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n  Nodes are people. (Undirected) edges are connections 
representing friendships, acquaintances, business 
relationships, etc.  

n  Properties: 
n  (Small) Diameter 

n  Clustering 

n  Navigability 

n  Homophily 

Social Network 
2 
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Clustering and Distance in SW Network 

distance 

density of shortcuts 

clustering coefficient 

Small worlds 
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Small Diameter 
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n  To make our proof easier, consider a variant of WS(n,1,p) 
n  Let G be a cylce + a random perfect matching. 

n  Call edges in the perfect matching “chords” 

n  We will show that this network has small diameter! 
n  log(n) – o(1) < diam(G) < log(n) +log(log(n)) + o(1) 

 

 

Small Diameter in Social Networks 
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n  Intuition: most chords go “far” 

•  i.e., they find a new vertex, that is sufficiently far from any vertex 
discovered thus far.  

n  Proof: 

n  Step 1: Look at “short” distances (1/5)log(n), and show 
that “local chords” are rare – i.e., most edges go 
somewhere new. 

n  Step 2: Look at “long” distances up to (3/5)log(n), and 
show that “local chords” are still relatively rare 

n  Use above to show that expanding from any two 
vertices, the process “collides” after few steps.  



+

n  Similar results (with similar, but more involved, proofs) hold 
for G(n,p), G(n,r), and WS(n,k,p). 

n  Diam{G(n,p)} = (1 + o(1) log(n) / log(np) a.a.s. 

n  Diam{G(n,r)} \in (1 – eps, 1+ eps) log(n) / log(r-1) a.a.s. 

n  AvgDist{WS(n,k,p)} = log(n/k) / log(k) a.a.s. 

 

Small Diameter in Random Graphs 
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Homophily 
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Homophily 

n  We tend to be similar to our friends. 
 



+
Homophily 

n  Can we measure homophily? 
n  For two “types”, let p be the fraction of type A, and q be the 

fraction of type B in the network. 

n  Select an edge uniformly at random. If there is no homophily: 

n  The probability that we selected an A-A edge:              q2 

n  The probability that we selected a B-B edge:                  p2 

n  The probability that we selected a A-B or B-A edge:       2pq 

n  We say that there is homophily if the percentage of A-B or B-A 
edges is “significantly” less than 2pq. 
n  Here we mean statistical significance as some deviation is 

expected just due to randomness. 

n  E.g., in the small example: q = 1/3, p = 2/3, so 2pq = 8/18, but we 
only observe 5 cross-edges. 

n  Can also have inverse homophily (or heterophily). 

n  Easily generalizable to more than two types. 



+
Homophily and Clustering 

n  Clustering is the observed result of homophily. 
n  Take the extreme case where there are no A-B edges.  

n  Then A-A edges and B-B edges are naturally more dense -> 
higher clustering. 
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Homophily 

n  Why does it exist? 
n  Selection – the tendency of people to form friendships with others who are 

like them. 

n  Different scales and levels of intentionality, includes both  

n  active selection: becoming friends with a classmate who is also 
interested in sports, and  

n  passive selection: having friends in the same socio-economic class 
because you live in the same neighborhood. 

n  Characteristics Drive Links 

n  Social Influence – the tendency of people to become more like their 
friends. 

n  For example, learning to ski because your friends already ski.  

n  Related to Affiliation Networks and Cascades (future lectures). 

n  Links Drive Characteristics 
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Homophily 

n  When is homophily is due to selection vs social influence? 
n  It is not possible to tell from a single snapshot of the network – must 

use a longitudinal study in which social behaviors and network ties 
tracked over a long period of time. 

n  Allows us to see if behavioral changes occur before or after a 
social tie is formed. 
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Homophily 

n  Example studies: 
n  Teenager drug use:  

n  Selection comparable or greater than social influence! 

n  Implications on realistic interventions. 

n  Longitudinal study on obesity over 32 years: 

n  Found homophily when classify types by obese and non-obese. 

n  Social influence comparable or greater than selection! 

n  Implications on realistic interventions 
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Homophily 
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Homophily 
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Schelling’s  
Neighborhood Model 



+
Neighborhood Model 

n  There are two types of individuals, living in a grid. 

n  An individual’s neighborhood consists of the (up to) 8 squares 
that surround it. 

n  An agent is satisfied if at least a p fraction of its neighbors are of 
the same type. 
n  Example: p = 50% 
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Neighborhood Model 

n  There are two types of individuals, living in a grid. 

n  An individual’s neighborhood consists of the (up to) 8 squares 
that surround it. 

