

Networks Out of Control:
Real-World Networks 4

Project

Details:

- Pair project
- 4 page (2-column) report due Wednesday $23^{\text {rd }}$ May.
- 15 min presentation +5 min questions on Monday $28^{\text {th }}$ May to be scheduled between $2 \mathrm{pm}-7 \mathrm{pm}$.

Contact Farnood with the following by Friday 20 April:

- Who your team is (pairs)
- In case you do not find a team, respond to the other two points and we will match you with someone

■ List of 3 preferred papers, in order, on which you would like to do your project (ties get broken by when the email was sent).

■ Availability to present in the 2 pm- 4 pm time slot on Monday.

Real-World Example 1: The Internet Graph

Internet Graph (Virtual Layer)

- Nodes are webpages. (Directed) edges are hyperlinks from one webpage to another.
- Analyze properties of this network as a first step in order to understand efficiency of routing algorithms, vulnerability to attacks on vertices or edges, predicting user behavior, etc.

Internet Graph Structure

Internet Graph Structure

- The graph is directed, so $u v \in E \nRightarrow v u \in E$
- We say nodes u and v are strongly connected if there is a path from u to v and also a path from v to u.
- A strongly connected component $S \subseteq V$ is a maximal set such that all pairs of vertices in S are strongly connected.

Internet Graph Structure

Internet Graph Structure

The Bowtie Structure of the Internet

Degree Distribution

- Let D be the degree of a randomly selected node.
- The degree distribution is: $\mathbb{P}[D=d]$
- $\mathrm{G}(\mathrm{n}, \mathrm{p}): \mathbb{P}[D=d]=\binom{n-1}{d} p^{d}(1-p)^{n-1-k}$
- $\mathrm{G}(\mathrm{n}, \mathrm{k}): \mathbb{P}[D=d]=\left\{\begin{array}{cc}1 & \text { if } d=k \\ 0 & \text { otherwise }\end{array}\right.$
- Using the same matching method used for $\mathrm{G}(\mathrm{n}, \mathrm{k})$, can construct networks with arbitrary degree distributions!

Power Law Degree Distributions

- Degree distributions in the internet graph resemble a power law.
- Let D be the degree of a randomly selected node.
- Power law: $\mathbb{P}[D>d] \sim d^{-\gamma}$
- Most distributions we have been working with have "light tails":
- Exponential, Geometric, Gaussian, Poisson, ...
$\mathbb{P}[D>d] \sim e^{-\alpha d}$
■ Networks with power-law degree distributions are called Scale-Free Networks.
- In effect, such networks have a large number of "hubs", i.e., vertices of very large degree.

Pareto Distribution

■ The Pareto Distribution:

$$
\mathbb{P}[D>d]=\left\{\begin{array}{cc}
\frac{d^{-\gamma}}{\beta} & \text { if } d \geq \beta \\
1 & \text { otherwise }
\end{array}\right.
$$

■ The moments of a Pareto distribution only exist up to γ

$$
\mathbb{E}\left[D^{k}\right]=\left\{\begin{array}{cc}
\left(\frac{\gamma \cdot \beta^{k}}{\gamma-k}\right) & \text { if } k \leq \gamma \\
\infty & \text { otherwise }
\end{array}\right.
$$

Examples of Observed Power Laws

- Sizes of cities
- Phone call length
- Wealth \& income distribution
- Word frequencies in prose
- Internet graph degree distribution

Why Power Laws?

- If you were new to Switzerland, would you take an apartment in Prevange or Lausanne?
- More likely Lausanne, because more people are already there
- The "rich-get-richer" phenomena:
- It is easier to make $\$ 1$ when you have $\$ 1,000,000$ than when you have $\$ 10$.
- Dynamic model.
-

Preferential Attachment

■ Directed graph (in the homework will see an undirected version).

■ In-degree, denoted by $\mathrm{d}_{\mathrm{in}}(\mathrm{v})$, measures "popularity" of a node

-

Preferential Attachment

- Nodes arrive one-by-one and connect one edge to an existing node.
- Probability of connecting to a node is proportional to it's indegree.

