼

a

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

Exponential Linear vs. Sigmoidal

f(a)=a for a>0

𝜀𝜀 𝛼𝛼

a

+1

-1
f(a)=exp(a)-1 for a<0

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

Exponential Linear (ELU) vs. Sigmoidal

Shifted ReLU (SReLU)
Leaky ReLu (LReLU)

Clevert et al.
ICML 2016

What are good models for hidden neurons?

… and why?

Question 1 for this week:

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

BackProp
output
activity

input
pattern

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

BackProp Calculate output error
𝛿𝛿

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

BackProp update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)

Why does the initatialization or normalization
matter in backprop?

Question 2 for this week:

x
x

xx
xxx

oooo o
o

o

o
x

x

o
Simple perceptron
imposes a linear

separation

Review: Single-Layer networks/simple perceptron

vector x

𝑤𝑤𝑖𝑖𝑖𝑖

𝑥𝑥𝑘𝑘

�𝑦𝑦 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

𝑑𝑑 𝒙𝒙 = �
𝑘𝑘

𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 = 0𝑎𝑎

1

0

𝑔𝑔(𝑎𝑎)

Review: Classification as a geometric problem

x
x

xx

x
xx

o oo
o

o

o o o

x

x
o

Review: The problem of overfitting
Big Multilayer perceptrons are flexible and can be
trained by BackProp to minimize classification error

… but is flexibility always good? x
x

xx

x
x

x

o oo
o

o

o o o

x

x
o

x

x

x

o

o

o

x x
x

x

o
Network has to work on future data:

test data base

What are good models for regularization?

… and why?

Question 3 for this week:

We start with this question!

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging

x
x

xx
xxx

oooo o
o

o

o
x

x

o
Simple perceptron
imposes a linear

separation

1. Bagging Example: simple perceptron

vector x

𝑤𝑤𝑖𝑖𝑖𝑖

𝑥𝑥𝑘𝑘

�𝑦𝑦 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

𝑑𝑑 𝒙𝒙 = �
𝑘𝑘

𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗 = 0𝑎𝑎

1

0

𝑔𝑔(𝑎𝑎)

x
x

xx
xxx

oooo o
o

o

o
x

x

o

1. Bagging Example: simple perceptron for noisy data

vector x

𝑤𝑤𝑖𝑖𝑖𝑖

𝑥𝑥𝑘𝑘

�𝑦𝑦 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

o

o
x

x

Find best (approximate) linear
separation𝑎𝑎

1

0

𝑔𝑔(𝑎𝑎)

x
x

xx
xxx

oooo o
o

o

o
x

x

o

1. Bagging Idea: (i) Repeat variants of your model K times

�𝑦𝑦 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

o

o
x

x

Find best (approximate) linear
separation

…

x
x

x
xxx

x
oooo o

o
o

o
x

x

o

1. Bagging Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦1 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

o

o

x

x

Find best (approximate) linear
separation

… x

x
x

x
x

x

xx

oooo o
o

o

o
x

x

o

1. Bagging Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦2 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

oo

x

x

Find best (approximate) linear
separation

…

x
x

xx
xxx

oooo o
o

o

o
x

x

o

1. Bagging Idea: (ii) Each Variant sees different subsets of data
�𝑦𝑦𝐾𝐾 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑘𝑘𝑤𝑤𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝜗𝜗]

o

ox

x

Find best (approximate) linear
separation

…

x
x

xx
xxx

oooo o
o

o

o
x

x

o

1. Bagging Idea: (iii) Average over all K variants

o

o
x

x

Find average (nonlinear)
separation

…

1/K
1/K

1/K
+

�𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 =
1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑘𝑘

1 Generate K different training sets
for k=1,…,K

pick 𝑃𝑃𝑃 times into your data set with replacement
(your can pick the same data point several times)

2 Initialize K different variants of your model
3 Train model k on data set k up to criterion
4 For a future data point (test set)

for k=1,…,K
put input x into model k, read out

5 Report average

1. Bagging : Algorithm
Given: Training data set { 𝒙𝒙𝜇𝜇, 𝑡𝑡𝜇𝜇 , 1 ≤ 𝜇𝜇 ≤ 𝑃𝑃𝑃 };

�𝑦𝑦𝑘𝑘

�𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 =
1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑘𝑘

