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Announcement: 
Project Selection 
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Details: 

n  Pair project 

n  4 page (2-column) report due Wednesday 23rd May. 

n  15 min presentation + 5 min questions on Monday 28th May to be 
scheduled between 2pm-7pm. 

Contact Farnood with the following by Friday 20 April:  

n  Who your team is (pairs) 
n  In case you do not find a team, respond to the other two points and we 

will match you with someone 

n  List of 3 preferred papers, in order, on which you would like to 
do your project (ties get broken by when the email was sent). 

n  Availability to present in the 2pm-4pm time slot on Monday. 

Project 
3 
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Real-World Example 1: 
The Internet Graph 
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n  Nodes are webpages. (Directed) edges are hyperlinks from 
one webpage to another.  

n  Analyze properties of this network as a first step in order to 
understand efficiency of routing algorithms, vulnerability to 
attacks on vertices or edges, predicting user behavior, etc. 

Internet Graph (Virtual Layer) 
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Internet Graph Structure 
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Internet Graph Structure 

7 

n  The graph is directed, so  

n  We say nodes u and v are strongly connected if there is a path 
from u to v and also a path from v to u. 

n  A strongly connected component            is a maximal set such 
that all pairs of vertices in S are strongly connected.  

uv∈E /⇒ vu ∈E

S ⊆V



+
Internet Graph Structure 
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Internet Graph Structure 
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The Bowtie Structure of the Internet 
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Degree Distribution 
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n  Let D be the degree of a randomly selected node. 

n  The degree distribution is:  

n  G(n,p):  
 
 

n  G(n,k): 
 

n  Using the same matching method used for G(n,k), can 
construct networks with arbitrary degree distributions! 

 P[D = d]

 

P[D = d]= n −1
d

⎛
⎝⎜

⎞
⎠⎟
pd (1− p)n−1−k

 
P[D = d]=

1 if d = k
0 otherwise

⎧
⎨
⎪

⎩⎪
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n  Degree distributions in the internet graph resemble a power 
law. 

n  Let D be the degree of a randomly selected node. 
n  Power law: 

n  Most distributions we have been working with have “light tails”: 

n  Exponential, Geometric, Gaussian, Poisson, … 

n  Networks with power-law degree distributions are called 
Scale-Free Networks. 
n  In effect, such networks have a large number of “hubs”, i.e., 

vertices of very large degree. 

Power Law Degree Distributions 
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 P[D > d] ~ d−γ

 P[D > d] ~ e−αd
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Pareto Distribution 
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n  The Pareto Distribution: 

n  The moments of a Pareto distribution only exist up to 

 

 

  

 

P[D > d]=
d
β

−γ

if d ≥ β

1 otherwise.

⎧

⎨
⎪

⎩
⎪

γ

 

E[Dk ]=
γ ⋅β
γ − k

k⎛
⎝⎜

⎞
⎠⎟

if k ≤ γ

∞ otherwise.

⎧

⎨
⎪⎪

⎩
⎪
⎪
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n  Sizes of cities 

n  Phone call length 

n  Wealth & income distribution 

n  Word frequencies in prose 

n  Internet graph degree distribution 

n  … 

Examples of Observed Power Laws 
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n  If you were new to Switzerland, would you take an apartment in 
Prevange or Lausanne? 
n  More likely Lausanne, because more people are already there 

n  The “rich-get-richer” phenomena: 
n  It is easier to make $1 when you have $1,000,000 than when you 

have $10. 

n  Dynamic model. 

Why Power Laws? 
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n  Directed graph (in the homework will see an undirected 
version). 

n  In-degree, denoted by din(v), measures “popularity” of a node 

Preferential Attachment 
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n  Nodes arrive one-by-one and connect one edge to an existing 
node. 

n  Probability of connecting to a node is proportional to it’s indegree. 

Preferential Attachment 
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Preferential Attachment 
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n  Nodes arrive one-by-one and connect one edge to an existing 
node. 

n  Probability of connecting to a node is proportional to it’s indegree. 
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Preferential Attachment 
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n  Nodes arrive one-by-one and connect one edge to an existing 
node. 

n  Probability of connecting to a node is  
n  With probability αuniformly at random. 
n  With probability 1-α proportional to it’s indegree. 

 
 
 
 

n  What is the 
degree distribution 
of this network 
(in the limit)? 
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Preferential Attachment: 
Degree Distribution 
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n  Let Xj(t) be the number of nodes with in-degree j at time t. 
n  Total number of nodes and edges at time t is exactly t 

n  How does Xj(t) change with time? 

 

n  In general, such stochastic processes are difficult to analyze. 
Instead of doing it directly, we will use a continuous mean-
field approximation. 
n  Assume the mean (i.e., expected) number of nodes at each step 

 

 
P[Xj (t +1) = Xj (t)+1]=α

Xj−1(t)
t

+ (1−α )
( j −1)Xj−1(t)

t
.