-

Preferential Attachment

- Nodes arrive one-by-one and connect one edge to an existing node.
- Probability of connecting to a node is proportional to it's indegree.

Preferential Attachment

- Nodes arrive one-by-one and connect one edge to an existing node.
- Probability of connecting to a node is

■ With probability α uniformly at random.

- With probability l- α proportional to it's indegree.
- What is the degree distribution of this network (in the limit)?

Preferential Attachment: Degree Distribution

■ Let $X_{j}(t)$ be the number of nodes with in-degree j at time t.

- Total number of nodes and edges at time t is exactly t
- How does $X_{j}(t)$ change with time?

$$
\begin{aligned}
& \mathbb{P}\left[X_{j}(t+1)=X_{j}(t)+1\right]= \\
& \mathbb{P}\left[X_{j}(t+1)=X_{j}(t)-1\right]=
\end{aligned}
$$

- In general, such stochastic processes are difficult to analyze. Instead of doing it directly, we will use a continuous meanfield approximation.
- Assume the mean (i.e., expected) number of nodes at each step
$\mathbb{E}\left[X_{j}(t+1)-X_{j}(t)\right]=\alpha \frac{X_{j-1}(t)-X_{j}(t)}{t}+(1-\alpha) \frac{(j-1) X_{j-1}(t)-j X_{j}(t)}{t}$.

Preferential Attachment: Degree Distribution

■ Let $X_{j}(t)$ be the number of nodes with in-degree j at time t.

- Total number of nodes and edges at time t is exactly t

■ How does $X_{j}(t)$ change with time?

$$
\begin{aligned}
& \mathbb{P}\left[X_{j}(t+1)=X_{j}(t)+1\right]=\alpha \frac{X_{j-1}(t)}{t}+(1-\alpha) \\
& \mathbb{P}\left[X_{j}(t+1)=X_{j}(t)-1\right]=\alpha \frac{X_{j}(t)}{t}+(1-\alpha) \frac{j \cdot X_{j}(t)}{t} .
\end{aligned}
$$

- In general, such stochastic processes are difficult to analyze. Instead of doing it directly, we will use a continuous meanfield approximation.
- Take the continuous limit

$$
\frac{d X_{j}(t)}{d t}=\alpha \frac{X_{j-1}(t)-X_{j}(t)}{t}+(1-\alpha) \frac{(j-1) X_{j-1}(t)-j X_{j}(t)}{t}
$$

Preferential Attachment: Degree Distribution

$$
\frac{d X_{j}(t)}{d t}=\alpha \frac{X_{j-1}(t)-X_{j}(t)}{t}+(1-\alpha) \frac{(j-1) X_{j-1}(t)-j X_{j}(t)}{t} .
$$

- We can now evaluate this dynamical system, which we can analyze using our standard tools.

■ Note that the degree distribution in this case is given by

$$
\mathbb{P}[D=d]=\frac{X_{d}}{t}
$$

- To sketch the remainder of the proof, assume that the degree distribution converges (this requires proof!), i.e.,

$$
\frac{X_{d}}{t} \rightarrow c_{d} \text { as } t \rightarrow \infty
$$

- We now just have to solve for c_{d}

Preferential Attachment: Degree Distribution

$$
\frac{d X_{j}(t)}{d t}=\alpha \frac{X_{j-1}(t)-X_{j}(t)}{t}+(1-\alpha) \frac{(j-1) X_{j-1}(t)-j X_{j}(t)}{t}
$$

- Rearranging the above equation using $c_{d}=\frac{X_{d}}{t}$ we get that

$$
\frac{c_{j}}{c_{j-1}}=\frac{\alpha+(1-\alpha)(j-1)}{1+\alpha+(1-\alpha) j}=1-\frac{2-\alpha}{1+\alpha+(1-\alpha) j}
$$

