
Announcements

• Change of time for exercises session

• Thursdays from 16h00 to 17h00

• Room CM1 121

• Feedback

– Reminder: 3 ETCS course, 2nd-3rd year bachelor,
only theory (this semester)

Recap – Week 4

Willy Zwaenepoel

March 14, 2018

Multithreading vs Multiprocessing

• Threads share code, heap and globals

• Threads have separate stack, PC, register

• Processes do not share anything

Two Processes

code

heap

stack

PC

registers

globals

code

heap

stack

PC

registers

globals

Two Threads in a Process

stack

PC

registers

code

heap

stack

PC

registers

globals

Multithreading

• Deriving multithreaded from single-threaded

– Divide work

– Locate shared data and accesses to it

– Synchronize with one big lock

– Optimize with fine-grain locks and privatization

– Sometimes need to introduce shared data

• Pthreads

Week 5
Memory Management: Virtual Memory

Pamela Delgado

March 20, 2019

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book
- Silbershatz book

Key Concepts

• Virtual and physical address spaces

• Mapping between virtual and physical address

• Different mapping methods:

– Base and bounds

– Segmentation

– Paging

– Segmented paging

• Sharing, protection, memory allocation

Program to process

disk

memory

CPU

code
static data

process

program

code
static data

heap

stack

Process address space

code
static data

heap

stack

process

static

dynamic

0KB

1KB
2KB

15KB
16KB

Ever seen a memory address?

• Pointer address?
int main (){

printf((void *) main)

int x = 1

printf(&x)

printf((void *) malloc(1))

}

• Some hexadecimal

Reality: virtual address

code
static data

heap

stack

process x

memory

Process 1 code, data …

Process 3 code, data, …

Process 2 code, data, …

OS code, data…
0KB

1KB
2KB

15KB
16KB

0KB

8KB

32KB

45KB

70KB
75KB

Questions

• What if process does not fit in memory?

• Deal with fragmentation?

• Process splitted in different parts in memory?

• How much memory to give to a program in
the first place?

OS abstraction: memory

• Goals

1. Main memory allocation

2. Protection

• Isolation from other programs

3. Transparency*

• User should not be aware of virtualization

4. Efficiency

• Space and time

Simplifying Assumption

• For this week’s lecture only

• All of a program must be in memory

• Will revisit assumption next week

1. Main Memory Allocation

• Where to locate the kernel?

• How many processes to allow?

– Called “degree of multiprocessing”

• What memory to allocate to processes?

2. Protection

• One process must not be able to read or write
the memory

– of another process

– of the kernel

Unprotected Access

CPU

memory

Protected Access

CPU check

Must check every access
from the CPU to memory

memory

Protection: Examples

CPU check

P1

33KB

Process 1 code, data …

Process 3 code, data, …

Process 2 code, data, …

OS code, data…
0KB

8KB

32KB

45KB

70KB
75KB

memory

Protection: Examples

CPU check

P1

71KB

error

Process 1 code, data …

Process 3 code, data, …

Process 2 code, data, …

OS code, data…
0KB

8KB

32KB

45KB

70KB
75KB

memory

Protection: Examples

CPU check

P2

71KB

Process 1 code, data …

Process 3 code, data, …

Process 2 code, data, …

OS code, data…
0KB

8KB

32KB

45KB

70KB
75KB

memory

Protection: Examples

CPU check

P2

4KB

error

Process 1 code, data …

Process 3 code, data, …

Process 2 code, data, …

OS code, data…
0KB

8KB

32KB

45KB

70KB
75KB

memory

3. Transparency

• Programmer should not have to worry

– where his program is in memory

– where or what other programs are in memory

Transparency: Program can be
Anywhere in Main memory

code
static data

heap

stack

process x

memory

Process 3 code, data, …

0KB

1KB
2KB

15KB
16KB

????

Program not aware of virtualization

Virtual vs. Physical Address Space

• Virtual/logical address space =

– What the program(mer) thinks is its memory

• Physical address space =

– Where the program is in physical memory

Virtualization of memory

code
static data

heap

stack

process x

memory

Process 1 code, data …

Process 3 code, data, …

Process 2 code, data, …

OS code, data…
0KB

1KB
2KB

15KB
16KB

0KB

8KB

32KB

45KB

70KB
75KB

Virtual Physical

Another Way to Understand
Virtual vs. Physical

Virtual
Address

Physical
Address

Virtual address is address generated by program/CPU

Physical address is address that the memory sees
memory

CPU

Translating Virtual to Physical

Virtual
Address

Physical
Address

Map

Must map/translate every access
from the CPU to memory

CPU

memory

Memory Management Unit (MMU)

• Provides mapping virtual-to-physical

• Provides protection at the same time

MMU: Virtual to Physical

MMU

Virtual
Address

Physical
Address

CPU

memory

Mapping

MMU

P1: 0-100

0

100

200

450

550

50

150
0-100:

100-200

CPU

memory

Process 1 code, data …

Process 2 code, data, …

OS code, data…

Mapping and Protection

error

MMU

P1: 0-100

150

0-100:
100-200

CPU

0

100

200

450

550

memory

Process 1 code, data …

Process 2 code, data, …

OS code, data…

Mapping

450

MMU

P2: 0-100

0

0-100:
450-550

CPU

0

100

200

450

550

memory

Process 1 code, data …

Process 2 code, data, …

OS code, data…

Mapping and Protection

error

MMU

P2: 0-100

200

0-100:
450-550

CPU

0

100

200

450

550

memory

Process 1 code, data …

Process 2 code, data, …

OS code, data…

Size of Address Spaces

• Maximum virtual address space size

– Limited by address size of CPU

– Typically 32 or 64 bit

– Hence, 2^32 (4 Gbyte) or 2^64 (16 Exabyte – big!)

