
Week 7 - Recap

Pamela Delgado
April 03, 2018

Demand Paging

• Demand paging
• Page fault handling
• Page replacement
• Frame allocation
• Global vs local replacement
• Optimizations

Demand Paging

• Demand paging
– Only part of a program is in memory

• Page fault handling
• Page replacement
• Frame allocation
• Global vs local replacement
• Optimizations

Demand Paging

• Demand paging
• Page fault handling
– Bringing page from disk to memory

• Page replacement
• Frame allocation
• Global vs local replacement
• Optimizations

Demand Paging

• Demand paging
• Page fault handling
• Page replacement
– Selecting page to replace if out of frames

• Frame allocation
• Global vs local replacement
• Optimizations

Demand Paging

• Demand paging
• Page fault handling
• Page replacement
• Frame allocation
– How many frames to allocate to a process
– Working set

• Global vs local replacement
• Optimizations

Frame allocation

• How many frames to allocate to a process?
• Minimum number of frames

1. Reason: performance
2. Architecture dependent

• Maximum number of frames
– Physical memory size

• Degree of multiprocessing vs page faults
tradeoff

Frame allocation

• How many frames to allocate to a process?
• Working set
– Set of pages needed for execution over the next

execution interval
– Intuition: program’s locality à less page faults
– Choose right Δ

Frame allocation

• How many frames to allocate to a process?
• Working set
– Set of pages needed for execution over the next

execution interval
– Intuition: program’s locality à less page faults
– Choose right Δ

• Working set implementation
– Set of pages in most recent Δ page references
– Size (Δ): periodically count/update a reference bit

Demand Paging

• Demand paging
• Page fault handling
• Page replacement
• Frame allocation
• Global vs local replacement
• Optimizations

Global vs local replacement

• Local = replace frame of own set
• Global = replace any frame
– Priorities among processes
– Problem: cant control own page-fault rate
• Variable execution time

– Greater good, generally used

• Thrashing
– Process doing more paging than executing

Week 8:
File Systems - Introduction

Pamela Delgado
April 10, 2019

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book
- Silbershatz book

Key Points

• Persistence: notion of “permanent” storage
• File system interface
• Disk management

“Permanent” Storage

• How permanent is permanent?

• Across program invocations
• Across login
• Across machine failures/restarts
• Across disk failures
• Across multiple disk (data center) failures

“Permanent” Storage

• For this course

• Across program invocations
• Across login
• Across machine failures/restarts
• Across disk failures
• Across data center failures

Permanent Storage Media

• Main memory – not suitable

• Battery-backed memory
• Nonvolatile memory
– Flash, but also other technologies coming

• Disks
• Tapes

Permanent Storage Media

• For this course

• Battery-backed up memory
• Nonvolatile memory
– Flash, but also other technologies coming

• Disks
• Tapes

Overall Picture

File
System

user

OS

devices

disks Flash

Today’s Lecture – First Part

File
System

user

OS

devices

disks Flash

Today’s Lecture – Second Half

File
System

user

OS

devices

disks Flash

Next Lecture

File
System

user

OS

devices

disks Flash

What is a File?

• Un-interpreted collection of objects
– Represent related information

• Un-interpreted ~=
– File system does not know what data means
– Only application knows

What is a File?

• Un-interpreted collection of objects
– Represent related information

• Objects:
– Bytes
– Records
– …

• We will look at bytes (as in Linux)

Typed or Untyped?

• Typed = FS knows what the object means

• Advantages
– Invoke certain programs by default
– Prevent errors
– More efficient storage

Typed or Untyped?

• Typed = FS knows what the object means

• Disadvantages
– Can be inflexible (typecast)
– Can become a lot of code (many types)

• We will look at untyped files

An Aside: File Name Extensions = Types ?

