

Networks Out of Control: Real-World Networks 2

Social Network

- Nodes are people. (Undirected) edges are connections representing friendships, acquaintances, business relationships, etc.
- Properties:
- (Small) Diameter
- Clustering
- Navigability
- Homophily

Small worlds

distance
density of shortcuts

Small Diameter in Social Networks

- To make our proof easier, consider a variant of WS(n, $1, \mathrm{p}$)

■ Let G be a cylce + a random perfect matching.

- Call edges in the perfect matching "chords"
- We will show that this network has small diameter!
- $\log (\mathrm{n})-\circ(\mathrm{l})<\operatorname{diam}(\mathrm{G})<\log (\mathrm{n})+\log (\log (\mathrm{n}))+\circ(\mathrm{l})$

+ Intuition:

\because

- Intuition: most chords go "far"
- i.e., they find a new vertex, that is sufficiently far from any vertex discovered thus far.
- Proof:

■ Step l:Look at "short" distances (1/5)log(n), and show that "local chords" are rare - i.e., most edges go somewhere new.

- Step 2: Look at "long" distances up to (3/5)log(n), and show that "local chords" are still relatively rare
- Use above to show that expanding from any two vertices, the process "collides" after few steps.

Small Diameter in Random Graphs

- Similar results (with similar, but more involved, proofs) hold for $G(n, p), G(n, r)$, and $W S(n, k, p)$.

■ $\operatorname{Diam}\{\mathbf{G}(\mathrm{n}, \mathrm{p})\}=(1+\mathrm{o}(\mathrm{l}) \log (\mathrm{n}) / \log (\mathrm{np})$ a.a.s.

- $\operatorname{Diam}\{\mathbf{G}(\mathrm{n}, \mathrm{r})\}$ in $(\mathrm{l}-\mathrm{eps}, 1+e \mathrm{eps}) \log (\mathrm{n}) / \log (\mathrm{r}-\mathrm{l})$ a.a.s.

■ $\operatorname{Avg} \operatorname{Dist}\{\mathrm{WS}(\mathrm{n}, \mathrm{k}, \mathrm{p})\}=\log (\mathrm{n} / \mathrm{k}) / \log (\mathrm{k})$ a.a.s.

Homophily

- We tend to be similar to our friends.

Homophily

- Can we measure homophily?

■ For two "types", let p be the fraction of type A, and q be the fraction of type B in the network.

- Select an edge uniformly at random. If there is no homophily:
- The probability that we selected an A-A edge:
- The probability that we selected a B-B edge:
- The probability that we selected a A-B or B-A edge:
- We say that there is homophily if the percentage of A-B or B-A edges is "significantly" less than 2pq.
- Here we mean statistical significance as some deviation is expected just due to randomness.
■ E.g., in the small example: $q=1 / 3, p=2 / 3$, so $2 p q=8 / 18$, but we only observe 5 cross-edges.
- Can also have inverse homophily (or heterophily).

■ Easily generalizable to more than two types.

Homophily and Clustering

- Clustering is the observed result of homophily.
- Take the extreme case where there are no A-B edges.
- Then A-A edges and B-B edges are naturally more dense -> higher clustering.

Homophily

■ Why does it exist?

- Selection - the tendency of people to form friendships with others who are like them.
- Different scales and levels of intentionality, includes both
- active selection: becoming friends with a classmate who is also interested in sports, and
- passive selection: having friends in the same socio-economic class because you live in the same neighborhood.
■ Characteristics Drive Links
- Social Influence - the tendency of people to become more like their friends.
- For example, learning to ski because your friends already ski.
- Related to Affiliation Networks and Cascades (future lectures).

■ Links Drive Characteristics

Homophily

- When is homophily is due to selection vs social influence?
- It is not possible to tell from a single snapshot of the network - must use a longitudinal study in which social behaviors and network ties tracked over a long period of time.
- Allows us to see if behavioral changes occur before or after a social tie is formed.

Homophily

- Example studies:
- Teenager drug use:
- Selection comparable or greater than social influence!
- Implications on realistic interventions.
- Longitudinal study on obesity over 32 years:
- Found homophily when classify types by obese and non-obese.
- Social influence comparable or greater than selection!
- Implications on realistic interventions
$+$

Homophily

Homophily

microMOTIVES and MACRObehavior THOMAS C. SCHELLING

Neighborhood Model

- There are two types of individuals, living in a grid.
- An individual's neighborhood consists of the (up to) 8 squares that surround it.
- An agent is satisfied if at least a p fraction of its neighbors are of the same type.
- Example: p = 50\%

X	X	0	X	0
	0	0	0	0
X	X			
X	0	X	X	X
X	0	0		0

Neighborhood Model

- There are two types of individuals, living in a grid.
- An individual's neighborhood consists of the (up to) 8 squares that surround it.
- An agent is satisfied if at least a p fraction of its neighbors are of the same type.
- Example: p = 50\%

Neighborhood Model

- There are two types of individuals, living in a grid.
- An individual's neighborhood consists of the (up to) 8 squares that surround it.
- An agent is satisfied if at least a p fraction of its neighbors are of the same type.
- Example: p = 50\%

Neighborhood Model

- There are two types of individuals, living in a grid.
- An individual's neighborhood consists of the (up to) 8 squares that surround it.
- An agent is satisfied if at least a p fraction of its neighbors are of the same type.
- Example: p = 50\%

X	X^{*}	O	X^{*}	O
	O	O	O	O
X	X			
X	O^{*}	X	X	X
X	O	O		O^{*}

Neighborhood Model

- There are two types of individuals, living in a grid.
- An individual's neighborhood consists of the (up to) 8 squares that surround it.
- An agent is satisfied if at least a p fraction of its neighbors are of the same type.
- Example: p = 50\%
- All dissatisfied neighbors move to a random unoccupied cell.
- Repeat.

