Recap - Week 5

Pamela Delgado
March 20, 2019

Virtual vs Physical Address Space

* Virtual/logical address space =

— What the program(mer) thinks is its memory

* Physical address space =

— Where the program is in physical memory

MMU: Mapping Virtual to Physical

[CPU

\

Virtual Physical

/

Address Address
V1IVIL >

-

_

~

J

memory

Virtual Address Space

Base and
Bounds

Segmentation Paging Segmentation with Paging

. . -

Virtual Address Format

Base and bounds

Segmentation

Paging

Segmentation with Paging

Breakdown of Virtual Address for Mapping

e Base and bounds

* Segmentation

* Paging

* Segmentation with Paging

S P

Physical Address Space

Base and

Bounds Segmentation Paging Segmentation with Paging

code ptl

code pt2

code ptl

code pt2

Main Memory Allocation

Base-and-bounds Variable Lots (external)
Segmentation Many Variable Some (external)
Paging Many Fixed Little (internal)

Segmentation with Paging Many Fixed Little (internal)

How to Share Memory?

* With base and bounds, not possible

* With segmentation
— Create segment for shared data
— Entry in segment table of both processes
— Points to shared segment in memory

* With paging
— Need to share pages
— Entries in page table of both processes
— Point to shared pages

P1 and P2 Share One Segment

SegmentTable P1 Memory SegmentTable P2

P1 and P2 Share Two Pages

PageTable P1 Memory PageTable P2

== —_—

Advantages / Disadvantages

Sharing

Fine-grain protection | |
Memory allocation M |

In Reality

* Base-and-bounds only for niche

* Segmentation abandoned
— Complexity for little gain
— Effect approximated with paging with valid bits

* Paging is now universal

Address Translation Performance Issue

Page table is in memory

1 virtual address =2 2 physical memory accesses

Would reduce performance by factor of 2

Solution: Translation lookaside buffer (TLB)

y

N

Time problem

_

~

TLB

* Small fast cache of (pageno, frameno) maps
* |f mapping for pageno found in TLB

— Use frameno from TLB
— Abort mapping using page table
* |f not

— Perform mapping using page table
— Insert (pageno, frameno) in TLB

Paging Mapping With TLB

logical
address |
CPU > D d
page frame
number number
> ' address
. f d »
TLB I
P
TLB miss
> f
——— physical
memory

page table

TLB hit/miss example

. Offset
1nt sum =0; 00 04 08 12 16 V-
for (i=0; i<10; i++){ gggeno
sum += a[i];
} 01
* Assume we need only 02
accesses to a -
* Assume TLB is empty at . 03
the beginning 3 TLB miss _ m
* 7TLB hit 04
- _” 05
06
07

Virtual address space

Paging bits examples

Valid bit = used space by the program
Protection bit 2 read/write/executed
Present bit 2 memory or disk

Dirty bit 2 modified content

Reference bit =2 page has been accessed

Few bits to determine HW caching

Week 6
Virtual Memory:
OS Implications and Demand Paging

Pamela Delgado
March 27, 2019

based on:

- W. Zwaenepoel slides
- Arpaci-Dusseau book
- Silbershatz book

Key Concepts

* Very large address spaces
* Process switching and memory management
* Demand paging

Virtual memory

e Address space ilusion!

* Appear to have much more memory than
reality

* Address space

- 32bit or 64bit
- for each process!

virtual reality

Dealing with Large Virtual Address Spaces

* 64-bit virtual address space
e 4KB pages (12-bit page offset)

Dealing with Large Virtual Address Spaces

* 64-bit virtual address space

e 4KB pages (12-bit page offset)

* Leaves 52 bits for pageno

* Would require 2252 page table entries
e Let’s say every page table entry 4 bytes
e Page table size = 2254 bytes

* More than main memory!

Large page table, mostly unused

Page table

Valid
bit

.. | Page frame

no

[EE

= Not used

PR O 0Ol 0O 0Ojl0O OO0 |O0O|OC|(FR, |O|FR

y

N

Space
problem

_

~

Solutions

* Hierarchical page tables

— Example: two-level page tables
* Hashed page tables
* |nverted page tables

Single-level Page Tables

e Virtual address:

* Breakdown of virtual address for mapping:

Two-level Page Tables

e Virtual address:

* Breakdown of virtual address for mapping:

pl p2 d

MMU for Two-level Page Tables

 PTBR: points to top-level page table

* Top-level page table entry:
— Indexed by p1l
— Pointer to second-level page table
— Valid bit

* Second-level page table entry:
— Indexed by p2

— Frameno containing page (p1,p2)
— Valid bit

Address-Translation Scheme

logical address

Py | P2 | d

.

