
Recap - Week 5

Pamela Delgado

March 20, 2019

Virtual vs Physical Address Space

• Virtual/logical address space =

– What the program(mer) thinks is its memory

• Physical address space =

– Where the program is in physical memory

MMU: Mapping Virtual to Physical

MMU

Virtual
Address

Physical
Address

memory

CPU

Virtual Address Space

Base and
Bounds Segmentation Paging Segmentation with Paging

Virtual Address Format

• Base and bounds

• Segmentation

• Paging

• Segmentation with Paging

a

a

s d

s d

Breakdown of Virtual Address for Mapping

• Base and bounds

• Segmentation

• Paging

• Segmentation with Paging

a

p

s d

s p

d

d

Physical Address Space

Base and
Bounds Segmentation Paging Segmentation with Paging

code
.
.
.

code code pt1

code pt2

code pt1

code pt2

Main Memory Allocation

Number Size Fragmentation

Base-and-bounds 1 Variable Lots (external)

Segmentation Many Variable Some (external)

Paging Many Fixed Little (internal)

Segmentation with Paging Many Fixed Little (internal)

How to Share Memory?

• With base and bounds, not possible

• With segmentation
– Create segment for shared data

– Entry in segment table of both processes

– Points to shared segment in memory

• With paging
– Need to share pages

– Entries in page table of both processes

– Point to shared pages

P1 and P2 Share One Segment

SegmentTable P1 SegmentTable P2Memory

P1 and P2 Share Two Pages

PageTable P1 PageTable P2Memory

Advantages / Disadvantages

Segmentation Paging Segmentation with Paging

Sharing

Fine-grain protection

Memory allocation

In Reality

• Base-and-bounds only for niche

• Segmentation abandoned

– Complexity for little gain

– Effect approximated with paging with valid bits

• Paging is now universal

Address Translation Performance Issue

• Page table is in memory

• 1 virtual address ➔ 2 physical memory accesses

• Would reduce performance by factor of 2

• Solution: Translation lookaside buffer (TLB)

Time problem

TLB

• Small fast cache of (pageno, frameno) maps

• If mapping for pageno found in TLB

– Use frameno from TLB

– Abort mapping using page table

• If not

– Perform mapping using page table

– Insert (pageno, frameno) in TLB

Paging Mapping With TLB

TLB hit/miss example

int sum =0;

for (i=0; i<10; i++){

sum += a[i];

}

Offset
00 04 08 12 16 V.

Pageno
00

01

02

03

04

05

06

07

a[0]

a[2]

a[1]

a[7] a[8] a[9]

a[3] a[5]a[4]

a[6]

• Assume we need only
accesses to a

• Assume TLB is empty at
the beginning

• 3 TLB miss
• 7 TLB hit

Virtual address space

Paging bits examples

• Valid bit → used space by the program

• Protection bit → read/write/executed

• Present bit →memory or disk

• Dirty bit→modified content

• Reference bit → page has been accessed

• Few bits to determine HW caching

Week 6
Virtual Memory:

OS Implications and Demand Paging

Pamela Delgado

March 27, 2019

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book
- Silbershatz book

Key Concepts

• Very large address spaces

• Process switching and memory management

• Demand paging

Virtual memory

• Address space ilusion!

• Appear to have much more memory than
reality

• Address space

- 32bit or 64bit

- for each process!

virtual reality

Dealing with Large Virtual Address Spaces

• 64-bit virtual address space

• 4KB pages (12-bit page offset)

Dealing with Large Virtual Address Spaces

• 64-bit virtual address space

• 4KB pages (12-bit page offset)

• Leaves 52 bits for pageno

• Would require 2^52 page table entries

• Let’s say every page table entry 4 bytes

• Page table size = 2^54 bytes

• More than main memory!

