
Artificial Neural Networks (Gerstner). Exercises for week 8

Convolutional neural networks

Exercise 1. Backprop in convnet

Consider a very simple convolutional neural network with 3 dimensional input (e.g. RGB image), one
convolution layer with 5x5x3 filters, stride 1, non-linearity σ and one linear layer, i.e.

aijk = bk +
5∑

x=1

5∑
y=1

3∑
c=1

Ii+x−1,j+y−1,cw
(1)
xyck (1)

x
(1)
ijk = σ(aijk) (2)

ŷo =
∑
ijk

w
(2)
ijkox

(1)
ijk (3)

a. With loss L = 1
2

∑
o(to − ŷo)

2, compute ∂L/∂w1111.

b. Compare your result to the one you obtain with a dense (fully-connected) layer, i.e. ak =

bk +
∑

x

∑
y

∑
c Ixycw

(1)
xyck, x

(1)
k = σ(ak) and ŷo =

∑
k w

(2)
ok x

(1)
k .

c. How does the result for the convolutional network change, if you introduce a max pooling layer
after the convolutional layer?

Exercise 2. Computing volume sizes

Given a volume of width n, height n and depth c.

a. Show that the convolution with k filters of size f × f × c with stride s and padding p leads to a
new volume of size (

n+ 2p− f

s
+ 1

)
×
(
n+ 2p− f

s
+ 1

)
× k . (4)

b. What padding p do you have to choose such that the input and output volumes have the same
width and depth for stride s = 1. Check you result for the special case of n = 4 and f = 3.

Exercise 3. Reverse-mode automatic differentiation

The backprop algorithm derived above is a special case of an algorithm called Reverse-mode automatic
differentation. Modern deep learning software packages rely on this algorithm, as it allows flexible ex-
ploration of different architectures and cost functions without having to adapt the standard BackProp
algorithm for each special case. To understand reverse-mode automatic differentation we look at the
function

f(x1, x2, θ) = sin(θx1 + x2) + θx22 . (5)

Using the simple functions f1(x, y) = xy, f2(x, y) = x + y, f3(x) =
sin(x), f4(x) = x2, f5(x, y) = xy and f6(x, y) = x+ y, we can write the
above function as

f(x1, x2, θ) = f6(f3(f2(f1(x1, θ), x2)), f5(θ, f4(x2))) , (6)

that has the Abstract Syntax Tree (AST) or Computation Graph de-
picted on the right.

x1 θ x2

f1

f2

f3

f6

f4

f5

The reverse-mode Automatic Differentation algorithm proceeds now as follows:



AutoDiff

1. Determine all children of the variable(s) of interest. In the example, using
θ, this includes f1, f2, f3, f5, f6.

2. Find a reverse ancestral (backwards) schedule of nodes. All of the children of
a node should be scheduled before the node itself. In the previous example
with θ, the schedule could be f6, f3, f2, f1, f5, θ. For the full graph, this
could be f6, f3, f2, f1, x1, f5, θ, f4, x2.

3. Start with the first node n1 in the reverse schedule and define tn1 = 1, e.g.
tf6 = 1.

4. For the next node n in the reverse schedule, find the child nodes ch(n). Then
define

tn =
∑

c∈ch(n)

∂fc
∂fn

tc . (7)

5. The total derivative of f with respect to node n is given by tn.

a. Show that tθ = ∂f/∂θ by following the steps of the algorithm, i.e. by computing t6, t3, . . ., and
comparing it to the result you get by differentiating Eq. 5 manually.

b. Draw the AST of a fully connected network with 2 hidden layers and a single output, and
convince yourself that the backpropagation algorithm is a special case of reverse-mode automatic
differentation.

c. Draw the AST of a network with one 1D convolutional layer (with filter length 3 and stride
1), followed by one max-pooling layer (with k = 2), one dense layer, and a single output. For
simplicity, assume only 1 filter is used in the convolutional layer.


