

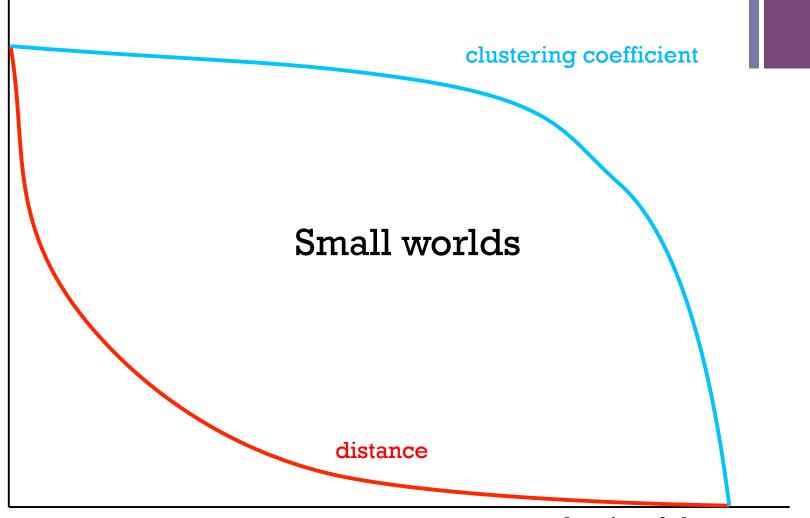
Networks Out of Control: Real-World Networks 3

+
Real-World Example 2:
Social Networks

Social Network

- Nodes are people. (Undirected) edges are connections representing friendships, acquaintances, business relationships, etc.
- Properties:
 - Size
 - Connected Structure
 - Degree Distribution
 - (Small) Diameter
 - Clustering
 - Navigability
 - Homophily
 - Betweenness, Strong/Weak Ties, Power Imbalance, Partitioning, etc...

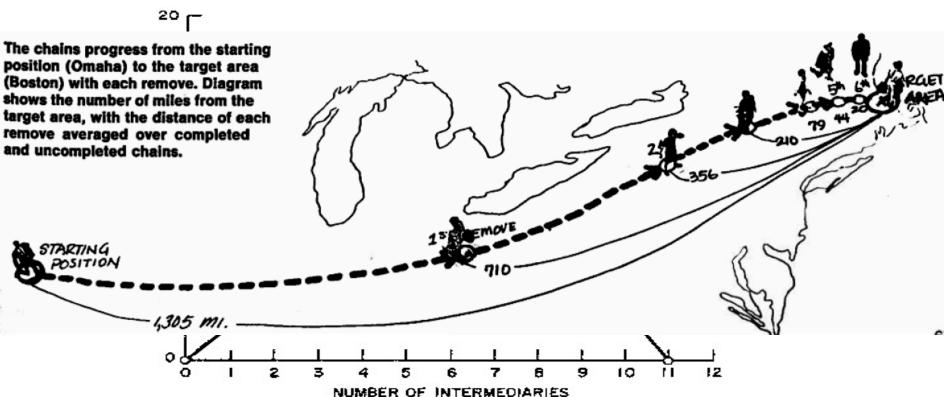
Clustering and Distance in SW Network



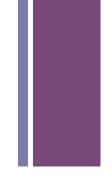
density of shortcuts

Social Networks: Small-World

■ [Milgram 1969] experiment to study the *average distance* between two nodes in a social network.



■ Paths are not just short – they can be found!

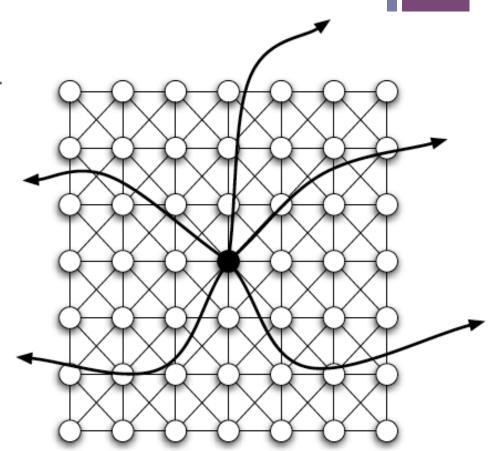


Social Networks: Small-World

- A decentralized routing algorithm takes local (node-level) decisions on where to forward a message next based only on
 - the geographic location of the current node
 - the geographic locations of its neighbors,
 - the geographic location of the target node
- What do we mean by ``geographic location''?

