
A: ASSOCIATIVE MEMORY 
in a Network of Neurons

Wulfram Gerstner
EPFL, Lausanne, Switzerland

1 Introduction
- networks of neuron
- systems for computing
- associative memory

2 Classification by similarity

3 Detour: Magnetic Materials

4 Hopfield Model

5 Learning of Associations

6 Storage Capacity

Computational Neuroscience: Neuronal Dynamics of Cognition

Reading for this week:
NEURONAL DYNAMICS
- Ch. 17.1 - 17.2.4

Cambridge Univ. Press



-president
-first day of undergraduate
-apple

Our memory has multiple aspects
- recent and far-back
- events, places, facts, concepts

1. memory in the brain



1. memory in the brain



10 000 neurons
3 km of wire

1mm

1. Neuronal Networks in the Brain



1. Systems for computing and information processing

Brain Computer

CPU
memory

input
Von Neumann architecture

(10    transistors)
1 CPU

Distributed architecture
10(10    proc. Elements/neurons)

No separation of 
processing and memory

10



Distributed architecture
1010        neurons

No separation of 
processing and memory

410    connections/neurons

1. Systems for computing and information processing

10 000 neurons
3 km of wire

1mm



Read this text NOW!

I find it rea*l* amazin* t*at y*u ar* 
abl* to re*d  t*is tex* despit* th* fac* 
*hat more t*an t*ent* perc*n* of t** 
char*cte*s a*e mis*ing.
*his mean* t*at you* brai* i* abl* ** fill 
in missin* info*matio*. 

1. Associations, Associative memory



Noisy word

pattern completion/word recognition

brain

List of words

brai*
atom
brave
brain
brass

Output the closest one

Your brain fills in missing information:
‘auto-associative memory’

1. Associations, Associative memory



brainbrai* ‘auto-associative memory’

1. Associations, Associative memory

swan bird

beach vacation
‘associative memory’



Quiz 1: Connectivity and Associations

A typical neuron in the brain makes connections
[ ] To 6-30 neighbors
[ ] To 100-500 neurons nearby
[ ] To more than 1000 neurons nearby
[ ] To more than 1000 neurons nearby or far away.

Associative memory is involved
[ ] If you think of palm trees when you think of a beach
[ ] If partial information helps you to recall a complicated concept
[ ] If a cue helps you to recall a memory

Tick one or several answers
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image

2. Classification by similarity: pattern recognition

Classification:
comparison
with prototypes

A
B

T

Z

Prototypes
Noisy image



PrototypeNoisy image

Classification by closest prototype

2. Classification by similarity: pattern recognition

Tpx



PrototypesNoisy image

Classification by closest prototype

AT pxpx -£-

2. Classification by similarity: pattern recognition



Noisy 
image

Aim: Understand Associative Memory
Associative

memory/
collective

computation

Brain-style computation

Full  
image

Partial 
word

Full  
word

2.  pattern recognition and Pattern completion



Quiz 2: Closest prototype

Classification by closest prototype (tick one or several answers)
[ ] Needs a similarity measure
[ ] Needs a distance measure
[ ] Needs a method to find the maximum or minimum
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3. Detour: magnetism

S

N



Noisy magnet pure magnet 

3. Detour: magnetism



Elementary magnet
Si = +1
Si = -1

3. Detour: magnetism

dynamics

Sum over all
interactions with i

( 1) sgn[ ( )]i j
j

S t S t+ = å



Elementary magnet
Si = +1
Si = -1

Anti-ferromagnet
wij = +1

wij = -1

3. Detour: magnetism

dynamics

Sum over all
interactions with i

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



Elementary magnet
Si = +1
Si = -1

Anti-ferromagnet
wij = +1

wij = -1

3. Detour: magnetism

dynamics

Sum over all
interactions with i

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



3. Magnetism and memory patterns
Elementary pixel

Si = +1
Si = -1

wij = +1

wij = -1
wij = +1

Hopfield model:
Several patternsà next section

dynamics

Sum over all
interactions with i

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



Exercise 1: Associative  memory (1 pattern)
Elementary pixel

Si = +1
Si = -1

wij = +1
wij = +1

9 neurons, connected all-to-all
- define appropriate weights:

what is the weight 

- what happens if neuron 7 is +1?

- what happens if 3 neurons wrong?

dynamics

Sum over all
interactions with i

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å
w79 = ?
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4. Single pattern 
Elementary pixel

(target pattern)
pi = +1
pi = -1

wij = +1

wij = -1
wij = +1

dynamics

Sum over all
interactions with i

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å

=ijw



4. Hopfield Model of Associative Memory

dynamics

Sum over all
interactions with iseveral patterns

Prototype
p1

Prototype
p2

µ

µ

µ
jiij ppw å=

interactions

Sum over all
prototypes

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



dynamics

all  interactions with i

Hopfield model (1982)
- several random patterns 
- fully connected network
- binary neurons
- weights  (1);  dynamics (2)

µ

µ

µ
jiij ppw å=

interactions

Sum over all
prototypes

This rule
is very good
for random
patterns

It does not work well
for correlated patters

4. Hopfield Model of Associative Memory

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å

J. Hopfield, 1982

Pattern
p1

(2)

