

Networks Out of Control: Real-World Networks 3

Social Network

- Nodes are people. (Undirected) edges are connections representing friendships, acquaintances, business relationships, etc.
- Properties:
- Size
- Connected Structure
- Degree Distribution
- (Small) Diameter
- Clustering
- Navigability
- Homophily

■ Betweenness, Strong/Weak Ties, Power Imbalance, Partitioning, etc...

Small worlds

distance
density of shortcuts

$+$
 Social Networks: Small-World

- [Milgram 1969] experiment to study the average distance between two nodes in a social network.

$$
{ }^{20} \mathrm{~F}
$$

The chains progress from the starting position (Omaha) to the target area (Boston) with each remove. Diagram shows the number of miles from the target area, with the distance of each remove averaged over completed and uncompleted chains.

- Paths are not just short - they can be found!

Social Networks: Small-World

■ A decentralized routing algorithm takes local (nodelevel) decisions on where to forward a message next based only on

- the geographic location of the current node
- the geographic locations of its neighbors,
- the geographic location of the target node

■ What do we mean by '`geographic location'"?

Watts-Strogatz on a Grid

- There are n^{2} nodes arranged in a square grid in R^{2}, and we endow the space with the l_{1} norm.
- Every node v connects to all nodes u such that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{r}$.
- Every node has k additional edges connected to uniformly
 random endpoints u.

Is Watts-Strogatz on a Grid Navigable?

- Note: the distance between a (randomly selected) source and target is $\mathrm{O}(\mathrm{n})$ a.a.s.
- Our goal: Reach the target in $\mathrm{O}\left(\mathrm{n}^{\delta}\right)$ steps for $\delta \ll 1$.
- Our approach:
- Consider a ball B of nodes within some "short" distance n^{δ} to the target.
- Within the ball, can reach the target in n^{δ} steps.
- Can we reach the ball quickly?
- Without shortcuts takes $O\left(n-n^{\delta}\right)$ steps to reach the ball a.a.s.
- Must make use of shortcuts, in particular, need to show that at least one of the first $O\left(n^{\delta}\right)$ nodes has a shortcut to B.

Is Watts-Strogatz on a Grid Navigable?

- How many vertices are there in B? $\quad 1+\sum_{j=1}^{n^{8}} 4 j \leq 2 n^{2 \delta}$
- What is the probability that a vertex v has a shortcut into B ?

$$
\mathbb{P}\left[E_{v}\right]=k \frac{|B|}{n^{2}} \leq 2 k n^{2 \delta-2}
$$

\square What is the probability that any vertex in the first $t\left(=\lambda n^{\delta}\right)$ steps has a shortcut into B?

$$
\mathbb{P}\left[E=\cup_{1 \leq i \leq t} E_{v_{i}}\right]
$$

- If $3 \delta-2<0$ (i.e., $\delta<2 / 3$) this probability is vanishing.

■ Thus, routing takes (at least!) $\mathrm{n}^{2 / 2}$ steps!

Distance-Proportional

Watts-Strogatz on a Grid

- There are n^{2} nodes arranged in a square grid in R^{2}, and we endow the space with the l_{1} norm.
- Every node v connects to all nodes u such that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{r}$.
- Every node has k additional edges connected i.i.d. to u proportionally to $\mathrm{d}(\mathrm{u}, \mathrm{v})^{-\gamma}$ for constant $\gamma \geq 0$.

$$
\frac{d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}
$$

Is Distance-Proportional Watts-Strogatz Navigable?

■ When $\gamma=0$
\square The model is exactly the original WS model on the grid, so still not navigable!
■ In fact, a similar proof shows it is not navigable for $\gamma<2$; the number of steps is at least n^{δ} for $\delta=(2-\gamma) / 3$.
$■$ What is the problem?
■ Shortcuts are "too random"
-What about $\gamma>2$?

Is Distance-Proportional Watts-Strogatz Navigable?

$$
\mathbb{P}\left\{E_{v}^{d}\right\} \leq
$$

$■$ Let E_{vi} denote the event that, at step i the vertex v_{i} has a shortcut of length at least $n^{1-\beta}$, and E the event that this occurs in the first λn^{β} steps.

$$
\mathbb{P}[E] \leq \sum_{i=1}^{\lambda^{\beta}} \mathbb{P}\left[E_{{ }_{v_{i}}}\right]
$$

$■$ For this to not be vanishing, β must be at least $(\gamma-2) /(\gamma-1)$.

