
Artificial Evolution
Prof. Dario Floreano

AE Laboratory Exercises

Writing a RoboGen Scenario

In order to define a fitness function you will implement a scenario class in ECMAScript (JavaScript). 
To define a scenario the one thing that you are required to do is to define a function getFitness.

For example, this would be a valid scenario file (but it will not be very useful, since every robot would

get fitness 0).

{
getFitness: function() {

return 0;
},

}

Most likely you will want the fitness function to be based on what happens during the 

simulation. The important thing to understand is that since the getFitness function will be 

called after the simulation(s) are completed you will no longer have access to any 

information from the simulator at that time. So, in order to actually use information from the 

simulator you will need to implement additional methods. The methods you can optionally 

implement are

setupSimulation -- called at the very start of each simulation

afterSimulationStep -- called after every single step of a simulation

endSimulation -- called at the end of each simulation

Each of these functions can do some internal processing, and should return true if there are

no errors, or false if there is a fatal error and the program should exit. 

As a simple example, say we want the fitness to be the distance that the robot's core 

component moved (in two dimensions) during a single simulation. Our script file would then 

contain the following:

1



{
setupSimulation: function() {

// record the starting position
this.startPos = 

this.getRobot().getCoreComponent().getRootPosition();
return true;
},

endSimulation: function() {
// find the distance between the starting position and ending position
var currentPos = this.getRobot().getCoreComponent().getRootPosition();
var xDiff = (currentPos.x - this.startPos.x);
var yDiff = (currentPos.y - this.startPos.y);
this.fitness = Math.sqrt(Math.pow(xDiff,2) + Math.pow(yDiff,2));
return true;

},

getFitness: function() {
return this.fitness;

},
}

More generally, you will want a scenario that can accommodate multiple simulations per 

fitness evaluation, i.e. to evolve robots that are robust to starting configurations and/or 

noise. In that case you will need to aggregate information from each simulation and then 

use this information to arrive at the ultimate fitness value.

The following shows how to implement our example "Racing Scenario" where the fitness in 

a single evaluation is the distance from the starting position to the closest part of the robot 

at the end of the simulation (to prevent just falling forward), and the ultimate fitness is the 

minimum across the evaluations (a robot is only as good as it is in its worst evaluation).

{
// here we define a variable for record keeping
distances : [],
// function called at the beginning of each simulation
setupSimulation: function() {

this.startPos = this.getRobot().getCoreComponent().getRootPosition();

1



return true;
},

// function called at the end of each simulation
endSimulation: function() {

// Compute robot ending position from its closest part to the start pos
var minDistance = Number.MAX_VALUE;

bodyParts = this.getRobot().getBodyParts();
console.log(bodyParts.length + " body parts");
for (var i = 0; i < bodyParts.length; i++) {

var xDiff = (bodyParts[i].getRootPosition().x - this.startPos.x);
var yDiff = (bodyParts[i].getRootPosition().y - this.startPos.y);
var dist = Math.sqrt(Math.pow(xDiff,2) + Math.pow(yDiff,2));
if (dist < minDistance) {

minDistance = dist;
}

}

this.distances.push(minDistance);
return true;

},

// here we return minimum distance travelled across evaluations
getFitness: function() {

fitness = this.distances[0];
for (var i=1; i<this.distances.length; i++) {

if (this.distances[i] < fitness)
fitness = this.distances[i];

}
return fitness;

},
}

1



IN DEPTH DOCUMENTATION OF SCENARIO API

An ECMAScript Scenario will have access to the following objects and methods

Scenario

Field/Method Type Description

getRobot() Robot Returns the robot

getEnvironment() Environment
Returns the environment: i.e. all 
other objects in the Simulation 
besides the robot(s)

Robot

Field/Method Type Description

getCoreComponent() Model
Returns the core component of the 
robot represented as a Model 
object.

getBodyParts() array<Model>
Returns all of the body parts that 
make up the robot, each is 
represented as a Model object.

getMotors() array<Motor>
Returns the motors that the robot 
has.

getSensors() array<Sensor>
Returns the sensors that a robot 
has.

vectorDistance(Vector3 
vector1, Vector3 vector2)

float

Helper function to compute the 
distance between two 3D vectors 
(will also work for 2D vectors if no z 
component is given for either 
vector1 or vector2).

1



Model

Field/Method Type Description

getRootPosition() Vector3
Returns the position of the model’s 
root.

getRootAttitude() Quaternion
Returns the attitude (orientation) of 
the model’s root.

getType() string

Returns the type of the part in 
CamelCase. See 
http://robogen.org/docs/guidelines-
for-writing-a-robot-text-file/

N.B. The component models are built up of several geometric primitives. The position / 

attitude of the “root” piece are made available.

Sensor

Field/Method Type Description

getLabel() string
Returns the label (name) of the 
sensor.

read() float Returns the sensor’s current value.

Motor

Field/Method Type Description

getId() IoPair
Returns the id of the motor as an 
IoPair.

getVelocity() float Returns the motor’s current velocity.

getPosition() float Returns the motor’s current position.

getTorque() float Returns the motor’s current torque.

1



Environment

Field/Method Type Description

getLightSources() array<LightSource>
Returns the light sources in the 
environment.

getAmbientLight() float
Returns the ambient light present in 
the environment.

getObstacles() array<Obstacle>
Returns the obstacles in the 
environment.

PositionObservable

Field/Method Type Description

getPosition() Vector3 Returns the object’s position.

getAttitude() Quaternion
Returns the object’s attitude 
(orientation).

LightSource (extends PositionObservable)

Field/Method Type Description

getIntensity() float Returns the light source’s intensity.

setIntensity(float intensity) void Set the intensity of the light source.

setPosition(Vector3 position) void Set the position of the light source.

Obstacle (extends PositionObservable)

N.B. Currently all obstacles are BoxObstacles, but this may change in the future.

BoxObstacle (extends Obstacle)

Field/Method Type Description

getSize() Vector3 Return the box’s dimensions.

1



IoPair

Field/Method Type Description

partId string
Id of the part that the sensor/motor 
is attached to.

ioId int ioIndex of the sensor/motor.

Vector3

Field/Method Type Description

x float x component of vector

y float y component of vector

z float z component of vector

Quaternion

Field/Method Type Description

x float x component of quat

y float y component of quat

z float z component of quat

w float w component of quat

Logging: it is possible to log to the console by using console.log()

1