• Physical address space size

– Limited by size of memory

– Nowadays, order of Gigabytes

Different Virtual/Physical Schemes

1. Base and bounds

2. Segmentation

3. Paging

4. Segmentation with paging

For each Scheme

• Virtual address space

• Physical address space

• Virtual address

• MMU

1. Base and Bounds:
Virtual Address Space

• Linear address space

• From 0 to MAX

• Also called dynamic relocation

1. Base and Bounds:
Physical Address Space

• Linear address space

• From BASE to BOUNDS=BASE+MAX

How would you do it?

P1: 0-100 ???

CPU

0

100

200

450

550

memory

Process 1 code, data …

Process 2 code, data, …

OS code, data…

50
MMU

1. Base and Bounds:
Virtual and Physical Address Space

memory

0

MAX
BASE

BOUNDS

Virtual Address Space Physical Address Space

MMU for Base and Bounds

• Relocation register: holds the base value

• Limit register: holds the bounds value

MMU for Base and Bounds

Problem: waste of space

Free
But not allowed to use!

memory

P1 code
P1 heap

P1 stack

P2 code
P2 heap

P2 stack

OS code, data…

P3 code
P3 heap

P3 stack

2. Segmentation

• Virtual address space:

– Two-dimensional

– Set of segments 0 .. n

– Each segment i is linear from 0 to MAXi

• Physical address space

– Set of segments, each linear

Segmentation:
Virtual and Physical Address Space

1

3

2

4

1

4

2

3

Virtual address space Physical address space

What is a Segment?

• Anything you want it to be

• Typical examples:

– Code

– Heap

– Stack

Segmentation: Virtual Address Space

Segmentation: Virtual Address

• Two-dimensional address:

– Segment number s

– Offset d within segment (starting at 0)

• It is like multiple base-and-bounds

s d

MMU for Segmentation

• STBR: points to segment table in memory

• STLR: length of segment table

• Segment table

– Indexed by segment number

– Contains (base, limit) pair

– Base: physical address of segment in memory

– Limit: length of segment

MMU for Segmentation

(check for s ≤ STLR not shown)

Problem: fragmentation

• Fragmentation in disk

– this happens when swapping

• Variable sized pieces on memory

– More challenging allocation

3. (Simplified version of) Paging

• Page: fixed-size portion of virtual memory

• Frame: fixed-size portion of physical memory

• Page size = frame size

• Typical size: 4k – 8k (always power of 2)

• Disk: fixed size blocks, same size (or clusters
of) frames

Paging: Virtual Address Space

• Linear from 0 up to a multiple of page size

Paging: Physical Address Space

• Noncontiguous set of frames, one per page

Paging:
Virtual and Physical Address Space

Paging Virtual Address

• Virtual address: 0 – MAX (page size multiple)

• Page size = 2^n

• Virtual address for mapping purposes:

– Page number p: first sequence of bits

– Offset within page d: n remaining bits

p d

a

MMU for Paging

• PTBR: points to page table in memory

• PTLR: length of page table

• Page table

– Indexed by page number

– Contains frame number of page in memory

MMU for Paging

(check for p ≤ PTLR not shown)

4. Segmentation with Paging

• As segmentation

• But every segment is paged

Segmentation with Paging

• Virtual address space

– Two-dimensional

– Set of segments 0 .. n

– Each segment linear from 0 to MAXi

• Physical address space

– Noncontiguous set of frames

Segmentation with Paging:
Virtual Address

• Virtual address:
– Segment number s

– Offset with segment d

• Virtual address for mapping:
– Segment number s

– Page number within segment p

– Offset within page d’

s p d’

s d

MMU for Segmentation with Paging

• STBR: points to segment table in memory

• STLR: length of segment table

• Segment table:

– Indexed by segment number

– Contains page table base, segment length

• Page table for each segment:

– Index by page number

– Contains frameno of frame that contains page

MMU for Segmentation with Paging

(check for s ≤ STLR not shown)

Revisit Paging: Virtual Address Space

• Linear from 0 up to a multiple of page size

• True, but address space is often sparsely used

Typical Virtual Address Space

unused

0

2^31-1

code
static data

heap

stack

process x

Problem?