(1)



4. Overlap: a measure of similarity

( )1( ) j j jm t p S t
N

µ µ= åoverlap

current state:   (+1,-1,-1,+1,-1,+1,+1,-1)

target pattern, (+1,+1,-1,+1,-1,-1,-1,-1)
prototype



4. Hopfield Model of Associative Memory

µ

µ

µ
jiij ppw å=

( )1( 1) 1j j jm t p S t
N

µ µ+ = +å

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



Hopfield model

Prototype
p1 Finds the  closest prototype

i.e. maximal overlap 
(similarity)

µm

Interacting neurons

Computation
- without CPU,

- without explicit
memory unit

4. Hopfield Model of Associative Memory



4.  Correlated patterns, orthogonal patterns

( )1( ) j j jm t p S t
N

µ µ= åoverlap

target pattern,   (+1,-1,+1,+1,-1,+1,+1,-1)
prototype 3

target pattern,    (+1,+1,-1,+1,-1,-1,-1,-1)
prototype 7

Similarity of two patterns:

Orthogonal patterns: 

Random patterns



Exercise 2 (now)

Assume 4 orthogonal patterns. 
At time t=0, overlap with

pattern 3, no overlap with other patterns.

Calculate the overlap at t=1!

1
ij i jNw p pµ µ

µ
= å

Sum over all
interactions with i

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å
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Hebbian Learning

pre               
j

posti
ijw

When an axon of cell j repeatedly or persistently 
takes part in firing cell i, then j’s efficiency as one
of the cells firing i is increased  Hebb, 1949

k

- local rule
- simultaneously active (correlations)

Where do the connections come from?
5. Learning of Associations



5.  Hebbian Learning of Associations



item memorized

5. Hebbian Learning of Associations



item recalled

Recall:
Partial info

5. Hebbian Learning: Associative Recall



5. Learned concepts

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014),

Adapted from Quiroga et al. (2005), 
Nature 435:1102-1107

Activity of neurons in human brain

assembly of neurons



5. Associative Recall
Tell me the object shape
for the following list of 5 items:

Tell me the color 
for the following list of 5 items:

be as fast as possible: 

time



Tell me the color 
for the following list of 5 items:

Red
Blue
Yellow
Green
Red

Stroop effect:
Slow response: hard to work 
Against natural associations

be as fast as possible: 

time

5. Associative Recall



Hierarchical organization of 
Associative memory

animals

birds fish

Name as fast as possible
an example of a bird

swan (or goose or raven or …)
Write down first letter: s for swan or r for raven …

5. Associative Recall



name as fast as possible
an example of a 

hammer

red

Apple

violin

tool
color

music 
instrument

fruit

5. Associative Recall



Associative memory

animals

birds fish

5. Associative Recall

- Associations can be very strong!
- It is hard to go against natural associations!
- Different aspects of a ‘concept’ are bound together!
- Assocations have been learned!



Quiz 3: Assocations

The Stroop effect implies that you are faster, 
if the color does not match the meaning of the color-word
[ ]  Yes
[ ]  No

Hebbian learning strengthens links between neurons that
[ ]  are simultaneously active
[ ]  belong to the same ‘concept’ (assembly) 
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6. learning of several prototypes

Prototype
p1

Prototype
p2

interactions

Sum over all
prototypes

(1)

Question: How many prototypes can be stored?

dynamics

all interactions with i

µ

µ

µ
jiNij ppw å= 1

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



6. Storage capacity: How many prototypes can be stored?
-Assume we start directly in one pattern (say pattern 7      ) 
-Pattern must stay

1
ij i jw p p

N
µ µ

µ

= å
Interactions (1)

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å



Prototype
p1

Prototype
p2

1
ij i jw p p

N
µ µ

µ

= åInteractions (1)

6. Storage capacity: How many prototypes can be stored?

Dynamics (2)

Random patterns

Minimal condition: pattern is fixed point of dynamics
-Assume we start directly in one pattern (say pattern      ) 
-Pattern must stay

Attention: Retrieval requires more (pattern completion)

( 1) sgn[ ( )]i ij j
j

S t w S t+ = å

n



Q: How many prototypes can be stored?

A: If too many prototypes, errors (wrong pixels) show up.
The number of prototypes M that can be stored
is proportional to number of  neurons N;

memory load = M/N

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),
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6. Storage capacity: How many prototypes can be stored?

Image: Neuronal Dynamics, 
Gerstner et al.,
Cambridge Univ. Press (2014),

]1sgn[

]1sgn[)1(
,1 1

1

nn

nµµ

nµnµn

ii

M N

j
jjiiNii

ap

ppppptS

-=

+=+ å å
¹= =

n
ia

Gaussian
Error-free if

n
ii ptS =+ )1(

Random walk with                    steps

Standard deviation



Partial 
information

This week: Understand Associative Memory
Associative

memory/
collective

computation

Brain-style computation
- Memory stored in connections
- Many memories can be stored in same network
- Retrieval of memories without centralized controller
- Interactions of neurons makes network converge to  most similar pattern

Full  
concept
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