Watts-Strogatz on a Grid

- There are n² nodes arranged in a square grid in R², and we endow the space with the l₁ norm.
- Every node v connects to all nodes u such that $d(u,v) \le r$.
- Every node has k additional edges connected to uniformly random endpoints u.



Is Watts-Strogatz on a Grid Navigable?

- Note: the distance between a (randomly selected) source and target is O(n) a.a.s.
- Our goal: Reach the target in $O(n^{\delta})$ steps for $\delta << 1$.
- Our approach:
 - Consider a ball B of nodes within some "short" distance n^{δ} to the target.
 - Within the ball, can reach the target in n^{δ} steps.
 - Can we reach the ball quickly?
 - Without shortcuts takes $O(n n^{\delta})$ steps to reach the ball a.a.s.
 - Must make use of shortcuts, in particular, need to show that at least one of the first $O(n^{\delta})$ nodes has a shortcut to B.

Is Watts-Strogatz on a Grid Navigable?

- How many vertices are there in B? $1 + \sum_{j=1}^{n^{\delta}} 4j \le 2n^{2\delta}$
- What is the probability that a vertex v has a shortcut into B?

$$\mathbb{P}[E_{v}] = k \frac{|B|}{n^{2}} \le 2kn^{2\delta - 2}$$

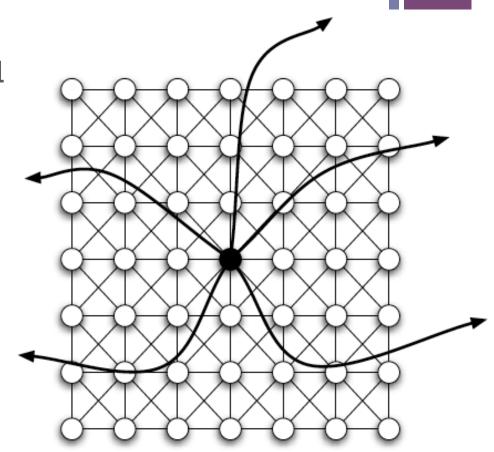
■ What is the probability that any vertex in the first $t = \lambda n^{\delta}$ steps has a shortcut into B?

$$\mathbb{P}[E = \bigcup_{1 \leq i \leq t} E_{v_i}]$$

- If $3\delta 2 < 0$ (i.e., $\delta < \frac{3}{3}$) this probability is vanishing.
- Thus, routing takes (at least!) n^{3/4} steps!

Distance-Proportional Watts-Strogatz on a Grid

- There are n² nodes arranged in a square grid in R², and we endow the space with the l₁ norm.
- Every node v connects to all nodes u such that $d(u,v) \le r$.
- Every node has k additional edges connected i.i.d. to u proportionally to $d(u,v)^{-\gamma}$ for constant $\gamma \ge 0$.



$$\frac{d(u,v)^{-\gamma}}{\sum_{u\neq v}d(u,v)^{-\gamma}}$$

- When $\gamma = 0$
 - The model is exactly the original WS model on the grid, so still not navigable!
 - In fact, a similar proof shows it is not navigable for $\gamma < 2$; the number of steps is at least n^{δ} for $\delta = (2 \gamma)/3$.
- What is the problem?
 - Shortcuts are ``too random"
- What about $\gamma > 2$?

Is Distance-Proportional Watts-Strogatz Navigable?

$$\mathbb{P}\left\{E_{v}^{d}\right\} \leq$$

■ Let E_{vi} denote the event that, at step i the vertex v_i has a shortcut of length at least $n^{1-\beta}$, and E the event that this occurs in the first λ n^{β} steps.

$$\mathbb{P}[E] \leq \sum_{i=1}^{\lambda n^{\beta}} \mathbb{P}[E^{d}_{v_{i}}]$$

- For this to not be vanishing, β must be at least $(\gamma-2)/(\gamma-1)$.
- Thus, the message can at best find shortcuts of distance less than $n^{1-\beta}$ in the first λ n^{β} steps, for a total progress O(n), so at least $O(n^{\beta})$ steps are required.

- When γ < 2, shortcuts are ``too random''
- When $\gamma > 2$, shortcuts are ``too short"
- Is there a sweet-spot at $\gamma = 2$?