Large page table, mostly unused
Valid
bit

… Page frame
no

1

1

0

1

0

0

0

0

0

0

0

0

0

0

1

Space
problem

Page table

Not used

Solutions

• Hierarchical page tables

– Example: two-level page tables

• Hashed page tables

• Inverted page tables

Single-level Page Tables

• Virtual address:

• Breakdown of virtual address for mapping:

p1p d

a

Two-level Page Tables

• Virtual address:

• Breakdown of virtual address for mapping:

p1 p2 d

a

MMU for Two-level Page Tables

• PTBR: points to top-level page table

• Top-level page table entry:
– Indexed by p1

– Pointer to second-level page table

– Valid bit

• Second-level page table entry:
– Indexed by p2

– Frameno containing page (p1,p2)

– Valid bit

Address-Translation Scheme

Two-Level Page Table Memory Use

• For sparse address spaces

• One-level page table:

– Need page table for entire address space

• Two-level page table:

– Need top-level page table for entire address space

– Need only second-level page tables for populated
parts of the address space

(Small-Size) Example

• Total address length – 8 bits

• P – 4 bits (16 pages)

• D – 4 bits (16-byte pages)

• Let’s say only page 0, 14 and 15 are used

Flat (1-Level) Page Table
2^4 = 16 entries

0

14
15

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

2
3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

Two-level Page Table
2^4 + 2 x 2^4 = 12 entries

1

0

0

1

Outer page table

Realistic Example

• Virtual address – 32 bits

• Only low 20MB and upper 2MB valid

• Page size – 4KB or d = 12 bits, so p = 20 bits

Realistic Example

• Virtual address – 32 bits

• Only low 20MB and upper 2MB valid

• Page size – 4KB or d = 12 bits, so p = 20 bits

• 1-level page table: ?? PTEs

Realistic Example

• Virtual address – 32 bits

• Only low 20MB and upper 2MB valid

• Page size – 4KB or d = 12 bits, so p = 20 bits

• 1-level page table: 2^20 = 1M PTEs

Realistic Example

• Virtual address – 32 bits

• Only low 20MB and upper 2MB valid

• Page size – 4KB or d = 12 bits, so p = 20 bits

• 1-level page table: 2^20 = 1M PTEs

• 2-level page table (P1 = 8, P2 = 12)

Realistic Example

• Virtual address – 32 bits

• Only low 20MB and upper 2MB valid

• Page size – 4KB or d = 12 bits, so p = 20 bits

• 1-level page table: 2^20 = 1M PTEs

• 2-level page table (P1 = 8, P2 = 12)

– 2^8 for 1st level

Realistic Example

• Virtual address – 32 bits

• Only low 20MB and upper 2MB valid

• Page size – 4KB or d = 12 bits, so p = 20 bits

• 1-level page table: 2^20 = 1M PTEs

• 2-level page table (P1 = 8, P2 = 12)

– 2^8 for 1st level

– 2 x 2^12 + 1 x 2^12 for 2nd level

– ~12K PTEs

Why?
homework

In General: Two-Level Page Tables

• For sparse address spaces

• One-level page table:

– Need page table for entire address space

• Two-level page table:

– Need top-level page table for entire address space

– Need only second-level page tables for populated
parts of the address space

Two-level Page Tables
for Dense Address Spaces

• Not useful

• In fact, counter-productive

• But most address spaces are sparse

Are Two Levels Enough?

• Size second-level page table == size of page

• Why? Easy to allocate

• Let’s assume

– 4KB pages

– 4 bytes per PTE

• It follows

– p2 = ??

Are Two Levels Enough?

• Size second-level page table == size of page

• Why? Easy to allocate

• Let’s assume

– 4KB pages

– 4 bytes per PTE

• It follows

– p2 = 10

Are Two Levels Enough?

