Computational Neuroscience: Neuronal Dynamics of Cognition

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

-president
-first day of undergraduate
-apple

Our memory has multiple aspects

- recent and far-back
- events, places, facts, concepts

1. memory in the brain

1. Neuronal Networks in the Brain

\square 1 mm

10000 neurons
3 km of wire

1. Systems for computing and information processing

Brain

Distributed architecture
(10 ${ }^{10}$ proc. Elements/neurons)
No separation of processing and memory

Computer

Von Neumann architecture 1 CPU
(10 ${ }^{10}$ transistors)

1. Systems for computing and information processing

Distributed architecture 10^{10} neurons 10^{4} connections/neurons

No separation of processing and memory

1. Associations, Associative memory

Read this text NOW!

1. Associations, Associative memory
pattern completion/word recognition

Noisy word
List of words
Output the closest one
Your brain fills in missing information: 'auto-associative memory'

1. Associations, Associative memory
brai* $^{*} \longrightarrow$ brain 'auto-associative memory'
bird \longrightarrow swan
vacation \longrightarrow beach
'associative memory'

Quiz 1: Connectivity and Associations

Tick one or several answers
A typical neuron in the brain makes connections
[] To 6-30 neighbors
[] To 100-500 neurons nearby
[] To more than 1000 neurons nearby
[] To more than 1000 neurons nearby or far away.
Associative memory is involved
[] If you think of palm trees when you think of a beach
[] If partial information helps you to recall a complicated concept
[] If a cue helps you to recall a memory

Computational Neuroscience: Neuronal Dynamics of Cognition 1 Introduction

(P)Pl
 ÉCOLE POLYTECHNIQUE

A: ASSOCIATIVE MEMORY
in a Network of Neurons

- networks of neuron
- systems for computing
- associative memory

2 Classification by similarity
Wulfram Gerstner
EPFL, Lausanne, Switzerland
Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

2. Classification by similarity: pattern recognition

Noisy image
Prototypes
2. Classification by similarity: pattern recognition

Classification by closest prototype

Noisy image

Prototype
2. Classification by similarity: pattern recognition

Classification by closest prototype

Noisy image
Prototypes
2. pattern recognition and Pattern completion

Aim: Understand Associative Memory

Quiz 2: Closest prototype

Classification by closest prototype (tick one or several answers)
[] Needs a similarity measure
[] Needs a distance measure
[] Needs a method to find the maximum or minimum

Computational Neuroscience: Neuronal Dynamics of Cognition 1 Introduction

(P)Pl
 ÉCOLE POLYTECHNIQUE

A: ASSOCIATIVE MEMORY
in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

3. Detour: magnetism

3. Detour: magnetism

Noisy magnet
pure magnet
3. Detour: magnetism

Elementary magnet

$$
\begin{aligned}
& S_{i}=+1 \\
& S_{i}=-1
\end{aligned}
$$

dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} S_{j}(t)\right]
$$

Sum over all interactions with i

3. Detour: magnetism

Anti-ferromagnet

Elementary magnet

$$
\begin{cases}S_{i}=+1 & w_{i j}=+1 \\ S_{i}=-1 & w_{i j}=-1\end{cases}
$$

dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum w_{i j} S_{j}(t)\right]
$$

Sum over all interactions with i

3. Detour: magnetism

Anti-ferromagnet

Elementary magnet

$$
\begin{cases}S_{i}=+1 & w_{i j}=+1 \\ S_{i}=-1 & w_{i j}=-1\end{cases}
$$

dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum w_{i j} S_{j}(t)\right]
$$

Sum over all interactions with i

3. Magnetism and memory patterns

Elementary pixel

- $S_{i}=+1$

$$
S_{i}=-1
$$

$$
\begin{aligned}
& \square \mathrm{w}_{\mathrm{ij}}=+1 \\
& \mathrm{w}_{\mathrm{ij}}=+1
\end{aligned}
$$

$$
\mathrm{w}_{\mathrm{ij}}=-1
$$

dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum w_{i j} S_{j}(t)\right]
$$

Hopfield model:
Several patterns \rightarrow next section

Sum over all interactions with i

Exercise 1: Associative memory (1 pattern)

Elementary pixel

- $S_{i}=+1$

$$
\square S_{i}=-1
$$

$$
\begin{aligned}
& \square \mathrm{w}_{\mathrm{ij}}=+1 \\
& \square \mathrm{w}_{\mathrm{ij}}=+1
\end{aligned}
$$