■ Using standard approximations for large enough j, we get

$$
\frac{c_{j}}{c_{j-1}} \approx 1-\frac{2-\alpha}{1-\alpha} \cdot j^{-1} \approx\left(1-\frac{1}{j}\right)^{\frac{2-\alpha}{1-\alpha}} \approx\left(\frac{j}{j-1}\right)^{-\frac{2-\alpha}{1-\alpha}}
$$

- So $\quad c_{j} \approx j^{-\frac{2-\alpha}{1-\alpha}}$

Power Law vs Lognormal

Power Law vs Lognormal

- Power Law:

■ Asymptotically like a Pareto Distribution
■ Generative Mechanism: "rich-get-richer"

- Log-normal Law:
- All moments exist (not heavy-tailed), but "looks like" a power law.
- Generative mechanism: product of many independent random variables (log satisfies the central-limit theorem).
- Long-running controversy.
- More generally - preferential attachment is not the only way to get a heavy-tailed distribution.

Complex Networks

- So far, all the networks we have studied are composed solely of nodes and edges.
- What if there is additional structure to the network?
- Affiliation Networks: more than one type of node.
- People and affiliations (e.g., clubs/employers)
- Signed Networks: more than one type of edge.
- Positive and negative edges (e.g., friends and enemies)

Note Types

- Nodes are either "individuals" or "clubs" (also called foci).
- Affiliation Networks: The graph is bipartite
- Edges are only between individuals and clubs.
- Individuals are (implicitly) linked if they are affiliated with the same club, and clubs are (implicitly) linked if they have the common individuals affiliated with them.

- Social-Affiliation Networks: A social network superimposed with an affiliation network.
- Edges from individual to club, or from individual to individual (not from club to club)

Closure

- Recall from earlier lectures:
- Clustering coefficient (e.g., fraction of possible triangles) tends to be high in social networks.
- Triadic closure: "friends of friends" are likely to meet and form an edge.
- Social-Affiliation Networks: Two more kinds of closure can form.
- Focal closure: Edges between individuals who have a focus in common are likely to form.
- Membership closure: Edges between an individual and a focus that a friend participates in are likely to form.

person
(c) Membership closure

$+$

Closure

(a) Triadic closure

(b) Focal closure

(c) Membership closure

Tracking Link Formation in Data

- How much more likely is a link to form between two people in a social network if they have a friend in common?
- How much more likely is a link to form between two people in a social network if have multiple friends in common?
- Empirical Study:
- Take two snapshots of the network at different points in time.
- For each k, identify all pairs of nodes that have exactly k friends in common at the first snapshot but are not connected by an edge.
- Let T(k) be the fraction of pairs that have formed an edge in the second snapshot.

Tracking Link Formation in Data

- Empirical Study:
- Take two snapshots of the network at different points in time.
- For each k, identify all pairs of nodes that have exactly k friends in common at the first snapshot but are not connected by an edge.
- Let $T(k)$ be the fraction of pairs that have formed an edge in the second snapshot.

Tracking Link Formation in Data

- Mathematical baseline:
- Suppose that each common friend ads an (independent) probability p of forming a link on a given day.
- If two people have k friends in common, then the probability that they do not form a link on a given day is $(1-p)^{k}$
- Thus, our baseline probability that it does form is:

$$
\mathrm{T}_{\mathrm{b}}(\mathrm{k})=1-(\mathrm{l}-\mathrm{p})^{\mathrm{k}}
$$

- Compare data against $\mathrm{T}_{\mathrm{b}}(\mathrm{k})$ and $\mathrm{T}_{\mathrm{b}}(\mathrm{k}-\mathrm{l})$.

- -
 Tracking Link Formation in Data

- How much more likely is a link to form between two people in a social-affiliation network if they have a focus in common?
- How much more likely is a link to form between two people in a social-affiliation network if have multiple foci in common?

$+$
 Tracking Link Formation in Data

- How much more likely is a link to form between a person and a focus if they have a friend that has that focus?
- How much more likely is a link to form between a person and a focus if have multiple friends that have that focus?