- Show constructive proof for r=1 and k=1 (this is the worst case) with steps $O((\log n)^2)$.
- At each time step, send to the neighbor that is closest to the target.
 - Note: this always terminates as progress is made at every step, if only through the lattice.

■ Definitions:

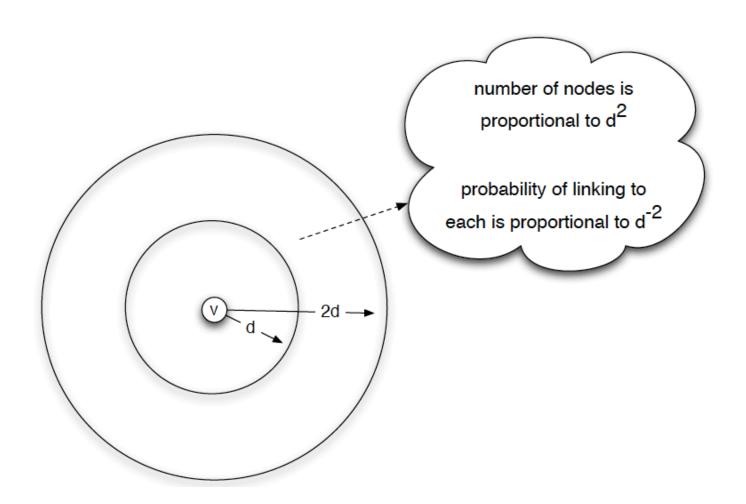
- The annuli U_j is the set of nodes at lattice distance in $[2^{j+1}, 2^{j+1}]$ from the target.
- The ball B_i is the union of all U_j with j < i.
- lacktriangle The algorithm is in phase j when the message is in U_j
- Note: there are at most log n phases.

- Approach: Show that we progress quickly from phase to phase.
- If we are in phase j at node u, then to end the phase, we must pass the model.

 ■ The probability of connecting to B_j is at least: $|B_j| \cdot \frac{\max_{v \in B_j} d(u,v)^{-\gamma}}{\sum_{u \neq v} d(u,v)^{-\gamma}}$

$$|B_j| \cdot \frac{\max_{v \in B_j} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}$$

- The size of B_i : $|B_i| \ge 2^{2j-1}$
- The maximum distance: $\max_{v \in B_i} d(u,v)^{-\gamma} \le 2^{j+1} + 2^j < 2^{j+2}$
- The normalizing constant is:



- Approach: Show that we progress quickly from phase to phase.
- If we are in phase j at node u, then to end the phase, we must pass the incomes

 The probability of connecting to B_j is at least: $|B_j| \cdot \frac{\max_{v \in B_j} d(u,v)^{-\gamma}}{\sum_{u \in A} d(u,v)^{-\gamma}}$ we must pass the message to a node in B_i.

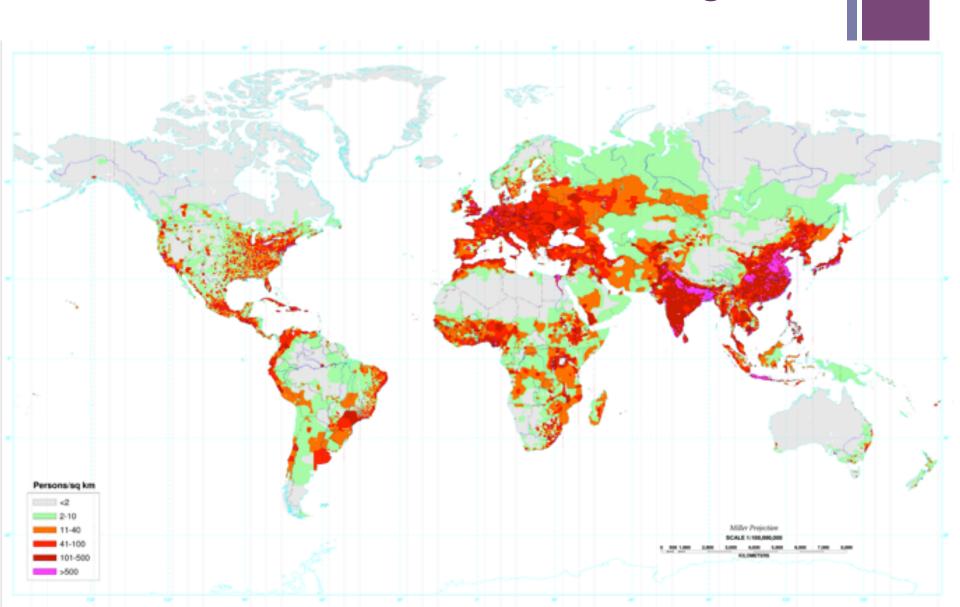
$$|B_j| \cdot \frac{\max_{v \in B_j} d(u, v)^{-\gamma}}{\sum_{u \neq v} d(u, v)^{-\gamma}}$$