X		O		O
O	O	O	O	O
X	X	X		X
X		X	X	X
X	O	O	O	

Neighborhood Model

- Are there a fixed points?
- (Often) yes (depends on number of blank squares and p).
- Given a fixed point, we can consider its homophily - think of each square as a node, with an edge to each of the eight squares surrounding it.
- What kind of fixed points exist with respect to homophily?

■ Has extreme homophily:

- Segregated (upper and lower triangles)
- Has no homophily:
- Integrated (checkered)
- If we initialize randomly, do we converge to a point with high or low homophily?

Neighborhood Model

- Similar results are observed when we modify the rules:
- An agent is satisfied if at least k neighbors are of its same type (regardless of how many neighbors are not of the same type).
- More "aggregation" than "segregation", but the end result is the same.
- Different percentages (or number of) types.

■ Tends to exacerbate segregation/aggregation as "rare" types have to cluster together in order to be satisfied.

- Suggestive conclusions:
- segregation does not require extreme negative opinions.

■ on the other hand, "positive" in-group behavior can be just as harmful on a large scale as "negative" out-group behavior.

- before segregation, most individuals were satisfied can incentivize them to not move?

X	X^{*}	O	X^{*}	O
	O	O	O	O
X	X			
X	O^{*}	X	X	X
X	O	O		O^{*}

$+$
 Social Networks: Small-World

- [Milgram 1969] experiment to study the average distance between two nodes in a social network.

$$
{ }^{20} \mathrm{~F}
$$

The chains progress from the starting position (Omaha) to the target area (Boston) with each remove. Diagram shows the number of miles from the target area, with the distance of each remove averaged over completed and uncompleted chains.

- Paths are not just short - they can be found!

Social Networks: Small-World

■ A decentralized routing algorithm takes local (nodelevel) decisions on where to forward a message next based only on

- the geographic location of the current node and its neighbors,
- the geographic location of the target node, and

■ What do we mean by " ${ }^{\text {geographic location'"? }}$

Watts-Strogatz on a Grid

- There are n^{2} nodes arranged in a square grid in R^{2}, and we endow the space with the l_{1} norm.
- Nodes know the positions of themselves, the target, and their neighbors.
- Every node v connects to all nodes u such that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{r}$.
- Every node has k additional edges
 connected to uniformly random endpoints u.

Is Watts-Strogatz on a Grid Navigable?

- Note: the distance between a (randomly selected) source and target is $\mathrm{O}(\mathrm{n})$ a.a.s.
- Our goal: Reach the target in $\mathrm{O}\left(\mathrm{n}^{\delta}\right)$ steps for $\delta \ll 1$.
- Our approach:
- Consider a ball B of nodes within some "short" distance n^{δ} to the target.
- Within the ball, can reach the target in n^{δ} steps.
- Can we reach the ball quickly?
- Without shortcuts takes $O\left(n-n^{\delta}\right)$ steps to reach the ball a.a.s.
- Must make use of shortcuts, in particular, need to show that at least one of the first $O\left(n^{\delta}\right)$ nodes has a shortcut to B.

Is Watts-Strogatz on a Grid Navigable?

- How many vertices are there in B? $\quad 1+\sum_{j=1}^{n^{\delta}} 4 j \leq 4 n^{2 \delta}$
- What is the probability that a vertex v has a shortcut into B ?

$$
\mathbb{P}\left[E_{v}\right]=r \frac{|B|}{n^{2}} \leq 4 r n^{2 \delta-2}
$$

\square What is the probability that any vertex in the first $t\left(=\lambda n^{\delta}\right)$ steps has a shortcut into B?

$$
\mathbb{P}\left[E=\cup_{1 \leq i \leq t} E_{v_{i}}\right]
$$

\square If $3 \delta-2<0$ (i.e., $\delta<2 / 3$) this probability is vanishing.

■ Thus, routing takes (at least!) $\mathrm{n}^{2 / 2}$ steps!

Distance-Proportional

Watts-Strogatz on a Grid

- There are n^{2} nodes arranged in a square grid in R^{2}, and we endow the space with the l_{1} norm.
- Every node v connects to all nodes u such that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{r}$.
- Every node has k additional edges connected i.i.d. to u proportionally to $\mathrm{d}(\mathrm{u}, \mathrm{v})^{-\gamma}$ for constant $\gamma \geq 0$.

$$
\frac{d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}
$$

Is Distance-Proportional Watts-Strogatz Navigable?

