

Networks Out of Control: Real-World Networks 2

+ Social Network

■ Nodes are people. (Undirected) edges are connections representing friendships, acquaintances, business relationships, etc.

■ Properties:

- (Small) Diameter
- Clustering
- Navigability
- Homophily

Clustering and Distance in SW Network

density of shortcuts

Small Diameter

Small Diameter in Social Networks

- To make our proof easier, consider a variant of WS(n, l,p)
 - Let G be a cylce + a random perfect matching.
 - Call edges in the perfect matching "chords"
- We will show that this network has small diameter!
 - $\log(n) o(1) < diam(G) < \log(n) + \log(\log(n)) + o(1)$

+ Intuition:

- Intuition: most chords go "far"
- i.e., they find a new vertex, that is sufficiently far from any vertex discovered thus far.

■ Proof:

- Step 1: Look at "short" distances (1/5)log(n), and show that "local chords" are rare i.e., most edges go somewhere new.
- Step 2: Look at "long" distances up to (3/5)log(n), and show that "local chords" are still relatively rare
- Use above to show that expanding from any two vertices, the process "collides" after few steps.

Small Diameter in Random Graphs

■ Similar results (with similar, but more involved, proofs) hold for G(n,p), G(n,r), and WS(n,k,p).

- $Diam{G(n,p)} = (1 + o(1) log(n) / log(np) a.a.s.$
- Diam $\{G(n,r)\} \in (1-eps, 1+eps) \log(n) / \log(r-1)$ a.a.s.
- AvgDist{WS(n,k,p)} = log(n/k) / log(k) a.a.s.

Homophily

Homophily

■ We tend to be similar to our friends.

Homophily

- Can we measure homophily?
 - For two "types", let p be the fraction of type A, and q be the fraction of type B in the network.
 - Select an edge uniformly at random. If there is no homophily:
 - The probability that we selected an A-A edge:
 - The probability that we selected a B-B edge:
 - The probability that we selected a A-B or B-A edge:
- We say that there is homophily if the percentage of A-B or B-A edges is "significantly" less than 2pq.
 - Here we mean statistical significance as some deviation is expected just due to randomness.
 - E.g., in the small example: q = 1/3, p = 2/3, so 2pq = 8/18, but we only observe 5 cross-edges.
 - Can also have *inverse homophily* (or *heterophily*).
 - Easily generalizable to more than two types.

Homophily and Clustering

- Clustering is the *observed* result of homophily.
 - Take the extreme case where there are no A-B edges.
 - Then A-A edges and B-B edges are naturally more dense -> higher clustering.

+ Homophily

- Why does it exist?
 - Selection the tendency of people to form friendships with others who are like them.
 - Different scales and levels of intentionality, includes both
 - active selection: becoming friends with a classmate who is also interested in sports, and
 - passive selection: having friends in the same socio-economic class because you live in the same neighborhood.
 - Characteristics Drive Links
 - Social Influence the tendency of people to become more like their friends.
 - For example, learning to ski because your friends already ski.
 - Related to Affiliation Networks and Cascades (future lectures).
 - Links Drive Characteristics

Homophily

- When is homophily is due to selection vs social influence?
 - It is not possible to tell from a single snapshot of the network must use a *longitudinal study* in which social behaviors and network ties tracked over a long period of time.

■ Allows us to see if behavioral changes occur *before* or *after* a

social tie is formed.

+ Homophily

- Example studies:
 - Teenager drug use:
 - Selection comparable or greater than social influence!
 - Implications on realistic interventions.
 - Longitudinal study on obesity over 32 years:
 - Found homophily when classify types by obese and non-obese.
 - Social influence comparable or greater than selection!
 - Implications on realistic interventions

Homophily

+ Homophily

MICROMOTIVES AND MACROBEHAVIOR

THOMAS C. SCHELLING

"Before Freakonomics and The Tipping Point, there was Micromotives and Macrobehavior." —BARRY NALEBUFF, coauthor of Thinking Strategically

- There are two *types* of individuals, living in a grid.
- An individual's *neighborhood* consists of the (up to) 8 squares that surround it.

■ An agent is *satisfied* if at least a p fraction of its neighbors are of the same type.

■ Example: p = 50%

- There are two *types* of individuals, living in a grid.
- An individual's *neighborhood* consists of the (up to) 8 squares that surround it.

■ An agent is *satisfied* if at least a p fraction of its neighbors are of the same type.

