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Exercise 1: Hopfield network with probabilistic update

So far we have studied Hopfield networks with deterministic activity dynamics. That is, for the same
input potential h a neuron always takes the same state:

Si(t+ 1) = sign(hi(t)) (1)

In this exercise we model stochastic neurons by replacing that equation with a probabilistic state update:

P{Si(t+ 1) = 1|hi(t)} = g(hi(t)) (2)

Let’s say we have stored M patterns pµ in a network of N neurons. We then set the network to an
initial state S(t0) that has significant overlap with the third pattern and no overlap with other patterns:
mµ 6=3(t0) = 0. For the deterministic update (eq. 1) we know (either from the textbook or from the proof
done last week) we would retrieve pattern p3 in a single update: m3(t0 + 1) = g(m3(t0)) = 1.

We now study how that result changes in the presence of noisy neurons (eq. 2). Look at figure 1 to get
an intuition about the stochastic update.

Figure 1: For the analysis of the overlap m3(t + 1) it helps to rearrange pattern p and state S such
that we can identify four sub-populations in the last row. We first split the neurons Si(t) into those
that should be active and those that should not be active. All neurons in the same sub-population share
the same probabilistic activity dynamics. In the last row, we see four groups of neurons which we label
{pi/Si(t+ 1)}: {on/on}, {on/off}, {off/on}, {off/off}.

1.1 Derive the overlap m3(t0 + 1) (eq. 3) under the state dynamics of eq. 2. Assume that there’s
only overlap with pattern p3, and that for each pixel of the pattern 3, the probability to be on is
P{p3i = 1} = 0.5



m3(t0 + 1) = g(m3(t0))− g(−m3(t0)) (3)

Hints:

1. Use a result we derived earlier: hi(t0) = p3im
3(t0).

2. For each of the four groups (see figure 1) find the probabilities for P{Si(t+ 1)|hi(t0)}
3. Recall the definition of the overlap m: m3(t0 + 1) = 1

N

∑N
i=1 p

3
iSi(t0 + 1)

4. For large N we can use the expected number of neurons in each of the four sub populations to
express (the expected) overlap m3(t0 + 1).

1.2

(a) In equation 2, what properties should the transfer function g have?

(b) Use g(h) = 1
2 (tanh(βh) + 1) in equation 3. Simplify it, plot the function graph and discuss it.

Exercise 2: Hopfield, asynchronous update and the energy picture

Consider a Hopfield network of N neurons with an asynchronous update regime. That is, only one
randomly selected neuron k is updated at each step according to equation 4:

 Sk(t+ 1) = g(hk(t)) = sign
(∑N

j wkjSj(t)
)

for exactly one randomly chosen neuron k

Si(t+ 1) = Si(t) for all other neurons, i 6= k
(4)

For each state S of a Hopfield network, we can compute a scalar value, known as the energy E of the
network:

E := −
N∑
i

N∑
j

wijSiSj . (5)

The evolution of the network state and the change of energy are related in an interesting way:

When a network is updated asynchronously then the energy function E(S(t)) does either
decrease or stays at a (local) minimum.

We will now proof this property:

In the trivial case of Sk(t+ 1) = Sk(t) ∀k the network has reached a stable state and therefore the energy
function is stable too: ∆E = E(t+ 1)− E(t) = 0.

Now consider the case of one neuron k changing its state and proof, in steps 4.1 to 4.3, that the energy
decreases:

2.1 The energy E(t) in eq. 5 is summed over all pre- and post- synaptic neurons i and j. Rewrite that
sum such that the contribution of neuron k to the total energy E appears explicitly.

Hint: To simplify the resulting expression, remember that in a Hopfield network, the weight are symmet-
ric: wij = wji and there are no self recurrent connections: wkk = 0

2.2 Write the change in energy ∆E = E(t+ 1)−E(t) when exactly one neuron k does changes its state.

2.3 Proof that ∆E < 0 when exactly one neuron k does changes its state under the dynamics of eq. 4



Exercise 3: Binary codes and spikes

A Hopfield model is specified by a binary variable Si ∈ {−1,+1}, the weights (eq. 6) and the update
dynamics (eq. 7).

wij = c

M∑
µ=1

pµi p
µ
j with c =

1

N
(6)

Si(t+ 1) = sign

 N∑
j=1

wijSj(t)

 (7)

For an interpretation in terms of spikes it is, however, more appealing to work with a binary variable σi
which is zero or 1.

3.1 Rewrite the Hopfield model in terms of σi ∈ {0, 1}, Si = 2σi − 1.

3.2 Assume that the patterns have the property
∑N
i=1 p

µ
i = 0 ∀µ.

Discuss that condition and use it to simplify the update dynamics found in the previous question.

3.3 Assume low-activity patterns wij =
∑
µ(ξµi −b)(ξ

µ
j −a), where the random variables ξµi ∈ {0, 1} have

mean 〈ξµi 〉 = a. For b = 0 can you restrict the weights to excitation only and move negative interaction
into a group of inhibitory neurons?