• Pure convention, hint (Linux)
– User knows, system does not do anything with it

• Known to the system (Windows/Mac OS X)
– User knows, systems knows (and enforces)
– In Mac OS X also creator information

File System Primitives

• Access
• Concurrency
• Naming
• Protection

File System Primitives

• Access
• Concurrency
• Naming
• Protection

Main Access Primitives

• Create()
• Delete()

• Read()
• Write()

Create() and Delete()

• uid = Create([optional arguments])
– uid unique identifier, not human-readable string
– Creates an empty file

• Delete(uid)
– Deletes file with identifier uid
– Usually also deletes all of its contents

Read()

• Read(uid, buffer, from, to)
– Reads from file with identifier uid
– From byte from to byte to
• Can cause EOF (End-of-file) condition

– Into a memory buffer buffer
• previously allocated
• must be of sufficient size

Write()

• Write(uid, buffer, from, to)
– Write to file with identifier uid
– Into byte from to byte to
– From a memory buffer buffer

Sequential vs Random Access

• Read() and Write() in previous slide:
– Random-access primitives
– No connection between two successive accesses

• Sequential access is very common:
– Read from where you stopped reading
– Write to where you stopped writing
– In particular, whole file access is common

• For this reason, sequential access methods

Sequential Read()

• File system keeps file pointer fp (initially 0)
• Read(uid, buffer, bytes)
– Read from file with unique identifier uid
– Starting from byte fp
– Bytes bytes
– Into memory buffer buffer
– fp += bytes

Sequential can be built on Random

• Maintain fp-equivalent in user code

• myfp = 0
• Read(uid, buffer, myfp, myfp+bytes-1)
• myfp += bytes
• Read(uid, buffer, myfp, myfp+bytes-1)
• …

Can Random be built on Sequential?

• Not without an additional primitives

• Seek(uid, to)
– fp = to

Using Seek to Implement Random

• Read(uid, buffer, from, to)

• Seek(uid, from)
• Read(uid, buffer, to-from+1)

Random vs. Sequential

• Sequential access is very common
• All systems provide sequential access
• Some systems provide
– Only sequential access
– Plus Seek()

File System Primitives

• Access
• Concurrency
• Naming
• Protection

Concurrent (Sequential) Access

• Two processes access the same file
• What about fp?

The Notion of an “Open” File

• Open()
• Close()

Open()

• tid = Open(uid, [optional args])
– Creates an instance of file with uid
– Accessible by this process only
– With the temporary process-unique id tid
– fp is associated with tid, not with uid

• Close(tid)
– Destroys the instance

Putting Open() together with Read()

• tid = Open()
• Read(tid, buffer, bytes)
• Other Read()s or Write()s
• …
• Close(tid)

Semantics of Concurrent Open()s

• Separate instances altogether
– Write()s by one not visible to others

• Separate instances until Close()
– Write()s visible after Close()

• One single instance of the file
– Write()s visible immediately to others

• fp is private!

File System Primitives

• Access
• Concurrency
• Naming
• Protection

Naming Primitives

• Naming = mapping
human-readable string è uid

• Directory = collection of such mappings

Directory Structure

• Flat
• Two-level: [user] filename
• Hierarchical: /a/b/c …
– Root directory
– Working directory

/

a

b

foo.txt

c.txt

Naming Primitives

• Insert(string, uid)
• uid = Lookup(string)
• Remove(string, uid)

Directory Primitives

• CreateDirectory(string)
• DeleteDirectory(string)
• SetWorkingDirectory(string)
• string = ListWorkingDirectory()
• List(directory)

Hierarchical Directory Structures

• Tree

Hierarchical Directory Structures

• (Acyclic) Graph
– Allows sharing of uids under different names

Try (assuming foo
file exists)

> strace rm foo
(unlinkat call)

Hard Link

• Assume mapping (string1, uid) already exists
• HardLink(string2, uid)

• Insert(string2, uid)

• After HardLink, two mappings are equivalent
Try (assuming foo file exists)

> ln foo bar
> cat bar
> ls –i foo bar

Soft Link

• Assume mapping (string1, uid) exists
• SoftLink(string2, string1)

• Insert(string2, string1)

• After SoftLink, two mappings are different
Try (assuming foo file exists)

> ln -s foo bar
> cat bar
> stat foo bar; ls -al

Hard/Soft Link Differences

• HardLink(string2, uid)
• Remove(string1, uid)

• Mapping (string2, uid) remains

Hard/Soft Link Differences

• SoftLink(string2, string1)
• Remove(string1, uid)

• Mapping (string2, string1) dangling reference

Why Keep Graph Acyclic?