$+$
 Tracking Link Formation in Data

- Which effect is taking place if Bob and Daniel form an edge?

Mini-Exercise

- Consider an "inferred" social network created from a (bipartite) affiliation network where there is an edge between two nodes in the inferred social network if they are neighbors of the same focus in the affiliation network.
- Can the same inferred social network arise from different affiliation networks?

$+$
 Signed Networks

- Edges have sentiment:
- In the simplest form, all edges are labeled either + or -
- A triangle in the network is either balanced or unbalanced.
- A triangle is balanced if it has either l or 3 positive edges.

(a) A, B, and C are mutual friends: balanced.

(d) A, B, and C are mutual enemies: not balanced.

(b) A is friends with B and C, but they don't get along with each other: not balanced.

(c) A and B are friends with C as a mutual enemy: balanced.

Structural Balance

- A complete network is balanced if each of its complete triangles are balanced.

Structural Balance

-What about non-complete graphs?

Structural Balance

- A non-complete graph is balanced if all missing edges can be added in a way such that the resulting network is balanced.

Structural Balance

- Given an arbitrary (unsigned) network, can one always label the edges such as the resulting signed network is balanced?
- Yes! (e.g., all positive edges).
- Given a signed network, can we give a global characterization of balanced vs unbalanced networks?

Structural Balance

- Theorem: A complete graph is balanced if and only if it can be decomposed into sets X and Y as below.
- Assume we have a complete graph with this structure.
- Check that any triangle has either 3 positive edges or exactly 1 positive edge.
- In fact true even without completeness assumption!

- Theorem: A complete graph is balanced if and only if it can be decomposed into sets X and Y as below.
- Assume we have a balanced complete graph.
- If no negative edge, put all nodes in set X!
- Otherwise, pick a vertex A and let X be the set A with all of its friends, and let Y be the set of all of its enemies.
- Two nodes in X must be friends
- Two nodes in Y must be friends
- A node in X and a node in Y must be enemies.
- True without the completeness assumption?

friends of A
enemies of A

Structural Balance

- Theorem: Any graph is balanced if and only if it can be decomposed into sets X and Y as above.
- Lemma: If a network has a negative cycle of odd length, then it cannot be decomposed into X and Y .
- Corollary: If it cannot be decomposed into X an Y then it is not balanced (adding edges won't help!).
- Suffices to show: A graph is balanced if and only if it contains no cycle with an odd number of negative edges.
- We will conduct a process that always either
- Results in an X/Y decomposition (which implied balancedness from the complete graph theorem), or
- Results in an odd-length negative cycle (which implies nonbalancedness from the above Corollary.

Structural Balance

\bullet Lemma: If a network has a negative cycle of odd length, then it cannot be decomposed into X and Y .

- Corollary: If it cannot be decomposed into an X and Y then it is not balanced (adding edges won't help!).

Structural Balance

- Lemma: A graph is balanced if and only if it contains no cycle with an odd number of negative edges.
- We will conduct a process that either
- Results in an X/Y decomposition (which implied balancedness from the complete graph theorem), or
- Results in an odd-length negative cycle (which implies nonbalancedness from the above Corollary.

Structural Balance

- Lemma: A graph is balanced if and only if it contains no cycle with an odd number of negative edges.
- We will conduct a process that either
- Results in an X/Y decomposition (which implied balancedness from the complete graph theorem), or
- Results in an odd-length negative cycle (which implies nonbalancedness from the above Corollary).

Structural Balance

- Lemma: A graph is balanced if and only if it contains no cycle with an odd number of negative edges.
- We will conduct a process that either
- Results in an X/Y decomposition (which implied balancedness from the complete graph theorem), or
- Results in an odd-length negative cycle (which implies nonbalancedness from the above Corollary).

Structural Balance

- Theorem: Any graph is balanced if and only if it can be decomposed into sets X and Y as below.