>

=

outer page d {

table

page of
page table

Two-Level Page Table Memory Use

* For sparse address spaces
* One-level page table:

— Need page table for entire address space

* Two-level page table:
— Need top-level page table for entire address space

— Need only second-level page tables for populated
parts of the address space

(Small-Size) Example

Total address length — 8 bits

P — 4 bits (16 pages)

D — 4 bits (16-byte pages)

_et’s say only page 0, 14 and 15 are used

Flat (1-Level) Page Table
2N =16 entries

0

P |l P OO OO O OO OOl OO OCO|O| MR

14
15

Two-level Page Table
2N + 2 x 2N =12 entries

1

0
0
0

R O|lo|m

Outer page table

R | = O | O

Realistic Example

e Virtual address — 32 bits
* Only low 20MB and upper 2MB valid
* Page size —4KB or d = 12 bits, so p = 20 bits

Realistic Example

Virtual address — 32 bits

Only low 20MB and upper 2MB valid

Page size — 4KB or d = 12 bits, so p = 20 bits
1-level page table: ?? PTEs

Realistic Example

Virtual address — 32 bits

Only low 20MB and upper 2MB valid

Page size — 4KB or d = 12 bits, so p = 20 bits
1-level page table: 2220 = 1M PTEs

Realistic Example

Virtual address — 32 bits

Only low 20MB and upper 2MB valid

Page size — 4KB or d = 12 bits, so p = 20 bits
1-level page table: 2220 = 1M PTEs

2-level page table (P1 =8, P2 =12)

Realistic Example

Virtual address — 32 bits

Only low 20MB and upper 2MB valid

Page size — 4KB or d = 12 bits, so p = 20 bits
1-level page table: 2220 = 1M PTEs

2-level page table (P1 =8, P2 =12)

— 2178 for 1%t level

Realistic Example

Virtual address — 32 bits

Only low 20MB and upper 2MB valid

Page size — 4KB or d = 12 bits, so p =

1-level page table: 2220 = 1M PTEs
2-level page table (P1 =8, P2 =12)
— 2178 for 15t |evel

20 bits

—2x27M2+1x2M12 for 2nd leve| = Why?

— ~12K PTEs

homework

In General: Two-Level Page Tables

* For sparse address spaces
* One-level page table:

— Need page table for entire address space

* Two-level page table:
— Need top-level page table for entire address space

— Need only second-level page tables for populated
parts of the address space

Two-level Page Tables
for Dense Address Spaces

* Not useful
* |n fact, counter-productive
* But most address spaces are sparse

Are Two Levels Enough?

Size second-level page table == size of page
Why? Easy to allocate

Let’s assume
— 4KB pages
— 4 bytes per PTE

It follows
—p2="77

Are Two Levels Enough?

Size second-level page table == size of page
Why? Easy to allocate

Let’s assume

— 4KB pages

— 4 bytes per PTE
It follows

—p2 =10

Are Two Levels Enough?

64-bit address space

4KB pages

d=12,p2=10

Thus, pl1 =42

Top level page table: 2242 entries

More Levels

* 3-level page table:
—d=12,p3=10,p2=10, p1 =32

* 4-level page table:
—d=12,p4=10,p3 =10, p2 =10, pl =22

The price to be paid

Each level adds another memory access
N-level page table

— 1 memory access = n+1 memory accesses
But, TLB still works

— If hit, 1 memory access = 1 memory accesses
— If miss, 1 memory access = n+1 memory accesses

TLB hit rate must be very high (99+ %)

Space Time
problem problem

Process Switching and
Memory Management

Revisiting Process Switching

What does kernel need to do on switch?
Before we said:

— Save and restore PC and registers
Now we need to add:

— Save and restore memory mapping information

Additional fields in process control block (PCB)

Process Switch: Memory Mapping Info

Base and bounds: base and limit register
Segmentation: STBR and STLR
Paging: PTBR and PTLR

Note: need not save and restore segment and
page table (they are in memory)

Process Switch: TLB?

Process Switch: TLB Issue

* Suppose
— Process P1 is running
— Entry (pageno, frameno) in TLB
— Switch from P1 to P2
— P2 issues virtual address in page pageno

P2 accesses P1's memory!