1. Bagging: Theory

�𝑦𝑦𝑘𝑘 = 0.5[1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑗𝑗 𝑤𝑤𝑗𝑗 𝑥𝑥𝑗𝑗 − 𝜗𝜗]
Model k

…

δ𝑘𝑘
𝜇𝜇= 𝑡𝑡𝑘𝑘

𝜇𝜇 − �𝑦𝑦𝑘𝑘
𝜇𝜇= σ(a)

x
x

x
x

x
xx

o oo
o o
o

o

o
x

x

o

o

o
x

xa

Blackboard: Bagging

1
𝑔𝑔(𝑎𝑎)

�𝒚𝒚𝐛𝐛𝐛𝐛𝐛𝐛 =
1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑘𝑘

Bagged output

1. Bagging : Theory Blackboard: Bagging
Claim: bagged output has smaller quadratic error

than a typical individual model

�𝒚𝒚𝐛𝐛𝐛𝐛𝐛𝐛 =
1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑘𝑘bagged output

1. Bagging : Result
assumption: the average delta-difference, defined as

1
𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 [δ

𝑘𝑘
𝜇𝜇] = d

is the same for all K copies of the model.

THEN
- bagged output has smaller quadratic error

than a typical individual model

- if all K individual models are uncorrelated, the gain
in performance scales as 1/K

1. Bagging: each of the models can be a deep network

…

1/K
1/K

1/K
+

�𝑦𝑦 =
1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑘𝑘

1. Bagging: each of the models sees a different data set

…

1/K
1/K

1/K
+

�𝑦𝑦 =
1
𝐾𝐾�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑘𝑘

Goodfellow et al.
2016

Quiz:
[] If you want to win a machine learning competition,

it is better to average the prediction on new data
over ten different models, rather than just using the model
that is best on your validation data.

[] If you want to win a machine learning competition,
it is better to hand in 10 contributions (using different author names)
rather than a single contribution

[x]

[x]

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging
2. Dropout

2. Dropout: suppress 50 percent of hidden units during training

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

2. Dropout: suppress 50 percent of hidden units during training

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

2. Dropout: suppress 50 percent of hidden units during training

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

2. Dropout: suppress 50 percent of hidden units during training

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

2. Dropout: use full network for validation and test

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

For test:
- full network
- but multiply output weights

from hidden units
by 1/2

 Total input to each unit is roughly
same as during training

2. Dropout: two different interpretations

1. An approximate, but practical
implementation of bagging

2. A tool to enforce representation sharing
in the hidden neurons

2. Dropout as approximate bagging

Differences to standard bagging:
- not a fixed data base for each ‘dropout’ configuration
- models not independent: share weights
- output not a ‘sum over model outputs’

Dropout can be seen as a practical application
of the ideas of bagging to deep networks

2. Dropout as forced feature sharing

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

xx x
x

x

xx
x

Feature sharing:
Take 2 times as many neurons,
But make sure they all solve

similar tasks

‘robust’

2. Dropout: two different interpretations

1. An approximate, but practical
implementation of bagging

2. A tool to enforce representation sharing
in the hidden neurons

 useful regularization method,
 simple to implement

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods

3. Other easy regularization methods: dataset augmentation

Goodfellow et al. 2016

3. Other easy regularization methods: early stopping

Go back to weights where validation error was minimal

Example: MNIST data base, see Goodfellow et al. 2016

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Weight initialization and choice of hidden units

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

4. Choice of units

f(x)=x for x>0

𝜀𝜀 𝛼𝛼

a

-different patterns give different activation
of same neuron (red)

-same input pattern gives different activation
of different neurons (red, blue)

4. Initialization (input layer) Blackboard

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

Claim: square root of N is important

Normalization of data base:
(1) < 𝑥𝑥𝑗𝑗 >= 1

𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 𝑥𝑥𝑗𝑗

𝜇𝜇 =0

Random initialization of weights:
(2)

How should you choose the variance?