n  An agent is satisfied if at least a p fraction of its neighbors are of 
the same type. 
n  Example: p = 50% 

n  All dissatisfied neighbors move 
to a random unoccupied cell. 

n  Repeat. 
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Neighborhood Model 

n  Are there a fixed points? 
n  (Often) yes (depends on number of blank squares and p). 

n  Given a fixed point, we can consider its homophily – think of 
each square as a node, with an edge to each of the eight 
squares surrounding it. 

n  What kind of fixed points exist with respect to homophily? 
n  Has extreme homophily: 

n  Segregated (upper and lower triangles) 

n  Has no homophily: 

n  Integrated (checkered) 

n  If we initialize randomly, do we converge to a point with high or 
low homophily? 
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Neighborhood Model 

n  Similar results are observed when we modify the rules: 
n  An agent is satisfied if at least k neighbors are of its same type 

(regardless of how many neighbors are not of the same type). 

n  More “aggregation” than “segregation”, but the end result is the 
same. 

n  Different percentages (or number of) types. 

n  Tends to exacerbate segregation/aggregation as “rare” types have 
to cluster together in order to be satisfied. 

n  Suggestive conclusions: 
n  segregation does not require extreme negative opinions. 

n  on the other hand, “positive” in-group behavior can be just as 
harmful on a large scale as “negative” out-group behavior. 

n  before segregation, most individuals were satisfied –  
can incentivize them to not move? 
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Navigability 
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n  [Milgram 1969] experiment to study the average distance 
between two nodes in a social network. 
 

n  Paths are not just short – they can be found! 

Social Networks: Small-World 
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n A decentralized routing algorithm takes local (node-
level) decisions on where to forward a message next 
based only on 
n  the geographic location of the current node and its 

neighbors, 

n  the geographic location of the target node, and 

n What do we mean by ``geographic location’’? 

Social Networks: Small-World 
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n There are n2 nodes 
arranged in a square grid 
in R2, and we endow the 
space with the l1 norm. 
n Nodes know the positions 

of themselves, the target, 
and their neighbors. 

n Every node v connects to 
all nodes u such that  
d(u,v) ≤ r. 

n Every node has k 
additional edges 
connected to uniformly 
random endpoints u. 

Watts-Strogatz on a Grid 
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n Note: the distance between a (randomly selected)  
source and target is O(n) a.a.s. 

n Our goal: Reach the target in O(nδ) steps forδ<< 1. 

n Our approach: 
n Consider a ball B of nodes within some “short” distance nδ to 

the target. 
n Within the ball, can reach the target in nδ steps. 

n Can we reach the ball quickly? 
n Without shortcuts takes O(n – nδ) steps to reach the ball a.a.s. 

n  Must make use of shortcuts, in particular, need to show that at 
least one of the first O(nδ) nodes has a shortcut to B. 

Is Watts-Strogatz on a Grid 
Navigable? 
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n How many vertices are there in B? 

n What is the probability that a vertex v has a shortcut into B? 

n What is the probability that any vertex in the first t (=λnδ) 
steps has a shortcut into B? 

 
 

n  If 3δ- 2 < 0 (i.e., δ< ⅔) this probability is vanishing.  

n Thus, routing takes (at least!) n⅔ steps! 

Is Watts-Strogatz on a Grid 
Navigable? 

1+
j=1

nδ

∑4 j ≤ 4n2δ

 P[E =∪1≤i≤t Evi
]≤ t ⋅P[Ev ]≤ λnδ ⋅4rn2δ −2 = 4λrn3δ −2

 
P[Ev ]= r

| B |
n2

≤ 4rn2δ −2
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n There are n2 nodes 
arranged in a square grid 
in R2, and we endow the 
space with the l1 norm. 

n Every node v connects to 
all nodes u such that  
d(u,v) ≤ r. 

n Every node has k 
additional edges 
connected i.i.d. to u 
proportionally to d(u,v)-γ 
for constant γ≥0.  

Distance-Proportional  
Watts-Strogatz on a Grid 

d(u,v)−γ

∑u≠v d(u,v)
−γ
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n Whenγ=0  
n The model is exactly the original WS model on the grid, 

so still not navigable! 
n  In fact, a similar proof shows it is not navigable for γ < 2;  

the number of steps is at least nδ for δ= (2 -γ)/3. 

n What is the problem? 
n Shortcuts are ``too random’’ 

n What about γ> 2? 