9 neurons, connected all-to-all

- define appropriate weights: what is the weight

$$
\mathrm{w}_{79}=?
$$

- what happens if neuron 7 is +1 ?
- what happens if 3 neurons wrong?
dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right]
$$

Sum over all interactions with i

Computational Neuroscience: Neuronal Dynamics of Cognition

 1 Introduction
(P)Pl
 ÉCOLE POLYTECHNIQUE

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

- networks of neuron
- systems for computing
- associative memory

2 Classification by similarity
3 Detour: Magnetic Materials

4 Hopfield Model

5 Learning of Associations
 6 Storage Capacity

4. Single pattern

Elementary pixel
(target pattern)

- $p_{i}=+1$

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{ij}}=+1 \\
& \mathrm{w}_{\mathrm{ij}}=+1 \\
& \mathrm{w}_{\mathrm{ij}}=-1
\end{aligned}
$$

$\square \quad p_{i}=-1$

$$
w_{i j}=
$$

dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right]
$$

Sum over all interactions with i

4. Hopfield Model of Associative Memory

Prototype p^{1}

Prototype

$$
\overrightarrow{\mathrm{p}}^{2}
$$

interactions

$$
w_{i j}=\sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}
$$

Sum over all prototypes
dynamics

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right]
$$

Sum over all
interactions with i

4. Hopfield Model of Associative Memory

Pattern
p^{1}
interactions

$$
w_{i j}=\sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}
$$

Sum over all prototypes

This rule is very good for random patterns
It does not work well for correlated patters

Hopfield model (1982)

- several random patterns
- fully connected network
- binary neurons
- weights (1); dynamics (2)
dynamics

$$
\begin{equation*}
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{\substack{j \\ \text { all interactions with i }}} w_{i j} S_{j}(t)\right](2) \tag{2}
\end{equation*}
$$

4. Overlap: a measure of similarity

current state: $\quad(+1,-1,-1,+1,-1,+1,+1,-1)$
target pattern, $(+1,+1,-1,+1,-1,-1,-1,-1)$ prototype
overlap $\quad m^{\mu}(t)=\frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t)$

4. Hopfield Model of Associative Memory

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right]
$$

$$
w_{i j}=\sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}
$$

$$
m^{\mu}(t+1)=\frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t+1)
$$

4. Hopfield Model of Associative Memory

Interacting neurons

Prototype
p^{1}

Finds the closest prototype i.e. maximal overlap
(similarity) m^{μ}

Hopfield model

Computation

- without CPU,
- without explicit memory unit

4. Correlated patterns, orthogonal patterns

target pattern, $\quad(+1,-1,+1,+1,-1,+1,+1,-1)$ prototype 3
target pattern, $\quad(+1,+1,-1,+1,-1,-1,-1,-1)$ prototype 7

Similarity of two patterns:
Orthogonal patterns:
overlap $m^{\mu}(t)=\frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t)$
Random patterns

Exercise 2 (now)

$$
\begin{gathered}
w_{i j}=\frac{1}{N} \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu} \\
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right] \\
\begin{array}{c}
\text { Sum over all } \\
\text { interactions with i }
\end{array}
\end{gathered}
$$

Assume 4 orthogonal patterns.
At time $\mathrm{t}=0$, overlap with
pattern 3, no overlap with other patterns.
Calculate the overlap at $\mathrm{t}=1$!

Computational Neuroscience: Neuronal Dynamics of Cognition

 1 Introduction
(P)PL
 ÉCOLE POLYTECHNIQUE

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

- networks of neuron
- systems for computing
- associative memory

2 Classification by similarity
3 Detour: Magnetic Materials
4 Hopfield Model

5 Learning of Associations

6 Storage Capacity

5. Learning of Associations

Where do the connections come from?

Hebbian Learning

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j's efficiency as one of the cells firing i is increased

- local rule
- simultaneously active (correlations)

5. Hebbian Learning of Associations

5. Hebbian Learning of Associations

item memorized

5. Hebbian Learning: Associative Recall

Recall:
 Partial info

item recalled

5. Learned concepts

Activity of neurons in human brain

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014),
Adapted from Quiroga et al. (2005),
Nature 435:1102-1107

5. Associative Recall

Fell me 抱e cbaforshape

be as fast as possible:

5. Associative Recall

Tell me the color for the following list of 5 items:
be as fast as possible:

Stroop effect:
time
Slow response: hard to work Against natural associations

5. Associative Recall

Hierarchical organization of Associative memory

animals

Name as fast as possible
an example of a bird swan (or goose or raven or ...)
Write down first letter: s for swan or r for raven ...

