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Announcement:
Project Selection




Project

Details:

m Pair project
® 4 page (2-column) report due Wednesday 23* May.

m 15 min presentation + 5 min questions on Monday 28%" May to be
scheduled between 2pm-7pm.

Contact Farnood with the following by Friday 20 April:

m Who your team is (pairs)

m In case you do not find a team, respond to the other two points and we
will match you with someone

m List of 3 preferred papers, in order, on which you would like to
do your project (ties get broken by when the email was sent).

m Availability to present in the 2pm-4pm time slot on Monday.



Real-World Example 1:
The Internet Graph




+
Internet Graph (Virtual Layer)

m Nodes are webpages. (Directed) edges are hyperlinks from
one webpage to another.

m Analyze properties of this network as a first step in order to
understand efficiency of routing algorithms, vulnerability to
attacks on vertices or edges, predicting user behavior, etc.



Internet Graph Structure
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+
Internet Graph Structure

m The graph is directed,so uvek bvuek

m We say nodes u and v are strongly connected if there is a path
from u to v and also a path from v to u.

m A strongly connected component S CV is a maximal set such
that all pairs of vertices in S are strongly connected.
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+
The Bowtie Structure of the Internet
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Disconnected Components



+
Degree Distribution

m Let D be the degree of a randomly selected node.

m The degree distribution is: P[D =d]

" G(n!p): IP)[D: d]:( n;1 ]pd(l_p)nlk

1 ifd=k

m G(nk): PID=d]=
0O otherwise

m Using the same matching method used for G(n,k), can
construct networks with arbitrary degree distributions!



+
Power Law Degree Distributions

m Degree distributions in the internet graph resemble a power
law.

m Let D be the degree of a randomly selected node.
» Power law: P[D >d]~d™”
m Most distributions we have been working with have “light tails™:

m Exponential, Geometric, Gaussian, Poisson, ... P[D>d]~e ™

m Networks with power-law degree distributions are called
Scale-Free Networks.

m In effect, such networks have a large number of “hubs”, i.e.,
vertices of very large degree.



Pareto Distribution

m The Pareto Distribution:

e d_y
hd TS
PID>d]=4 P fd=p
1

otherwise.

.

m The moments of a Pareto distribution only exist up to ¥V

oo otherwise.

E[D"]=+




+
Examples of Observed Power Laws

m Sizes of cities

m Phone call length

m Wealth & income distribution

m Word frequencies in prose

m Internet graph degree distribution



+
Why Power Laws?

m If you were new to Switzerland, would you take an apartment in
Prevange or Lausanne?

m More likely Lausanne, because more people are already there

m The “rich-get-richer” phenomena:

m [t is easier to make $1 when you have $1,000,000 than when you
have $10.

m Dynamic model.



+
Preferential Attachment

m Directed graph (in the homework will see an undirected
version).

m In-degree, denoted by d, (v), measures “popularity” of a node




+
Preferential Attachment

m Nodes arrive one-by-one and connect one edge to an existing
node.

m Probability of connecting to a node is proportional to it’s indegree.

o
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Preferential Attachment

m Nodes arrive one-by-one and connect one edge to an existing
node.

m Probability of connecting to a node is proportional to it’s indegree.
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+
Preferential Attachment

m Nodes arrive one-by-one and connect one edge to an existing
node.

m Probability of connecting to a node is
m With probability @ uniformly at random.
m With probability 1- & proportional to it’s indegree.

0

m What is the
degree distribution
of this network
(in the limit)?

2/5



Preferential Attachment:
Degree Distribution

m Let X(t) be the number of nodes with in-degree j at time .

m Total number of nodes and edges at time ¢t is exactly ¢

m How does X (f) change with time?

PIX,(r+1)=X (1) +1]=

PIX,+1)=X;(#)-1]=

m In general, such stochastic processes are difficult to analyze.
Instead of doing it directly, we will use a continuous mean-
field approximation.

m Assume the mean (i.e., expected) number of nodes at each step
X, (1)—X,(1) (J-DX,_(1)-j X, (@)

ELX,(t+1)- X, ()] =« ,

+(1-o)




Preferential Attachment:
Degree Distribution

m Let X(t) be the number of nodes with in-degree j at time .

m Total number of nodes and edges at time ¢t is exactly ¢

m How does X (f) change with time?