■ Example: p = 50%

- There are two *types* of individuals, living in a grid.
- An individual's *neighborhood* consists of the (up to) 8 squares that surround it.
- An agent is *satisfied* if at least a p fraction of its neighbors are of the same type.
 - Example: p = 50%

- There are two *types* of individuals, living in a grid.
- An individual's *neighborhood* consists of the (up to) 8 squares that surround it.

■ An agent is *satisfied* if at least a p fraction of its neighbors are of the same type.

■ Example: p = 50%

- There are two *types* of individuals, living in a grid.
- An individual's *neighborhood* consists of the (up to) 8 squares that surround it.

■ An agent is *satisfied* if at least a p fraction of its neighbors are of the same type.

- Example: p = 50%
- All dissatisfied neighbors move to a random unoccupied cell.
- Repeat.

- Are there a fixed points?
 - Often) yes (depends on number of blank squares and p).
- Given a fixed point, we can consider its homophily think of each square as a node, with an edge to each of the eight squares surrounding it.
- What kind of fixed points exist with respect to homophily?
 - Has extreme homophily:
 - Segregated (upper and lower triangles)
 - Has no homophily:
 - Integrated (checkered)
- If we initialize randomly, do we converge to a point with high or low homophily?

- Similar results are observed when we modify the rules:
 - An agent is satisfied if at least k neighbors are of its same type (regardless of how many neighbors are not of the same type).
 - More "aggregation" than "segregation", but the end result is the same.
 - Different percentages (or number of) types.
 - Tends to exacerbate segregation/aggregation as "rare" types have to cluster together in order to be satisfied.
- Suggestive conclusions:
 - segregation does not require extreme negative opinions.
 - on the other hand, "positive" in-group behavior can be just as harmful on a large scale as "negative" out-group behavior.
 - before segregation, most individuals were satisfied can incentivize them to not move?

Navigability

Social Networks: Small-World

■ [Milgram 1969] experiment to study the *average distance* between two nodes in a social network.

■ Paths are not just short – they can be found!

Social Networks: Small-World

- A decentralized routing algorithm takes local (nodelevel) decisions on where to forward a message next based only on
 - the geographic location of the current node and its neighbors,
 - the geographic location of the target node, and
- What do we mean by ``geographic location''?

Watts-Strogatz on a Grid

- There are n² nodes arranged in a square grid in R², and we endow the space with the l₁ norm.
 - Nodes know the positions of themselves, the target, and their neighbors.
- Every node v connects to all nodes u such that $d(u,v) \le r$.
- Every node has k additional edges connected to uniformly random endpoints u.

Is Watts-Strogatz on a Grid Navigable?

- Note: the distance between a (randomly selected) source and target is O(n) a.a.s.
- Our goal: Reach the target in $O(n^{\delta})$ steps for $\delta << 1$.
- Our approach:
 - Consider a ball B of nodes within some "short" distance n^{δ} to the target.
 - Within the ball, can reach the target in n^{δ} steps.
 - Can we reach the ball quickly?
 - Without shortcuts takes $O(n n^{\delta})$ steps to reach the ball a.a.s.
 - Must make use of shortcuts, in particular, need to show that at least one of the first $O(n^{\delta})$ nodes has a shortcut to B.

Is Watts-Strogatz on a Grid Navigable?

- How many vertices are there in B? $1 + \sum_{i=1}^{n^{\delta}} 4j \le 4n^{2\delta}$
- What is the probability that a vertex v has a shortcut into B?

$$\mathbb{P}[E_{v}] = r \frac{|B|}{n^{2}} \le 4rn^{2\delta - 2}$$

■ What is the probability that any vertex in the first $t = \lambda n^{\delta}$ steps has a shortcut into B?

$$\mathbb{P}[E = \bigcup_{1 \leq i \leq t} E_{v_i}]$$

- If $3\delta 2 < 0$ (i.e., $\delta < \frac{3}{3}$) this probability is vanishing.
- Thus, routing takes (at least!) n^½ steps!

Distance-Proportional Watts-Strogatz on a Grid

- There are n² nodes arranged in a square grid in R², and we endow the space with the l₁ norm.
- Every node v connects to all nodes u such that $d(u,v) \le r$.
- Every node has k additional edges connected i.i.d. to u proportionally to $d(u,v)^{-\gamma}$ for constant $\gamma \ge 0$.

$$\frac{d(u,v)^{-\gamma}}{\sum_{u\neq v}d(u,v)^{-\gamma}}$$

Is Distance-Proportional Watts-Strogatz Navigable?