5. Associative Recall

name as fast as possible an example of a

5. Associative Recall

Associative memory

animals

birds fish

- Associations can be very strong!
- It is hard to go against natural associations!
- Different aspects of a 'concept' are bound together!
- Assocations have been learned!

Quiz 3: Assocations

The Stroop effect implies that you are faster, if the color does not match the meaning of the color-word [] Yes
[] No

Hebbian learning strengthens links between neurons that
[] are simultaneously active
[] belong to the same 'concept' (assembly)

Computational Neuroscience: Neuronal Dynamics of Cognition

A: ASSOCIATIVE MEMORY in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

1 Introduction

- networks of neuron
- systems for computing
- associative memory

2 Classification by similarity
3 Detour: Magnetic Materials
4 Hopfield Model

5 Learning of Associations

6 Storage Capacity

6. learning of several prototypes

Prototype
\vec{p}^{1}

Prototype \bar{p}^{2}
interactions
(1) $w_{i j}=\frac{1}{N} \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}$

Sum over all prototypes

Question: How many prototypes can be stored?

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right]
$$

all interactions with i

6. Storage capacity: How many prototypes can be stored?

-Assume we start directly in one pattern (say pattern 7)
-Pattern must stay

$$
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{j} S_{j}(t)\right]
$$

Interactions (1)

$$
w_{i j}=\frac{1}{N} \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}
$$

6. Storage capacity: How many prototypes can be stored?

Prototype
p^{1}

$$
\begin{gathered}
\overrightarrow{\mathrm{p}}^{2} \\
\text { Dynamics (2) } \quad S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right], ~
\end{gathered}
$$

Random patterns
Interactions (1) $w_{i j}=\frac{1}{N} \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}$

Minimal condition: pattern is fixed point of dynamics
-Assume we start directly in one pattern (say pattern \boldsymbol{V})
-Pattern must stay
Attention: Retrieval requires more (pattern completion)

Q: How many prototypes can be stored?

A: If too many prototypes, errors (wrong pixels) show up. The number of prototypes M that can be stored is proportional to number of neurons N ; memory load = M/N

$$
\begin{aligned}
S_{i}(t+1) & =p_{i}^{\nu} \operatorname{sgn}\left[1+\frac{1}{N} \sum_{\mu=1, \mu \neq \nu}^{M} \sum_{j=1}^{N} p_{i}^{\mu} p_{i}^{\nu} p_{j}^{\mu} p_{j}^{\nu}\right] \\
& =p_{i}^{\nu} \operatorname{sgn}\left[1-a_{i}^{\nu}\right]
\end{aligned}
$$

Error-free if

$S_{i}(t+1)=p_{i}^{v}$

Gaussian
a_{i}^{v}
Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014),

6. Storage capacity: How many prototypes can be stored?

Random walk with

steps

Standard deviation

$$
\begin{aligned}
S_{i}(t+1) & =p_{i}^{v} \operatorname{sgn}\left[1+\frac{1}{N} \sum_{\mu=1, \mu \neq \nu}^{M} \sum_{j=1}^{N} p_{i}^{\mu} p_{i}^{v} p_{j}^{\mu} p_{j}^{\nu}\right] \\
& =p_{i}^{\nu} \operatorname{sgn}\left[1-a_{i}^{\nu}\right]
\end{aligned}
$$

Error-free if
$S_{i}(t+1)=p_{i}^{v}$

Gaussian
a_{i}^{v}
Image: Neuronal Dynamics, Gerstner et al.,
Cambridge Univ. Press (2014),

This week: Understand Associative Memory

Full
concept

Brain-style computation

- Memory stored in connections
- Many memories can be stored in same network
- Retrieval of memories without centralized controller
- Interactions of neurons makes network converge to most similar pattern

References: Associative Memory Models

D. J. Willshaw, O. P. Bunemann and H. C. Longuet-Higgins (1969) Non-holographic associative memory. Nature 222, pp. 960-962
J. A. Anderson (1972)

A simple neural network generating an interactive memory.
Math. Biosc. 14, pp. 197-220
T. Kohonen (1972)

Correlation matrix memories. IEEE trans. comp. C-21, pp. 353-359.
W. A. Little (1974)

The existence of persistent states in the brain. Math. Biosc. 19, pp. 101-120.
J.J. Hopfield (1982) Neural networks and physical systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA 79, pp. 2554-2558

The end

Documentation:

 http://neuronaldynamics.epfl.ch/
Online html version available

Reading for this week: NEURONAL DYNAMICS

- Ch. 17.1-17.2.4

Cambridge Univ. Press