• (Later) disk storage reclamation by refcounts
• Cycles cause wasted disk space

How to Keep Graph Acyclic

• Soft links cannot make cycles
• Hard links can make cycles
• Do not allow hard links to directories, only to

leafs in the graph

Linux Primitives

• Collapses in a single interface
– Access
– Concurrency
– Naming

Linux

• Creat(string)
– uid = Create()
– Insert(string, uid)

• fd = Open(string, [optional args])
– uid = Lookup(string)
– fd = (tid =) Open(uid, [optional args])

• …
• uid is never visible at the user level

Careful with Links

• HardLink(string2, string1)
• SoftLink(string2, string1)
• Look very similar
• Are very different
– HardLink is a mapping to a file
– SoftLink is a mapping to a string

Summary

• Permanent storage
• File
• File system primitives
– Access, concurrency, naming (, protection)

• Linux file system primitives

Disk

Disk

track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation

Disk Terminology - Mechanical

• Arm assembly
• Arm
• Read/write head
• Platter

Disk Terminology - Information

• Sector
• Track
• Cylinder

Disk Characteristics

• Size – typically from 1.8” to 3.5”
• From tens of GB to a few TB

Disk Interface

• Accessible by sector only

• ReadSector (logical_sector_number, buffer)
• WriteSector(logical_sector_number, buffer)

• Logical_sector_number =
– Platter
– Cylinder or track
– Sector

A Look Ahead at File System Implementation

• The main task of the file system is to translate

• From user interface methods
• Read(uid, buffer, bytes)

• To disk interface methods
• ReadSector(logical_sector_number, buffer)

Two Small Simplifications - 1

• User Read() allows arbitrary number of bytes
• Simplify to only allowing Read() of a block
– Read(uid, block_number)

• A block is fixed-size

Two Small Simplifications - 2

• Typically
– Block size = 2^n * sector size

• For instance
– Block size = 4,096 bytes
– Sector size = 512 bytes

• For simplicity of presentation in class
– Block size = sector size

Two Small Simplifications

• Both of these easily implemented in libraries

Back to Disk Interface

• Accessible by sector only

• ReadSector (logical_sector_number, buffer)
• WriteSector(logical_sector_number, buffer)

• Logical_sector_number =
– Platter
– Cylinder or track
– Sector

Disk Access

• Head selection – select platter
• Seek – move arm over cylinder
• Rotational latency – move head over sector
• Transfer time – read from sector

Disk Access Time – Head Selection

• Electronic switch
• ~ nanoseconds

Disk Access Times – Seek Time

• Approx. linear in the number of cylinders
• 3 to 12 milliseconds

Disk Access Time – Rotational Latency

• Linear in the number of sectors
• Rotational speed: 4,500 -15,000 RPM
• One revolution = 1 / (RPM/60) seconds
• Average rotational latency = ½ revolution
• From 2 to 7.1 milliseconds

Disk Access Time - Transfer

• Effective transfer rate ~ 1 GB per second
• Sector = 512 B
• Transfer time ~ 0.5 microseconds

Disk Access Time

Component Time
Head Selection nanoseconds
Seek Time 3-12 milliseconds
Rotational Latency 2-7 milliseconds
Transfer Time microseconds
Controller Overhead < 1 millisecond

Disk Access Time - Observations

• Disk access time >> memory access time
• Seek time dominates
• Followed by rotational latency

Optimize Disk Access

• Rule 1: Do not access disk
• Use a cache

File System Cache (Buffer Cache)

• What?
– Keep recently accessed blocks in memory

• Why?
– Reduce latency
– Reduce disk load

• How?
– Reserve kernel memory for cache
– Cache entries: file blocks (of block size)

Read with a Cache

• If in cache
– Return data from cache

• If not
– Find free cache slot
– Initiate disk read
– When disk read completes, return data

Write with a Cache

• Always write in cache (8/16MB)
• How does it get to disk?
– Write-through
– Write-behind

Write-Through

• Write to cache
• Write to disk
• Return to user

Write-Behind

• Write to cache
• Return to user
• Later: write to disk

Write-Through vs. Write-Behind

• Response time:
– Write-behind is (much) better

• Disk load:
– Write-behind is (much) better
– Much data overwritten before it gets to disk