■ When $\gamma=0$
\square The model is exactly the original WS model on the grid, so still not navigable!
■ In fact, a similar proof shows it is not navigable for $\gamma<2$; the number of steps is at least n^{δ} for $\delta=(2-\gamma) / 3$.
$■$ What is the problem?
■ Shortcuts are "too random"
-What about $\gamma>2$?

Is Distance-Proportional Watts-Strogatz Navigable?

$$
\mathbb{P}\{d(u, v)>d\} \leq
$$

$■$ Let $E_{v i}$ denote the event that, at step i the vertex v_{i} has a shortcut of length at least $n^{1-\beta}$, and E the event that this occurs in the first λn^{β} steps.

$$
\mathbb{P}[E] \leq \sum_{i=1}^{\lambda_{n}{ }^{\beta}} \mathbb{P}\left[E_{v_{i}}\right]
$$

$■$ For this to not be vanishing, β must be at least $(\gamma-2) /(\gamma-1)$.

- Thus, the message can at best find shortcuts of distance less than $n^{1-\beta}$ in the first λn^{β} steps, for a total progress $O(n)$, so at least $O\left(n^{\beta}\right)$ steps are required.

Is Distance-Proportional Watts-Strogatz Navigable?

-When $\gamma<2$, shortcuts are "too random"
■When $\gamma>2$, shortcuts are "too short"
$■$ Is there a sweet-spot at $\gamma=2$?

Is Distance-Proportional Watts-Strogatz Navigable?

- Show constructive proof for $\mathrm{r}=\mathrm{l}$ and $\mathrm{k}=\mathrm{l}$ (this is the worst case) with steps $\mathrm{O}\left((\log \mathrm{n})^{2}\right)$.
- At each time step, send to the neighbor that is closest to the target.
- Note: this always terminates as progress is made at every step, if only through the lattice.

■ Definitions:
\square The annuli U_{j} is the set of nodes at lattice distance in $\left[2^{j}+1,2^{j+1}\right]$ from the target.

- The ball B_{i} is the union of all U_{j} with $j<i$.
- The algorithm is in phase j when the message is in U_{j}
$■$ Note: there are at most log n phases.

Is Distance-Proportional Watts-Strogatz Navigable?

■ Approach: Show that we progress quickly from phase to phase.

- If we are in phase j at node u, then to end the phase, we must pass the message to a node in B_{j}.
- The probability of connecting to B_{j} is at least:
- The size of B_{j} : $\left|B_{j}\right| \geq 2^{2 j-1}$

$$
\left|B_{j}\right| \cdot \frac{\max _{v \in B_{j}} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}
$$

■ The maximum distance: $\max _{v \in B_{j}} d(u, v)^{-\gamma} \leq 2^{j+1}+2^{j}<2^{j+2}$

- The normalizing constant is:

Is Distance-Proportional Watts-Strogatz Navigable?

Is Distance-Proportional Watts-Strogatz Navigable?

■ Approach: Show that we progress quickly from phase to phase.

- If we are in phase j at node u, then to end the phase, we must pass the message to a node in B_{j}.
- The probability of connecting to B_{j} is at least:
- The size of B_{j} : $\left|B_{j}\right| \geq 2^{2 j-1}$

$$
\left|B_{j}\right| \cdot \frac{\max _{v \in B_{j}} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}
$$

■ The maximum distance: $\max _{v \in B_{j}} d(u, v)^{-\gamma} \leq 2^{j+1}+2^{j}<2^{j+2}$
■ The normalizing constant is: $\quad \sum_{u \neq v} d(u, v)^{-\gamma} \leq 4 \ln (6 n)$

Is Distance-Proportional Watts-Strogatz Navigable?

■Therefore, we change phases with probability on the order of $1 / \log (n)$.

- In expectation, it takes $\mathrm{O}(\log (\mathrm{n}))$ steps to change phases, and as we noted before, there are $\log (n)$ phases, hence we have an efficient decentralized routing algorithm that requires $\mathrm{O}\left((\log n)^{2}\right)$ steps!

Is Distance-Proportional Watts-Strogatz Navigable?

-Navigability:
\square When $\gamma<2$, shortcuts are "too random"
\square When $\gamma>2$, shortcuts are "too short"
\square There a sweet-spot at $\gamma=2$!

- In general, can have a d-dimensional lattice, and have a similar phase transition at $\gamma=\mathrm{d}$.
- Can also take other underlying topologies (e.g., see a case for trees in the notes).

$+$
 Are real-world networks Navigable?

Are real-world networks Navigable?

Are real-world networks Navigable?

- Phase transition at $\gamma=1$ with respect to the rank!

distance d

Are real-world networks Navigable?

- LiveJournal data:

rank r

Are real-world networks Navigable?

- Does this mean we can reach any target in a social network via decentralized search?
- Attempts to replicate Milgram's experiment have had mixed results.
- In particular, completion rates vary dramatically:
- Highest for individuals with high social visibility, e.g., professors and journalists.

■ In our models, the networks were (effectively) symmetric this need not be the case in general!
$+$

Are real-world networks Navigable?