 

Is Distance-Proportional Watts-Strogatz 
Navigable? 
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n Let Evi denote the event that, at step i the vertex vi has 
a shortcut of length at least n1-β, and E the event that 
this occurs in the first λnβsteps. 

n For this to not be vanishing, βmust be at least  
(γ-2)/(γ-1). 

n Thus, the message can at best find shortcuts of 
distance less than n1-β in the first λnβ steps, for a 
total progress O(n), so at least O(nβ) steps are 
required.  

 

Is Distance-Proportional Watts-Strogatz 
Navigable? 

 
P d u,v( ) > d{ } ≤ 4

j=d+1

2n−2

∑ j ⋅ j−γ = 4 ⋅ j−γ +1
j=d+1

2n−2

∑ ≤
d

∞

∫ x1−γ dx = d 2−γ

γ − 2
.

 
P[E]≤

i=1

λnβ

∑P[Evi
]≤ λnβ ⋅r ⋅ n

(1−β )(2−γ )

γ − 2
=O(nβ (1−β )(2−γ ) )
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n When γ< 2, shortcuts are ``too random’’ 

n When γ> 2, shortcuts are ``too short’’ 

n Is there a sweet-spot at γ= 2? 

 

Is Distance-Proportional Watts-Strogatz 
Navigable? 
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n Show constructive proof for r=1 and k=1 (this 
is the worst case) with steps O((log n)2). 

n At each time step, send to the neighbor that is closest 
to the target. 
n Note: this always terminates as progress is made at every 

step, if only through the lattice. 

n Definitions: 
n The annuli Uj is the set of nodes at lattice distance in  

[2j+1,   2j+1] from the target. 
n The ball Bi is the union of all Uj with j < i. 
n The algorithm is in phase j when the message is in Uj 

n Note: there are at most log n phases. 

 

Is Distance-Proportional Watts-Strogatz 
Navigable? 
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n Approach: Show that we progress quickly from 
phase to phase. 

n If we are in phase j at node u, then to end the phase, 
we must pass the message to a node in Bj. 
n The probability of connecting to Bj is at least: 

 
n The size of Bj: 

 
n The maximum distance: 

 
n The normalizing constant is: 
 

Is Distance-Proportional Watts-Strogatz 
Navigable? 

| Bj | ⋅
maxv∈Bj d(u,v)

−γ

∑u≠v d(u,v)
−γ

| Bj | ≥ 2
2 j−1

maxv∈Bj d(u,v)
−γ ≤ 2 j+1 + 2 j < 2 j+2
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n Approach: Show that we progress quickly from 
phase to phase. 

n If we are in phase j at node u, then to end the phase, 
we must pass the message to a node in Bj. 
n The probability of connecting to Bj is at least: 

 
n The size of Bj: 

 
n The maximum distance: 

 
n The normalizing constant is: 
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| Bj | ⋅
maxv∈Bj d(u,v)

−γ

∑u≠v d(u,v)
−γ

| Bj | ≥ 2
2 j−1

maxv∈Bj d(u,v)
−γ ≤ 2 j+1 + 2 j < 2 j+2

∑u≠v d(u,v)
−γ ≤ 4 ln(6n)
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n Therefore, we change phases with probability on 
the order of 1/log(n). 

n In expectation, it takes O(log(n)) steps to change 
phases, and as we noted before, there are log(n) 
phases, hence we have an efficient decentralized 
routing algorithm that requires O((log n)2) steps! 

Is Distance-Proportional Watts-Strogatz 
Navigable? 
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n Navigability: 
n When γ< 2, shortcuts are ``too random’’ 
n When γ> 2, shortcuts are ``too short’’ 
n There a sweet-spot at γ= 2! 

n In general, can have a d-dimensional lattice, and 
have a similar phase transition at γ= d. 

n Can also take other underlying topologies (e.g., 
see a case for trees in the notes). 

Is Distance-Proportional Watts-Strogatz 
Navigable? 
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Are real-world networks Navigable? 
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Are real-world networks Navigable? 

n  Phase transition 
at γ= 1 with 
respect to the 
rank! 
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Are real-world networks Navigable? 

n  LiveJournal data: 

P(r) 

rank r 
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Are real-world networks Navigable? 

n  Does this mean we can reach any target in a social network 
via decentralized search? 

n  Attempts to replicate Milgram’s experiment have had mixed 
results.  

n  In particular, completion rates vary dramatically: 
n  Highest for individuals with high social visibility, e.g., professors 

and journalists. 

n  In our models, the networks were (effectively) symmetric – 
this need not be the case in general! 
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Are real-world networks Navigable? 

 

 

  