- When $\gamma = 0$
 - The model is exactly the original WS model on the grid, so still not navigable!
 - In fact, a similar proof shows it is not navigable for $\gamma < 2$; the number of steps is at least n^{δ} for $\delta = (2 \gamma)/3$.
- What is the problem?
 - Shortcuts are ``too random"
- What about $\gamma > 2$?

+

Is Distance-Proportional Watts-Strogatz Navigable?

$$\mathbb{P}\big\{d\big(u,v\big) > d\big\} \le$$

■ Let E_{vi} denote the event that, at step i the vertex v_i has a shortcut of length at least $n^{1-\beta}$, and E the event that this occurs in the first λ n^{β} steps.

$$\mathbb{P}[E] \leq \sum_{i=1}^{\lambda n^{\beta}} \mathbb{P}[E_{v_i}]$$

- For this to not be vanishing, β must be at least $(\gamma-2)/(\gamma-1)$.
- Thus, the message can at best find shortcuts of distance less than $n^{1-\beta}$ in the first λ n^{β} steps, for a total progress O(n), so at least $O(n^{\beta})$ steps are required.

- When γ < 2, shortcuts are ``too random''
- When $\gamma > 2$, shortcuts are ``too short"
- Is there a sweet-spot at $\gamma = 2$?

- Show constructive proof for r=1 and k=1 (this is the worst case) with steps $O((\log n)^2)$.
- At each time step, send to the neighbor that is closest to the target.
 - Note: this always terminates as progress is made at every step, if only through the lattice.

■ Definitions:

- The annuli U_j is the set of nodes at lattice distance in $[2^{j+1}, 2^{j+1}]$ from the target.
- The ball B_i is the union of all U_j with j < i.
- lacktriangle The algorithm is in phase j when the message is in U_j
- Note: there are at most log n phases.

- Approach: Show that we progress quickly from phase to phase.
- If we are in phase j at node u, then to end the phase, we must pass the model.

 ■ The probability of connecting to B_j is at least: $|B_j| \cdot \frac{\max_{v \in B_j} d(u,v)^{-\gamma}}{\sum_{u \neq v} d(u,v)^{-\gamma}}$

$$|B_j| \cdot \frac{\max_{v \in B_j} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}$$

- The size of B_i : $|B_i| \ge 2^{2j-1}$
- The maximum distance: $\max_{v \in B_i} d(u,v)^{-\gamma} \le 2^{j+1} + 2^j < 2^{j+2}$
- The normalizing constant is:

- Approach: Show that we progress quickly from phase to phase.
- If we are in phase j at node u, then to end the phase, we must pass the incomes

 The probability of connecting to B_j is at least: $|B_j| \cdot \frac{\max_{v \in B_j} d(u, v)^{-\gamma}}{\sum_{u \in A} d(u, v)^{-\gamma}}$ we must pass the message to a node in B_i.

$$|B_j| \cdot \frac{\max_{v \in B_j} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}$$

- The size of B_i : $|B_i| \ge 2^{2j-1}$
- The maximum distance: $\max_{v \in B_i} d(u,v)^{-\gamma} \le 2^{j+1} + 2^j < 2^{j+2}$
- The normalizing constant is: $\sum_{u\neq v} d(u,v)^{-\gamma} \le 4\ln(6n)$

- Therefore, we change phases with probability on the order of 1/log(n).
- In expectation, it takes O(log(n)) steps to change phases, and as we noted before, there are log(n) phases, hence we have an efficient decentralized routing algorithm that requires O((log n)²) steps!

- Navigability:
 - When γ < 2, shortcuts are ``too random''
 - When $\gamma > 2$, shortcuts are ``too short''
 - There a sweet-spot at $\gamma = 2!$
- In general, can have a d-dimensional lattice, and have a similar phase transition at $\gamma = d$.
- Can also take other underlying topologies (e.g., see a case for trees in the notes).

+

Are real-world networks Navigable?

■ Phase transition at $\gamma = 1$ with respect to the rank!

distance d

- Does this mean we can reach any target in a social network via decentralized search?
- Attempts to replicate Milgram's experiment have had mixed results.
- In particular, completion rates vary dramatically:
 - Highest for individuals with high social visibility, e.g., professors and journalists.
- In our models, the networks were (effectively) symmetric this need not be the case in general!