- Thus, the message can at best find shortcuts of distance less than $n^{1-\beta}$ in the first λn^{β} steps, for a total progress $O(n)$, so at least $O\left(n^{\beta}\right)$ steps are required.

Is Distance-Proportional Watts-Strogatz Navigable?

-When $\gamma<2$, shortcuts are "too random"
■When $\gamma>2$, shortcuts are "too short"
$■$ Is there a sweet-spot at $\gamma=2$?

Is Distance-Proportional Watts-Strogatz Navigable?

- Show constructive proof for $\mathrm{r}=\mathrm{l}$ and $\mathrm{k}=\mathrm{l}$ (this is the worst case) with steps $\mathrm{O}\left((\log \mathrm{n})^{2}\right)$.
- At each time step, send to the neighbor that is closest to the target.
- Note: this always terminates as progress is made at every step, if only through the lattice.

■ Definitions:
\square The annuli U_{j} is the set of nodes at lattice distance in $\left[2^{j}+1,2^{j+1}\right]$ from the target.

- The ball B_{i} is the union of all U_{j} with $j<i$.
- The algorithm is in phase j when the message is in U_{j}
$■$ Note: there are at most log n phases.

Is Distance-Proportional Watts-Strogatz Navigable?

■ Approach: Show that we progress quickly from phase to phase.

- If we are in phase j at node u, then to end the phase, we must pass the message to a node in B_{j}.
- The probability of connecting to B_{j} is at least:
- The size of B_{j} : $\left|B_{j}\right| \geq 2^{2 j-1}$

$$
\left|B_{j}\right| \cdot \frac{\max _{v \in B_{j}} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}
$$

■ The maximum distance: $\max _{v \in B_{j}} d(u, v)^{-\gamma} \leq 2^{j+1}+2^{j}<2^{j+2}$

- The normalizing constant is:

Is Distance-Proportional Watts-Strogatz Navigable?

Is Distance-Proportional Watts-Strogatz Navigable?

■ Approach: Show that we progress quickly from phase to phase.

- If we are in phase j at node u, then to end the phase, we must pass the message to a node in B_{j}.
- The probability of connecting to B_{j} is at least:
- The size of B_{j} : $\left|B_{j}\right| \geq 2^{2 j-1}$

$$
\left|B_{j}\right| \cdot \frac{\max _{v \in B_{j}} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}
$$

■ The maximum distance: $\max _{v \in B_{j}} d(u, v)^{-\gamma} \leq 2^{j+1}+2^{j}<2^{j+2}$
■ The normalizing constant is: $\quad \sum_{u \neq v} d(u, v)^{-\gamma} \leq 4 \ln (6 n)$

Is Distance-Proportional Watts-Strogatz Navigable?

■Therefore, we change phases with probability on the order of $1 / \log (n)$.

- In expectation, it takes $\mathrm{O}(\log (\mathrm{n}))$ steps to change phases, and as we noted before, there are $\log (n)$ phases, hence we have an efficient decentralized routing algorithm that requires $\mathrm{O}\left((\log n)^{2}\right)$ steps!

Is Distance-Proportional Watts-Strogatz Navigable?

-Navigability:
\square When $\gamma<2$, shortcuts are "too random"
\square When $\gamma>2$, shortcuts are "too short"
\square There a sweet-spot at $\gamma=2$!

- In general, can have a d-dimensional lattice, and have a similar phase transition at $\gamma=\mathrm{d}$.
- Can also take other underlying topologies (e.g., see a case for trees in the notes).

$+$
 Are real-world networks Navigable?

Are real-world networks Navigable?

Are real-world networks Navigable?

- Phase transition at $\gamma=1$ with respect to the rank!

distance d

Are real-world networks Navigable?

- LiveJournal data:

rank r

Are real-world networks Navigable?

- Does this mean we can reach any target in a social network via decentralized search?
- Attempts to replicate Milgram's experiment have had mixed results.
- In particular, completion rates vary dramatically:
- Highest for individuals with high social visibility, e.g., professors and journalists.

■ In our models, the networks were (effectively) symmetric this need not be the case in general!