< 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛)> = 0

Blackboard: Initialization

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

Claim: square root of N is important

4. Initialization (input layer)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

 Distribution of 𝑥𝑥𝑗𝑗
(1) in layer 1

Normalization of data base:
(1) < 𝑥𝑥𝑗𝑗 >= 1

𝑃𝑃
∑𝜇𝜇=1𝑃𝑃 𝑥𝑥𝑗𝑗

𝜇𝜇 =0

Random initialization of weights:
(2)

And standard deviation propto

< 𝑤𝑤𝑖𝑖𝑖𝑖
(1)> = 0

1/ 𝑁𝑁

 Distribution of 𝑥𝑥𝑗𝑗
(𝑘𝑘) in layer k

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

BackProp
output
activity

input
pattern

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

BackProp Calculate output error
𝛿𝛿

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

BackProp update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)

Why does the initatialization or normalization
matter in backprop?

4. Forward pass: Linear and nonlinear processing

input
pattern

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

𝜀𝜀

a

𝛼𝛼−𝛼𝛼 −𝜀𝜀

4. Forward pass: Linear and nonlinear processing
Observations:

if all patterns in all layers touch the linear
regime of g(a), then the whole network is linear

 different patterns should touch different regions
of g(a).

- this is automatically true for ReLu,
if the mean (across patterns) is a=0

- this is automatically true for sigmoidals, if
the variance (across patterns) is > 2

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀

https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:
for a= 3: g(3) =0.95
for a=-3: g(-3)=0.05

𝑔𝑔 𝑎𝑎 =
1

1 + 𝑒𝑒−𝑎𝑎

Review. sigmoidal output = logistic function

4. Forward pass: exploit nonlinearities (‘linearity problem’)

To exploit nonlinearities of all units in the network, we must

1. Make sure that the initialization of weights is well chosen
 expectation (across patterns) of the activation variable

0 = < 𝑎𝑎𝑗𝑗
𝑛𝑛 >; 𝑎𝑎𝑗𝑗

𝑛𝑛 = ∑𝑘𝑘 𝑤𝑤𝑗𝑗,𝑘𝑘
𝑛𝑛 𝑥𝑥𝑘𝑘

𝑛𝑛−1

 standard deviation of the activation variable
𝑎𝑎𝑗𝑗
𝑛𝑛 of order 1.

2. Make sure that weight updates do not shift mean
(and standard deviation) of distribution too much

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Choice of hidden units and initialization: ‘linearity problem’
5. Vanishing gradient problem

𝑤𝑤𝑗𝑗,𝑘𝑘
(𝑁𝑁−1)

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(𝑁𝑁)

𝑥𝑥𝑗𝑗
(𝑁𝑁−1)

BackProp 𝛿𝛿 = 0.5

𝑥𝑥𝑗𝑗
(𝑁𝑁−2)

5. Backward pass: Vanishing gradient problem

𝛿𝛿𝑖𝑖
(𝑛𝑛−1) = �

𝑗𝑗

𝑤𝑤𝑗𝑗𝑖𝑖
(𝑛𝑛)𝑔𝑔′(𝑛𝑛−1)(𝑎𝑎𝑖𝑖

(𝑛𝑛−1))𝛿𝛿𝑗𝑗
(𝑛𝑛)

𝛿𝛿𝑖𝑖
(1)~𝑔𝑔′(1)𝑔𝑔′(2) …𝑔𝑔′(𝑁𝑁−1) 𝛿𝛿𝑗𝑗

(𝑁𝑁)

After N layers: each path contributes

Many terms to be summed,
but most terms are tiny if N large

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀 𝑤𝑤𝑗𝑗,𝑘𝑘

(𝑁𝑁−1)

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(𝑁𝑁)

𝑥𝑥𝑗𝑗
(𝑁𝑁−1)

𝛿𝛿2
(𝑁𝑁) = 0.5

𝑥𝑥𝑗𝑗
(𝑁𝑁−2)

5. Vanishing gradient problem

Observations:
- for each single path many terms g’
- g’ is small for sigmoidal at −𝛼𝛼 or +𝛼𝛼 (|a|=4)
- g’ vanishes for ReLu if one inactive unit sits in path
- g’=1 for all ReLu on ‘active paths’
 for ReLu highly active forward paths coincide

with good gradient transmission on backward path

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀

5. Vanishing gradient problem
Conclusion:

Sucessful forward pass
 needs to avoid the linearity problem.