• Access to unused portion will appear valid

• Would rather have an error

Solution

• Abandon PTLR

• Page table has length 2^p

• Instead, have valid bit in each PTE

– Set to valid for used portions of address space

– Invalid for unused portions

• This is the common approach

Valid (v) or Invalid (i) Bit In A Page Table

Back to Main Memory Allocation

• We already looked at where to locate kernel

• Answer: in low memory

• Now looking at processes

• As many processes in memory as possible

• Why? Quick switch on I/O of running process

Main Memory Allocation

• How find memory for a newly arrived process?

Main Memory Allocation
Base-and-Bounds

• Main memory:

– Regions in use

– “Holes”

• New process needs to go in “hole”

• Which hole to pick?

Dynamic Memory Allocation Methods

• First-fit
– Take first hole bigger than requested

– Easy to find

• Best-fit
– Take smallest hole bigger than requested

– Leaves smallest hole behind

• Worst-fit?!
– Takes largest hole

– Leaves biggest hole behind

(External) Fragmentation

• Small holes become unusable

• Part of memory cannot be used

• Serious problem

Main Memory Allocation
with Segmentation

• Remember

– Segmentation ~= multiple base-and-bounds

• Problem is similar

– Dynamic memory allocation

– Pieces are typically smaller

– But there are more (than 1) pieces

• Easier problem

– External fragmentation smaller

Main Memory Allocation
with Paging

• Logical address space: fixed size pages

• Physical address space: fixed size frames

• New process:

– Find frames for all of process’s pages

• Easier problem

– Fixed size

(Internal) Fragmentation

• With paging

– Address space = multiple of page size

• Part of last page may be unused

• With reasonable page size, not a big problem

Main Memory Allocation

• Easier to do with paging

What if “out of memory”?

• Need to get rid of one or more processes

• Store them temporarily on disk

• This is called swapping

Schematic View of Swapping

Process Switch to a Swapped Process?

• Latency can be very high

• Need to read image from disk

• A better solution:

– Demand paging

– Not all of a process needs to be in memory

• Topic for next lecture

Finer-Grain Protection

• Means: different protections for different
parts of address space

• Valid bit in page table

• May also have valid bit in segment table

• May also have other bits both in
page/segment table
– Read-only / read-write

– Executable / not-executable

Finer-Grain Protection

• For instance, code should be

– Valid, read-only and executable

• Base and bounds

– Not really possible

• Segmentation

– Set those bits in segment table

• Paging

– Set those bits in every code page

Finer-Grain Protection Summary

• Easier to do with segmentation

Sharing Memory between Processes

• Why would we want to do that?

• For instance,

– Run twice the same program in different processes

– May want to share code

– Read twice the same file in different processes

– May want to share memory corresponding to file

How to Share Memory?

• With base and bounds, not possible

• With segmentation
– Create segment for shared data

– Entry in segment table of both processes

– Points to shared segment in memory

• With paging
– Need to share pages

– Entries in page table of both processes

– Point to shared pages

P1 and P2 Share One Segment

SegmentTable P1 SegmentTable P2Memory

P1 and P2 Share Two Pages

PageTable P1 PageTable P2Memory

Sharing - Summary

• Sharing is easier to do with segmentation

Advantages / Disadvantages

Segmentation Paging Segmentation with Paging

Sharing

Fine-grain protection

Memory allocation

If you wondered, why segmentation with paging?
Answer: it combines advantages of both.

Address Translation Performance Issue

• Page table is in memory

• 1 virtual address 2 physical memory accesses

• Would reduce performance by factor of 2

• Solution: Translation lookaside buffer (TLB)

TLB

• Small fast cache of (pageno, frameno) maps

• If mapping for pageno found in TLB

– Use frameno from TLB

– Abort mapping using page table

• If not

– Perform mapping using page table

– Insert (pageno, frameno) in TLB

Paging Mapping With TLB

How to Make TLB fast?

• Use associative memory (special hardware)

• Regular memory

– Look up by address

• Associative memory

– Look up by contents

– Search entire memory in parallel

Regular Memory

value1

…

address value

Associative Memory

key1

…

value1

…

key
match: 0/1

value

TLB

pageno1

…

frameno1

…

pageno
match: 0/1

frameno

TLB Size

• Associative memory is very expensive

• Therefore, TLB small (64 – 1,024 entries)

• If TLB full, need to replace existing entry

Summary

• Virtual and physical address spaces

• Mapping between virtual and physical address

• Different mapping methods

• Sharing, protection, memory allocation

• TLB

Virtual Address Space

Base and
Bounds Segmentation Paging Segmentation with Paging

Virtual Address Format

• Base and bounds

• Segmentation

• Paging

• Segmentation with Paging

a

a

s d

s d

Virtual Address Validity

• Base and bounds

– Upto MAX

• Segmentation

– Each segment upto MAXi

• Paging

– According to PTLR or valid bits

• Segmentation with paging

– Each segment upto MAXi (now multiple of page size)

Breakdown of Virtual Address for Mapping

• Base and bounds

• Segmentation

• Paging

• Segmentation with Paging

a

p

s d

s p

d

d

Physical Address Space

Base and
Bounds Segmentation Paging

Segmentation
with Paging