- The size of B_i : $|B_i| \ge 2^{2j-1}$
- The maximum distance: $\max_{v \in B_i} d(u,v)^{-\gamma} \le 2^{j+1} + 2^j < 2^{j+2}$
- The normalizing constant is: $\sum_{u\neq v} d(u,v)^{-\gamma} \le 4\ln(6n)$

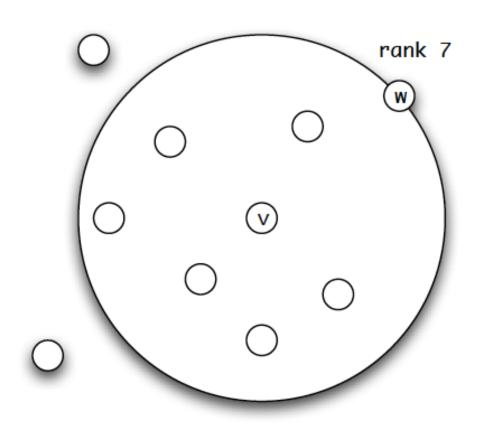
- Therefore, we change phases with probability on the order of 1/log(n).
- In expectation, it takes O(log(n)) steps to change phases, and as we noted before, there are log(n) phases, hence we have an efficient decentralized routing algorithm that requires O((log n)²) steps!

- Navigability:
 - When γ < 2, shortcuts are ``too random''
 - When $\gamma > 2$, shortcuts are ``too short''
 - There a sweet-spot at $\gamma = 2!$
- In general, can have a d-dimensional lattice, and have a similar phase transition at $\gamma = d$.
- Can also take other underlying topologies (e.g., see a case for trees in the notes).

Are real-world networks Navigable?

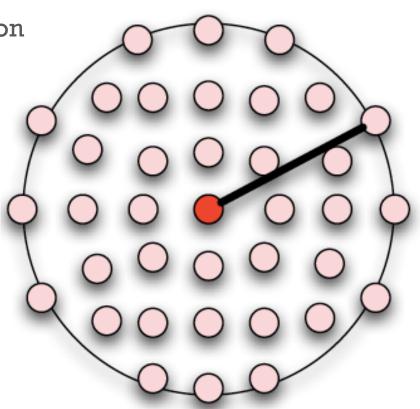


Are real-world networks Navigable?



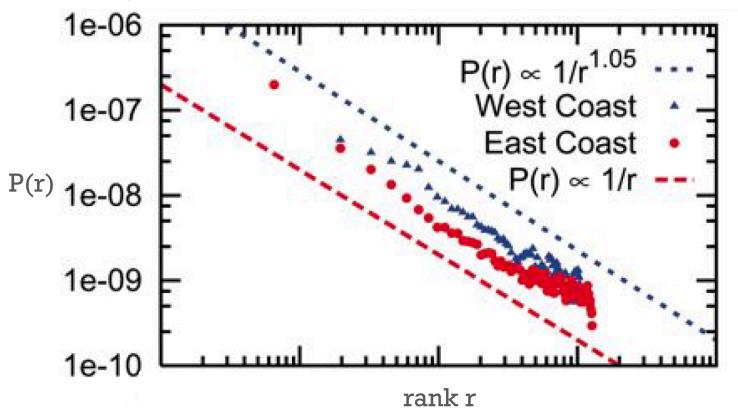
Are real-world networks Navigable?

■ Phase transition at $\gamma = 1$ with respect to the rank!



distance d

Are real-world networks Navigable?



Are real-world networks Navigable?

- Does this mean we can reach any target in a social network via decentralized search?
- Attempts to replicate Milgram's experiment have had mixed results.
- In particular, completion rates vary dramatically:
 - Highest for individuals with high social visibility, e.g., professors and journalists.
- In our models, the networks were (effectively) symmetric this need not be the case in general!