TLB and process switch

Pageno | Frameno | valid_| protection
) 10 100 WX

rwx

© B O B

ey 10 170

Process Switch: TLB Issue — Solution 1

* On process switch, invalidate all TLB entries
— Simply requires invalid bit in each TLB entry
— Makes process switch expensive
— New process initially incurs 100% TLB misses

Process Switch: TLB Issue: Solution 2

* Have process identifier in TLB entries

— Match = match on pid and match on pageno
— Makes TLB more complicated and expensive

* Process switch
— Nothing to do
— Cheaper

 All modern machines have this feature

TLB and process switch

Pageno | Framen | vai | protection | ASID
10 100 1 rwx 1

0
10 170 1 rwx 2

0

Address space
identifier

Can you have this situation?

1 rwx 1

rwx 2

o ~» O

Demand Paging

Remember from Last Week
Simplifying Assumption

For this week’s lecture only
All of a program must be in memory
Will revisit assumption next week

We are now going to drop this assumption

Main Reason

* Virtual address spaces > physical address space
* Implicitly we looked at this already

— 64-bit virtual address space
— No machine has 2764 bytes (16 exabytes) of memory

 Why such large virtual address space?

— Don’t have to worry about running out

Does it make sense?

* Code needs to be in memory to execute, but
entire program rarely used

— Error code, unusual routines, large data structures

* Entire program code not needed at same time

Partially-loaded program

Shorter process startup latency
— Can start process without all of it in memory
— Even 1 page suffices

No longer constrained by limits of physical
memory

Takes less memory while running -> more
programs run at the same time

— Increased CPU utilization and throughput with no
Increase in response time

Less I/O needed to load or swap programs into
memory -> each user program runs faster

If the program is not in memory,
then where is it?

e Part of itisin memory
* (Typically) all of it is on disk

* Note: difference with swapping

— Swapping = all of program is in memory or all of
program is on disk

— Demand paging: part of program is in memory

Bring page into
memory only
when needed

program
A

program
B

Demand Paging

swap out

<R
N

o[111 2[]8[l]

(W Swap in

o0 58 o0 701

8] 9[HO[H1[]
12[13 H4[15[]

16[}17[;18?19@

main
memory

20[21 122[23[|

-,

Contents of
program A

Contents of
program B

Remember

* CPU can only directly access memory
 CPU can only access data on disk through OS

Demand Paging

 What if program accesses part only on disk?

Demand Paging

What if program accesses part only on disk?

Program is suspended
OS runs, gets page from disk
Program is restarted

Demand Paging

What if program accesses part only on disk?
This is called a page fault

Program is suspended
OS runs, gets page from disk

Program is restarted
This is called page fault handling

Issues

How to discover a page fault?
How to suspend process?

How to bring in a page from disk?

— How to find a free frame in memory?

How to restart process?

Discover Page Fault

Use the valid bit in page table

Without demand paging:

— Valid bit = 0: page is invalid

— Valid bit = 1: page is valid

With demand paging

— Valid bit = 0: page is invalid OR page is on disk

— Valid bit = 1: page is valid AND page is in memory
OS needs additional table: invalid / on-disk?

~N o o1 B~ W N

| m| m|O|O| | >

H

logical
memory

Demand Paging

frame

valid—invalid
bit

N ¥

4 |v

~N o ok W N = O

i
v
i
i
Vv
i
i

page table

0

1

2

3 RN
e 00

4 A

] [|

6| C L] [4] [B]

! gl [0 [E

8

9| F Fl [&] [H

10 —

11 B

” - e

13

14

15

physical memory

Suspending the Faulting Process

* |nvalid bit access generates trap
* As before, save process information in PCB

Getting the Page from Disk

Assume there is at least one free frame
Allocate a free frame to process

Find page on disk

— Note: need an extra table for that

Get disk to transfer page from disk to frame

While the Disk is Busy

* |[nvoke scheduler to run another process
 When disk interrupt arrives

— Suspend running process
— Get back to page fault handling

Completing Page Fault Handling

Pagetable[pageno].frameno = new frameno

Pagetable[pageno].valid =1

Set process state to ready
Invoke scheduler

When Process Runs Again

e Restarts the previously faulting instruction

* Now finds
— Valid bittobe setto 1
— Page in corresponding frame in memory

Remember this Assumption
Getting the Page from Disk

Assume there is at least one free frame
Allocate a free frame to process

Find page on disk

— Note: need an extra table for that

Get disk to transfer page from disk to frame

If no free frame available

Pick a frame to be replaced

Invalidate its page table entry (and TLB entry)
You may have to write that frame to disk
Page table has a modified bit

— If set, write out page to disk
— If not, proceed with page fault handling

Page Replacement Policy

* How to pick with page/frame to replace?