(‘exploit nonlinearities’)

Successful backward pass
 needs to avoid the vanishing gradient problem.

A good hidden units must be good for
forward and backward pass!

𝜀𝜀

a
𝛼𝛼−𝛼𝛼−𝜀𝜀

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Initialization and choice of hidden units are important.
5. Vanishing gradient problem
6. Weight update: mean input and bias problem

6. Weight update step
update all weights

𝑤𝑤𝑗𝑗,𝑘𝑘
(𝑛𝑛−1)

𝑤𝑤1,𝑗𝑗
(𝑛𝑛)

𝑥𝑥𝑗𝑗
(𝑛𝑛−1)

𝑥𝑥𝑗𝑗
(𝑛𝑛−2)

𝛿𝛿2
(𝑛𝑛−1)Weights onto the same neuron (red)

are all updated with same delta
 if 𝑥𝑥𝑗𝑗

(𝑛𝑛−2) are all positive,
all the weights onto red neuron
increase or decrease together

∆𝑤𝑤𝑖𝑖,𝑗𝑗
(𝑛𝑛−1)= 𝛿𝛿𝑖𝑖

(𝑛𝑛−1)𝑥𝑥𝑗𝑗
(𝑛𝑛−2)

6. Weight update step
update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛−1)= 𝛿𝛿𝑖𝑖
(𝑛𝑛−1)𝑥𝑥𝑗𝑗

(𝑛𝑛−2)

Weights onto the same neuron
are all updated with same delta
 Problem for ReLu and other units with non-negative x
No problem for tanh
No problem for shifted exponential linear Selu

𝜀𝜀
a

𝛼𝛼−𝛼𝛼−𝜀𝜀

w

𝑤𝑤𝑖𝑖,2
(𝑛𝑛−1)

𝑤𝑤𝑖𝑖,5
(𝑛𝑛−1)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

Shifted Exponential Linear (SELU) vs. tanh
g(a)= β a for a>0

𝜀𝜀 𝛼𝛼

a

+1

-1
g(a)= γ [exp(a)-1] for a<0

g(a)= tanh(a) Standard ELU:
γ=β=1

6. Bias problem
update all weights
∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)= 𝛿𝛿𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1)

Weights onto the same neuron
are all updated with same delta
 Problem for ReLu and other units with non-negative x
 The mean changes! (‘bias problem’)
But controlling the mean was important for correct initialization!
 Return of vanishing gradient and linearity problem!

Before update

after update
𝑎𝑎𝑖𝑖

(𝑛𝑛) = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛)𝑥𝑥𝑗𝑗

(𝑛𝑛−1) − 𝜗𝜗

𝑎𝑎𝑖𝑖
(𝑛𝑛) = �

𝑗𝑗

[𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛)+∆𝑤𝑤𝑖𝑖,𝑗𝑗

(𝑛𝑛)]𝑥𝑥𝑗𝑗
(𝑛𝑛−1) − 𝜗𝜗

same sign for all j
non-negative
(for ReLu etc)

Quiz:
[] forward propagation with ReLu leaves only a few active paths
[] back propagation with ReLu leaves only a few active paths
[] a non-zero weight update step of ReLu shifts most often the mean
[] forward propagation with ReLu is always linear on the active paths
[] in a ReLu network all patterns are processed with the

same linear filter
[] in a sigmoidal network with small weights (and normalized inputs)

all patterns are processed with the same linear filter
[] in a sigmoidal network with big weights, there are active units in the
forward pass that contribute a vanishing gradient in the backward path
[] in a network with SELU, there are active units in the forward path

which contribute a vanishing gradient in the backward path
[] a non-zero the weight update step of SELU shifts the mean

[x]
[x]
[x]
[x]
[]

[x]

[x]

[]

[]

Shifted Exponential Linear vs. tanh

Shifted Exponential Linear (SELU)