• 64-bit address space

• 4KB pages

• d = 12, p2 = 10

• Thus, p1 = 42

• Top level page table: 2^42 entries

More Levels

• 3-level page table:

– d = 12, p3 = 10, p2 = 10, p1 = 32

• 4-level page table:

– d = 12, p4 = 10, p3 = 10, p2 = 10, p1 = 22

The price to be paid

• Each level adds another memory access

• N-level page table

– 1 memory access ➔ n+1 memory accesses

• But, TLB still works

– If hit, 1 memory access ➔ 1 memory accesses

– If miss, 1 memory access ➔ n+1 memory accesses

• TLB hit rate must be very high (99+ %)

Space
problem

Time
problem

Process Switching and
Memory Management

Revisiting Process Switching

• What does kernel need to do on switch?

• Before we said:

– Save and restore PC and registers

• Now we need to add:

– Save and restore memory mapping information

• Additional fields in process control block (PCB)

Process Switch: Memory Mapping Info

• Base and bounds: base and limit register

• Segmentation: STBR and STLR

• Paging: PTBR and PTLR

• Note: need not save and restore segment and
page table (they are in memory)

Process Switch: TLB?

Process Switch: TLB Issue

• Suppose

– Process P1 is running

– Entry (pageno, frameno) in TLB

– Switch from P1 to P2

– P2 issues virtual address in page pageno

• P2 accesses P1’s memory!

TLB and process switch

Pageno Frameno valid protection

10 100 1 rwx

--- --- 0 ---

10 170 1 rwx

--- --- 0 ---

Process Switch: TLB Issue – Solution 1

• On process switch, invalidate all TLB entries

– Simply requires invalid bit in each TLB entry

– Makes process switch expensive

– New process initially incurs 100% TLB misses

Process Switch: TLB Issue: Solution 2

• Have process identifier in TLB entries

– Match = match on pid and match on pageno

– Makes TLB more complicated and expensive

• Process switch

– Nothing to do

– Cheaper

• All modern machines have this feature

TLB and process switch

Pageno Frameno valid protection ASID

10 100 1 rwx 1

--- --- 0 --- ---

10 170 1 rwx 2

--- --- 0 --- ---

Address space
identifier

Can you have this situation?

Pageno Frameno valid protection ASID

10 100 1 rwx 1

--- --- 0 --- ---

50 100 1 rwx 2

--- --- 0 --- ---

Demand Paging

Remember from Last Week
Simplifying Assumption

• For this week’s lecture only

• All of a program must be in memory

• Will revisit assumption next week

• We are now going to drop this assumption

Main Reason

• Virtual address spaces > physical address space

• Implicitly we looked at this already

– 64-bit virtual address space

– No machine has 2^64 bytes (16 exabytes) of memory

• Why such large virtual address space?

– Don’t have to worry about running out

Does it make sense?

• Code needs to be in memory to execute, but
entire program rarely used

– Error code, unusual routines, large data structures

• Entire program code not needed at same time

Partially-loaded program

• Shorter process startup latency
– Can start process without all of it in memory
– Even 1 page suffices

• No longer constrained by limits of physical
memory

• Takes less memory while running -> more
programs run at the same time
– Increased CPU utilization and throughput with no

increase in response time

• Less I/O needed to load or swap programs into
memory -> each user program runs faster

If the program is not in memory,
then where is it?

• Part of it is in memory

• (Typically) all of it is on disk

• Note: difference with swapping

– Swapping = all of program is in memory or all of
program is on disk

– Demand paging: part of program is in memory

Demand Paging

Contents of
program A

Contents of
program B

Bring page into
memory only
when needed

Remember

• CPU can only directly access memory

• CPU can only access data on disk through OS

Demand Paging

• What if program accesses part only on disk?

Demand Paging

• What if program accesses part only on disk?

• Program is suspended

• OS runs, gets page from disk

• Program is restarted

Demand Paging

• What if program accesses part only on disk?

This is called a page fault

• Program is suspended

• OS runs, gets page from disk

• Program is restarted

This is called page fault handling

Issues

• How to discover a page fault?

• How to suspend process?

• How to bring in a page from disk?

– How to find a free frame in memory?

• How to restart process?