• Crash:
– Write-through is much better
– No “window of vulnerability”

In Practice

• Write-behind
• Periodic cache flush
• User primitive to flush data

Optimize Disk Access - 2

• Rule 2: Don’t wait for disk
• Read-ahead (or prefetching)
• Only for sequential access

Read-Ahead

• What?
– User request for block i of a file
– Also read block i+1 from disk

• How?
– Put block i+1 in the buffer cache

• Why?
– No disk I/O on (expected) user access to block i+1

Read-Ahead

• Works for sequential access

• Most access is sequential
• In Linux it is the default

Caveat about Read-Ahead

• Does not reduce number of disk I/Os
• In fact, could increase them (if not sequential)

• In practice, very often a win
• Linux always reads one block ahead

Optimize Disk Access - 3

• Rule 3: Minimize seeks
• Two approaches:
– Clever disk allocation
• Locate related data (same file) on same cylinder

– Clever scheduling
• Reorder requests to seek as little as possible

Clever Disk Allocation

• Allocate “related” blocks “together”

• “together”
– On the same cylinder
– On a nearby cylinder

• “related”
– Consecutive blocks in the same file
– Sequential access

Disk Scheduling

• FCFS – First-Come-First-Served
• SSTF – Shortest-Seek-Time-First
• SCAN
• C-SCAN
• LOOK
• C-LOOK

Disk Scheduling Illustration

• Initial position of the head = cylinder 53
• Queue of requests:

98, 193, 37, 122, 14, 124, 65, 67

FCFS

• Next request in the queue

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

0

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

45

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

130

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

37

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

276

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

37

122

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

361

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

37

122

14
0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

469

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

37

122

14

124

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

579

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

37

122

14

124

65

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

638

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

98

183

37

122

14

124

65 67

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

640

time

SSTF

• Shortest Seek Time First
• Pick “nearest” request in queue

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

0

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

12

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

14

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

37

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

44

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

37

14
0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

67

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

37

14

98

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

151

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

37

14

98

122

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

175

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

37

14

98

122 124

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

177

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

37

14

98

122 124

183

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

236

time

SSTF

• Very good seek times
• Subject to starvation
– Request on inside or outside can get starved

SCAN

• Continue moving head in one direction
– From O to MAX_CYL
– Then, from MAX_CYL to 0

• Pick up requests as you move head

Head = 53, moving down
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

0

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

16

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

39

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
00

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

53

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

65

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

118

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

65 67

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

120

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

65 67

98

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

151

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

65 67

98

122

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

175

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

65 67

98

122 124

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

177

time

Head = 53
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

65 67

98

122 124

183

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

236

time

C-SCAN

• Similar to SCAN
• Move head in a circular way
– From 0 to MAX_CYL; pick up requests as head moves
– From MAX_CYL to 0; no requests served

• More uniform wait time

Head = 53, moving down
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
37

14
0

199
183

124 122

98

67 65

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

187

time

C-LOOK

• Similar to C-SCAN
• Always move head
– From min_cyl to max_cyl; serve requests as head moves
– From max_cyl to min_cyl; no requests served

Head = 53, moving down
Queue = 98, 183, 37, 122, 14, 124, 65, 67

53
65 67

98

122 124

183

14

37

0

20

40

60

80

100

120

140

160

180

200

Cy
lin

de
r

153

time

In Practice

• Some variation of C-LOOK (circular look)

Optimize Disk Access Time - 4

• Rule 4: Avoid rotational latency

• Clever disk allocation
• Locate consecutive blocks of file on

consecutive sectors in a cylinder

When does what work well?

• Low load: clever allocation
• High load: disk scheduling

Why? – Under High Load

• Many scheduling opportunities
– Many requests in the queue

• Allocation gets defeated
– By interleaved requests for different files

Why? – Under Low Load

• Not much scheduling opportunity
– Not many requests in the queue

• Sequential user access -> sequential disk access

• Cache tends to reduce load

Summary

• Disk characteristics
– Access disk >> access memory
– Seek > Rotational Latency > Transfer

• Optimizations
– Cache
– Read-ahead
– Disk allocation
– Disk scheduling