Page Faults and Performance

Normal memory access

— ~ nanoseconds
Faulting memory access
— Disk I/0O ~ 10 milliseconds

Too many page faults -> program very slow

Hence, importance of good page replacement

Page Replacement Policy

* |n general, prefer replacing clean over dirty
e 1 disk I/O instead of 2

Page Replacement Policies

Random

FIFO (First In, First Out)
OPT

LRU (and approximations)
Second-chance

Clock

FIFO

Oldest page is replaced

— Age = Time since brought into memory

Easy to implement

Keep a queue of pages

Bring in a page: stick at the end of the queue
Need replacement: pick head of queue

FIFO Page Replacement

reference string

701 203804230382 120170
7] [7] [7] [2] (2] [2] [4] [4] [4] [o] 0| [o] 7]
o| [o] [o| [3] [3] [3] [2] [2] |2 1| [1 1
1| 1] [1] o] |o] |o] [3] |3 3| |2 2

page frames

?? page faults (not counting initial paging in)

—

ISIEIE]

EEIET

FIFO Page Replacement

reference string

701 203804230382 120170
7] [7] [7] [2] (2] [2] [4] [4] [4] [o] 0| [o] 7]
o| [o] [o| [3] [3] [3] [2] [2] |2 1| [1 1
1| 1] [1] o] |o] |o] [3] |3 3| |2 2

page frames

12 page faults (not counting initial paging in)

—

ISIEIE]

EEIET

OPT: An Optimal Algorithm

* Replace the page that will be referenced the
furthest in the future

Optimal Page Replacement

reference string

7 0

7

—_—

]
L

1

I
0
1

.

page frames

2 0 3 0 4 2 3 0 3 2

2
g
1

[w]o][m~]

EENESIESY

(][]

1

[=[o[~]

2 0

1

7 0

f
i
1

?? page faults (not counting initial paging in)

1

Optimal Page Replacement

reference string

7 0

7

—_—

]
L

1

I
0
1

.

page frames

6 page faults (not counting initial paging in)

2 0 3 0 4 2 3 0 3 2

2
g
1

[w]o][m~]

EENESIESY

(][]

1

[=[o[~]

2 0

1

7 0

[—[E 5]

1

OPT Implementation

 Cannot be implemented in general

— Cannot predict future

* A basis of comparison for other algorithms

LRU: Least Recently Used

* Cannot look into the future
e But can try to predict future using past

* Replace least recently accessed page

LRU

reference string
/7 0 1 2 0 3 0 4 2 38 0 3 2 1 2 0 1 7

7272 2 E4Eo I I
0] 19] |9 0 01 9] 18] |8 3 M
O 3 3] 2] [2] |2 2 2

page frames

?? page faults (not counting initial paging in)

LRU

reference string
/7 0 1 2 0 3 0 4 2 383 0 3 2 1 2 0 1

7272 2 E4Eo I I
0] 19] |9 0 01 9] 18] |8 3 M
O 3 3] 2] [2] |2 2 2

page frames

9 page faults (not counting initial paging in)

LRU Implementation

Can also not be implemented in general
Need to timestamp every memory reference
Too expensive

But can be (well) approximated

Some Optimizations

* Prepaging
* Cleaning
* Free frame pool

Prepaging

So far: page in 1 page at time
Prepaging: page in multiple pages at a time
Usually, pages “surrounding” faulting page

Relies on locality of virtual memory access
— Nearby pages are often accessed soon after

Avoids multiple page faults, process switches, ..
Can also get better disk performance (later)

Cleaning

* So far: prefer to replace “clean” pages

* Cleaning: when disk is not busy, start writing
out “dirty” pages

 More “clean” pages at replacement time

Free Frame Pool

So far: use all possible frames for pages

-ree pool: keep some frames unused

Page replacement when disk idle to keep free
000l

Advantage:

— Page fault handling is quick (no disk 1/0)
— Disk I/O in background

Summary

Demand paging
Page fault handling

Page replacement algorithms
Optimizations