6. Conclusion

- initialization is important so as to exploit nonlinearities
- choice of hidden unit is important in initial phase of training
- ReLu has disadvantages in keeping the mean

 batch normalization
- Tanh has problems with vanishing gradient
- Sigmoidal has problems with vanishing gradient and mean
- SELU solves all problems and is currently best choice

Paper: Klaumbauer, …, Hochreiter (2017)
Self-normalizaing neural networks
https://arxiv.org/pdf/1706.02515.pdf

https://arxiv.org/pdf/1706.02515.pdf

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks
1. Bagging
2. Dropout
3. Other simple regularization methods
4. Hidden units: linearity problem (exploit nonlinearities)
5. Hidden units: Vanishing gradient problem
6. Weight update: bias problem
7. Batch normalization

7. Batch normalization: Idea

Normalize input on each input line

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

�𝑦𝑦2
𝜇𝜇�𝑦𝑦1

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(3)

−1 Zoom:

𝑥𝑥𝑗𝑗
(𝑘𝑘)

�𝑥𝑥𝑗𝑗
(𝑘𝑘)

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑗𝑗
𝑘𝑘]

𝐸𝐸[𝑥𝑥𝑗𝑗
(𝑘𝑘)]𝑥𝑥𝑗𝑗

(𝑘𝑘) -�𝑥𝑥𝑗𝑗
(𝑘𝑘) =

7. Batch normalization

Ioffe&Szegedi, 2015

Work with minibatch:
Normalize per

minibatch

7. Batch normalization Ioffe&Szegedi, 2015

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

7. Batch normalization Ioffe&Szegedi, 2015

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝑥𝑥𝑘𝑘
𝜇𝜇

−1

−1

�𝑦𝑦1
𝜇𝜇 �𝑦𝑦2

𝜇𝜇

𝑤𝑤1,𝑗𝑗
(2)

𝑥𝑥𝑗𝑗
(1)

7. Batch normalization

Ioffe&Szegedi, 2015

7. Batch normalization Ioffe&Szegedi, 2015

Necessary for ReLu and other unbalanced hidden units

Normalization step in forward pass is also taken care of
during backward pass

Objectives for today:

- Bagging: multiple models help always to improve results!
- Dropout: two interpretations

(i) a practical implementation of bagging
(ii) forced feature sharing

- BackProp: Initialization, nonlinearity, and symmetry
- What are good units for hidden layers?

problems of vanishing gradient and shift of mean
 solved by Shifted exponential linear (SELU)

- Batch normalization  necessary for ReLu

The end

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 5
	Slide Number 7
	Slide Number 9
	Slide Number 11
	Slide Number 13
	Slide Number 15
	Slide Number 17
	Slide Number 19
	Slide Number 21
	Slide Number 23
	Slide Number 25
	Slide Number 27
	Slide Number 29
	Slide Number 31
	Slide Number 33
	Slide Number 35
	Slide Number 37
	Slide Number 39
	Slide Number 41
	Slide Number 43
	Slide Number 45
	Slide Number 47
	Slide Number 49
	Slide Number 51
	Slide Number 53
	Slide Number 55
	Slide Number 57
	Slide Number 59
	Slide Number 61
	Slide Number 63
	Slide Number 65
	Slide Number 67
	Slide Number 69
	Slide Number 71
	Slide Number 73
	Slide Number 75
	Slide Number 77
	Slide Number 79
	Slide Number 81
	Slide Number 83
	Slide Number 85
	Slide Number 87
	Slide Number 89
	Slide Number 91
	Slide Number 93
	Slide Number 95
	Slide Number 97
	Slide Number 99
	Slide Number 101
	Slide Number 103
	Slide Number 105
	Slide Number 107
	Slide Number 109
	Slide Number 111
	Slide Number 113
	Slide Number 115
	Slide Number 117
	Slide Number 119
	Slide Number 121
	Slide Number 123
	Slide Number 125
	Slide Number 127
	Slide Number 129
	Slide Number 131
	Slide Number 133
	Slide Number 135
	Slide Number 137
	Slide Number 139
	Slide Number 141
	Slide Number 143
	Slide Number 145
	Slide Number 147
	Slide Number 149
	Slide Number 151
	Slide Number 153
	Slide Number 155
	Slide Number 157
	Slide Number 158
	Slide Number 159