Discover Page Fault

• Use the valid bit in page table

• Without demand paging:

– Valid bit = 0: page is invalid

– Valid bit = 1: page is valid

• With demand paging

– Valid bit = 0: page is invalid OR page is on disk

– Valid bit = 1: page is valid AND page is in memory

• OS needs additional table: invalid / on-disk?

Demand Paging

Suspending the Faulting Process

• Invalid bit access generates trap

• As before, save process information in PCB

Getting the Page from Disk

• Assume there is at least one free frame

• Allocate a free frame to process

• Find page on disk

– Note: need an extra table for that

• Get disk to transfer page from disk to frame

While the Disk is Busy

• Invoke scheduler to run another process

• When disk interrupt arrives

– Suspend running process

– Get back to page fault handling

Completing Page Fault Handling

• Pagetable[pageno].frameno = new frameno

• Pagetable[pageno].valid = 1

• Set process state to ready

• Invoke scheduler

When Process Runs Again

• Restarts the previously faulting instruction

• Now finds

– Valid bit to be set to 1

– Page in corresponding frame in memory

Remember this Assumption
Getting the Page from Disk

• Assume there is at least one free frame

• Allocate a free frame to process

• Find page on disk

– Note: need an extra table for that

• Get disk to transfer page from disk to frame

If no free frame available

• Pick a frame to be replaced

• Invalidate its page table entry (and TLB entry)

• You may have to write that frame to disk

• Page table has a modified bit

– If set, write out page to disk

– If not, proceed with page fault handling

Page Replacement Policy

• How to pick with page/frame to replace?

Page Faults and Performance

• Normal memory access

– ~ nanoseconds

• Faulting memory access

– Disk I/O ~ 10 milliseconds

• Too many page faults -> program very slow

• Hence, importance of good page replacement

Page Replacement Policy

• In general, prefer replacing clean over dirty

• 1 disk I/O instead of 2

Page Replacement Policies

• Random

• FIFO (First In, First Out)

• OPT

• LRU (and approximations)

• Second-chance

• Clock

FIFO

• Oldest page is replaced

– Age = Time since brought into memory

• Easy to implement

• Keep a queue of pages

• Bring in a page: stick at the end of the queue

• Need replacement: pick head of queue

FIFO Page Replacement

?? page faults (not counting initial paging in)

FIFO Page Replacement

12 page faults (not counting initial paging in)

OPT: An Optimal Algorithm

• Replace the page that will be referenced the
furthest in the future

Optimal Page Replacement

?? page faults (not counting initial paging in)

Optimal Page Replacement

6 page faults (not counting initial paging in)

OPT Implementation

• Cannot be implemented in general

– Cannot predict future

• A basis of comparison for other algorithms

LRU: Least Recently Used

• Cannot look into the future

• But can try to predict future using past

• Replace least recently accessed page

LRU

?? page faults (not counting initial paging in)

LRU

9 page faults (not counting initial paging in)

LRU Implementation

• Can also not be implemented in general

• Need to timestamp every memory reference

• Too expensive

• But can be (well) approximated

Some Optimizations

• Prepaging

• Cleaning

• Free frame pool

Prepaging

• So far: page in 1 page at time

• Prepaging: page in multiple pages at a time

• Usually, pages “surrounding” faulting page

• Relies on locality of virtual memory access
– Nearby pages are often accessed soon after

• Avoids multiple page faults, process switches, ..

• Can also get better disk performance (later)

Cleaning

• So far: prefer to replace “clean” pages

• Cleaning: when disk is not busy, start writing
out “dirty” pages

• More “clean” pages at replacement time

Free Frame Pool

• So far: use all possible frames for pages

• Free pool: keep some frames unused

• Page replacement when disk idle to keep free
pool

• Advantage:
– Page fault handling is quick (no disk I/O)

– Disk I/O in background

Summary

• Demand paging

• Page fault handling

• Page replacement algorithms

• Optimizations