 
P[Xj (t +1) = Xj (t)−1]=α

Xj (t)
t

+ (1−α )
j ⋅Xj (t)
t

.

 
E[Xj (t +1) − Xj (t)]=α

Xj−1(t)− Xj (t)
t

+ (1−α )
( j −1)Xj−1(t)− j X j (t)

t
.
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Preferential Attachment: 
Degree Distribution 
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n  Let Xj(t) be the number of nodes with in-degree j at time t. 
n  Total number of nodes and edges at time t is exactly t 

n  How does Xj(t) change with time? 

 

n  In general, such stochastic processes are difficult to analyze. 
Instead of doing it directly, we will use a continuous mean-
field approximation. 
n  Take the continuous limit 

 

 
P[Xj (t +1) = Xj (t)+1]=α

Xj−1(t)
t

+ (1−α )
( j −1)Xj−1(t)

t
.

 
P[Xj (t +1) = Xj (t)−1]=α

Xj (t)
t

+ (1−α )
j ⋅Xj (t)
t

.

dX j (t)
dt

=α
Xj−1(t)− Xj (t)

t
+ (1−α )

( j −1)Xj−1(t)− j X j (t)
t

.
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Preferential Attachment: 
Degree Distribution 
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n  We can now evaluate this dynamical system, which we can 
analyze using our standard tools. 

n  Note that the degree distribution in this case is given by 

n  To sketch the remainder of the proof, assume that the degree 
distribution converges (this requires proof!), i.e.,  

n  We now just have to solve for cd 

dX j (t)
dt

=α
Xj−1(t)− Xj (t)

t
+ (1−α )

( j −1)Xj−1(t)− j X j (t)
t

.

 
P[D = d]= Xd

t

Xd

t
→ cd  as t→∞



+

 

n  Rearranging the above equation using                  we get that 

n  Using standard approximations for large enough j, we get 

n  So 

cj
cj−1

≈1− 2 −α
1−α

⋅ j−1 ≈ 1− 1
j

⎛
⎝⎜

⎞
⎠⎟

2−α
1−α

≈ j
j −1

⎛
⎝⎜

⎞
⎠⎟

−2−α
1−α

Preferential Attachment: 
Degree Distribution 
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dX j (t)
dt

=α
Xj−1(t)− Xj (t)

t
+ (1−α )

( j −1)Xj−1(t)− j X j (t)
t

.

cd =
Xd

t
cj
cj−1

= α + (1−α )( j −1)
1+α + (1−α ) j

= 1− 2 −α
1+α + (1−α ) j

cj ≈ j
−2−α
1−α
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Power Law vs Lognormal 
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Power Law vs Lognormal 
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n  Power Law: 
n  Asymptotically like a Pareto Distribution 

n  Generative Mechanism: “rich-get-richer” 

n  Log-normal Law: 
n  All moments exist (not heavy-tailed), but “looks like” a power law. 

n  Generative mechanism: product of many independent random 
variables (log satisfies the central-limit theorem). 

n  Long-running controversy. 

n  More generally – preferential attachment is not the only way 
to get a heavy-tailed distribution. 
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Complex Networks 
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Complex Networks 

u So far, all the networks we have studied are composed solely 
of nodes and edges. 
u  What if there is additional structure to the network? 

u Affiliation Networks: more than one type of node.  
u  People and affiliations (e.g., clubs/employers) 

u Signed Networks: more than one type of edge. 
u  Positive and negative edges (e.g., friends and enemies) 



+
Affiliations 
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Note Types 

u Nodes are either “individuals” or 
“clubs” (also called foci). 

u Affiliation Networks: The graph is bipartite  
u  Edges are only between individuals and clubs. 

u  Individuals are (implicitly) linked if they are 
affiliated with the same club, and clubs are 
(implicitly) linked if they have the common 
individuals affiliated with them. 

u Social-Affiliation Networks: A social network 
superimposed with an affiliation network. 
u  Edges from individual to club, or from 

individual to individual (not from club to club). 
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Closure 

u Recall from earlier lectures: 
u  Clustering coefficient (e.g., fraction of possible 

triangles) tends to be high in social networks. 

u  Triadic closure: “friends of friends” are likely to 
meet and form an edge. 

u Social-Affiliation Networks: Two more kinds 
of closure can form. 
u  Focal closure: Edges between individuals who 

have a focus in common are likely to form. 

u  Membership closure: Edges between an 
individual and a focus that a friend participates 
in are likely to form. 
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Closure 
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Tracking Link Formation in Data 

u How much more likely is a link to form between two people in a 
social network if they have a friend in common? 

u How much more likely is a link to form between two people in a 
social network if have multiple friends in common? 

 

u Empirical Study: 
u  Take two snapshots of the network at different points in time. 

u  For each k, identify all pairs of nodes that have exactly k friends in 
common at the first snapshot but are not connected by an edge. 

u  Let T(k) be the fraction of pairs that have formed an edge in the second 
snapshot. 
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Tracking Link Formation in Data 

u Empirical Study: 
u  Take two snapshots of the network at different points in time. 

u  For each k, identify all pairs of nodes that have exactly k friends in 
common at the first snapshot but are not connected by an edge. 
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Tracking Link Formation in Data 

u Mathematical baseline: 
u  Suppose that each common friend ads an (independent) probability 

p of forming a link on a given day. 

u  If two people have k friends in common, then the probability that 
they do not form a link on a given day is (1-p)k 

u  Thus, our baseline probability that it does form is:  
  Tb(k) = 1 – (1-p)k 

u Compare data against  
Tb(k) and Tb(k-1). 
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Tracking Link Formation in Data 

u How much more likely is a link to form between two people in a 
social-affiliation network if they have a focus in common? 

u How much more likely is a link to form between two people in a 
social-affiliation network if have multiple foci in common? 
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Tracking Link Formation in Data 

u How much more likely is a link to form between a person and a  
focus if they have a friend that has that focus? 

u How much more likely is a link to form between a person and a focus  
if have multiple friends that have that focus? 
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Tracking Link Formation in Data 

u Which effect is taking place if Bob and Daniel form an edge? 
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Mini-Exercise 

u Consider an “inferred” social network created from a (bipartite) 
affiliation network where there is an edge between two nodes in 
the inferred social network if they are neighbors of the same focus 
in the affiliation network. 
u  Can the same inferred social network arise from different affiliation 

networks? 



+
Signed Networks 
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u Edges have sentiment: 
u  In the simplest form, all edges are labeled either + or – 

u A triangle in the network is either balanced or unbalanced. 
u  A triangle is balanced if it has either 1 or 3 positive edges.  

Signed Networks 
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Structural Balance 

u A complete network is balanced if each of its complete 
triangles are balanced.  
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Structural Balance 

u What about non-complete graphs? 



+
Structural Balance 

u A non-complete graph is balanced if all missing edges can be 
added in a way such that the resulting network is balanced. 
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Structural Balance 

u Given an arbitrary (unsigned) network, can one always label 
the edges such as the resulting signed network is balanced? 
u  Yes! (e.g., all positive edges). 

u Given a signed network, can we give a global characterization 
of balanced vs unbalanced networks? 
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Structural Balance 

u Theorem: A complete graph is balanced if and only if it can be 
decomposed into sets X and Y as below. 
u  Assume we have a complete graph with this structure. 

u  Check that any triangle has either 3 positive edges or exactly 1 
positive edge. 

u  In fact true even without completeness assumption! 
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Structural Balance 

u Theorem: A complete graph is balanced if and only if it can be 
decomposed into sets X and Y as below. 
u  Assume we have a balanced complete graph. 

u  If no negative edge, put all nodes in set X! 

u  Otherwise, pick a vertex A and let X be the set A with all of its 
friends, and let Y be the set of all of its enemies. 

u  Two nodes in X must  
be friends 

u  Two nodes in Y  
must be friends 

u  A node in X and a  
node in Y must be enemies. 

u  True without the completeness  
assumption? 
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Structural Balance 

u Theorem: Any graph is balanced if and only if it can be 
decomposed into sets X and Y as above. 

u Lemma: If a network has a negative cycle of odd length, then it 
cannot be decomposed into X and Y. 
u  Corollary: If it cannot be decomposed into X an Y then it is not 

balanced (adding edges won’t help!). 

u Suffices to show: A graph is balanced if and only if it contains 
no cycle with an odd number of negative edges.  
u  We will conduct a process that always either  

u  Results in an X/Y decomposition (which implied balancedness 
from the complete graph theorem), or 

u  Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary. 
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Structural Balance 
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+
Structural Balance 

u Lemma: A graph is balanced if and only if it contains no cycle 
with an odd number of negative edges.  
u  We will conduct a process that either  

u  Results in an X/Y decomposition (which implied balancedness 
from the complete graph theorem), or 

u  Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary. 
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Structural Balance 

u Lemma: A graph is balanced if and only if it contains no cycle 
with an odd number of negative edges.  
u  We will conduct a process that either  

u  Results in an X/Y decomposition (which implied balancedness 
from the complete graph theorem), or 

u  Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary). 
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Structural Balance 

u Theorem: Any graph is balanced if and only if it can be 
decomposed into sets X and Y as below. 
 