X,,(0)
4

PIX,(t+1)=X,()+1]=« +(1-a)

+(1—0¢)j.)ij(t).

m In general, such stochastic processes are difficult to analyze.
Instead of doing it directly, we will use a continuous mean-
field approximation.

PIX;¢+D=X,(#)-1]=

X,(1)
t

m Take the continuous Ilimit
X0 _ X O=X0 | G=DX 0= X0
dt t t




Preferential Attachment:
Degree Distribution

d);jta) :axj_xr)t— X0, (l_a)u—l)X,-_l(tr)—jij_

m We can now evaluate this dynamical system, which we can
analyze using our standard tools.

m Note that the degree distribution in this case is given by
X
PID=d]=-%
4
m To sketch the remainder of the proof, assume that the degree
distribution converges (this requires proof!), i.e.,
X

— ¢, ast—> oo
5

m We now just have to solve for ¢,




==

Preferential Attachment:
Degree Distribution

de(t):OCXJ-_l(t)—XJ-(t)Jr (J=DX,_(1)—-j X;(1)

(1-a)

dt t t
: : : X,
m Rearranging the above equation using ¢, = e we get that
C; _oc+(1—oc)(j—1)_1_ 2—0
Ci | I+o+(-0o)j I+o+(-0o)j

m Using standard approximations for large enough j, we get

2—a 2—a

C. 2 — 1 |l / o
—Jxl——a-j_lz(l——.j z(#j
Ci | l-o J J—1




Power Law vs Log
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==
Power Law vs Lognormal

m Power Law:
m Asymptotically like a Pareto Distribution
m Generative Mechanism: “rich-get-richer”

m Log-normal Law:
m All moments exist (not heavy-tailed), but “looks like” a power law.

m Generative mechanism: product of many independent random
variables (log satisfies the central-limit theorem).

m Long-running controversy.

m More generally — preferential attachment is not the only way
to get a heavy-tailed distribution.



Complex Networks




Complex Networks

# So far, all the networks we have studied are composed solely
of nodes and edges.

¢ What if there is additional structure to the network?

o Affiliation Networks: more than one type of node.

¢ People and affiliations (e.g., clubs/employers)

+ Signed Networks: more than one type of edge.

¢ Positive and negative edges (e.g., friends and enemies)



Affiliations
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Note Types

Arthur Google

Levinson

¢ Nodes are either “individuals” or
“clubs” (also called foci).

o Affiliation Networks: The graph is bipartite

¢ Edges are only between individuals and clubs.

¢ Individuals are (implicitly) linked if they are o
affiliated with the same club, and clubs are Electric
(implicitly) linked if they have the common
individuals affiliated with them.

¢ Social-Affiliation Networks: A social networlk
superimposed with an affiliation network.

¢ Edges from individual to club, or from
individual to individual (not from club to club)

Literacy
Volunteers

ChamC>

e




+
Closure

person

(a) Triadic closure

¢ Recall from earlier lectures:

+ Clustering coefficient (e.q., fraction of possible
triangles) tends to be high in social networks.

¢ Triadic closure:“friends of friends” are likely to
meet and form an edge.

¢ Social-Affiliation Networks: Two more kinds
of closure can form.

¢ Focal closure: Edges between individuals who
have a focus in common are likely to form.

¢ Membership closure: Edges between an
individual and a focus that a friend participates
in are likely to form.

person

(¢) Membership closure



+
Closure

person focus person

(a) Triadic closure (b) Focal closure (¢) Membership closure
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==
Tracking Link Formation in Data

& How much more likely is a link to form between two people in a
social network if they have a friend in common?

¢ How much more likely is a link to form between two people in a
social network if have multiple friends in common?

¢ Empirical Study:
¢ Take two snapshots of the network at different points in time.

¢ For each k, identify all pairs of nodes that have exactly k friends in
common at the first snapshot but are not connected by an edge.

¢ Let T(k) be the fraction of pairs that have formed an edge in the second
snapshot.



==
Tracking Link Formation in Data
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¢ Empirical Study:
¢ Take two snapshots of the network at different points in time.

¢ For each k, identify all pairs of nodes that have exactly k friends in
common at the first snapshot but are not connected by an edge.

¢ Let T(k) be the fraction of pairs that have formed an edge in the second
snapshot.



==

¢ Mathematical baseline:

Tracking Link Formation in Data

¢ Suppose that each common friend ads an (independent) probability
p of forming a link on a given day.

+ If two people have k friends in common, then the probability that
they do not form a link on a given day is (1-p)¥

¢ Thus, our baseline probability that it does form is:

Ty(k) = 1-(1-p)*

¢ Compare data against
T, (k) and T, (k-1).
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==
Tracking Link Formation in Data

& How much more likely is a link to form between two people in a
social-affiliation network if they have a focus in common?

¢ How much more likely is a link to form between two people in a
social-affiliation network if have multiple foci in common?
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==
Tracking Link Formation in Data

& How much more likely is a link to form between a person and a
focus if they have a friend that has that focus?

& How much more likely is a link to form between a person and a focus
if have multiple friends that have that focus?

Probability of joining a community when k friends are already members

0.025

0.02 -

0.015

probability

0.01

0.005 -




==
Tracking Link Formation in Data

& Which effect is taking place if Bob and Daniel form an edge?

Literacy
Volunteers




+_ . .
Mini-Exercise |I

¢ Consider an “inferred” social network created from a (bipartite)
affiliation network where there is an edge between two nodes in
the inferred social network if they are neighbors of the same focus
in the affiliation network.

¢ Can the same inferred social network arise from different affiliation
networks?



Signed Networks




+
Signed Networks

¢ Edges have sentiment:

¢ In the simplest form, all edges are labeled either + or -

¢ A triangle in the network is either balanced or unbalanced.

# A triangle is balanced if it has either 1 or 3 positive edges.

(c) A and B are friends with C' as a mutual en-
(b) A is friends with B and C, but they don’t get emy: balanced.

(a) A, B, and C are mutual friends: balanced. (d) ’3’ B, and C are mutual enemies: not bal-  415n0 with each other: not balanced.
anced.



Structural Balance

¢ A complete network is balanced if each of its complete
triangles are balanced.




Structural Balance

¢ What about non-complete graphs?
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Structural Balance

¢ A non-complete graph is balanced if all missing edges can be
added in a way such that the resulting network is balanced.
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Structural Balance

¢ Given an arbitrary (unsigned) network, can one always label
the edges such as the resulting signed network is balanced?

¢ Yes! (e.qg., all positive edges).

¢ Given a signed network, can we give a global characterization
of balanced vs unbalanced networks?



Structural Balance

¢ Theorem: A complete graph is balanced if and only if it can be
decomposed into sets X and Y as below.

¢ Assume we have a complete graph with this structure.

¢ Check that any triangle has either 3 positive edges or exactly 1
positive edge.

¢ In fact true even without completeness assumption!

mutual

mutual friends antagonism mutual friends
inside X between inside Y

sets

set X setY



Structural Balance

¢ Theorem: A complete graph is balanced if and only if it can be
decomposed into sets X and Y as below.

¢ Assume we have a balanced complete graph.
¢ If no negative edge, put all nodes in set X!

¢ Otherwise, pick a vertex A and let X be the set A with all of its
friends, and letY be the set of all of its enemies.

¢ Two nodes in X must
be friends

¢ Two nodesinY
must be friends

¢ AnodeinXanda
node inY must be enemies.

¢ True without the completeness
assumption?

friends of A enemies of A



mutual

Structural Balance e | | e

sets

set X setY
¢ Theorem: Any graph is balanced if and only if it can be B

decomposed into sets X andY as above.

¢ Lemma: If a network has a negative cycle of odd length, then it
cannot be decomposed into X and Y.

¢ Corollary: If it cannot be decomposed into X anY then it is not
balanced (adding edges won’t help!).

+ Suffices to show: A graph is balanced if and only if it contains
no cycle with an odd number of negative edges.

¢ We will conduct a process that always either

¢ Results in an X/Y decomposition (which implied balancedness
from the complete graph theorem), or

¢ Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary.



Structural Balance

¢ Lemma: If a network has a negative cycle of odd length, then it
cannot be decomposed into X and .

¢ Corollary: If it cannot be decomposed into an X andY then it is not
balanced (adding edges won’t help!).
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Structural Balance

¢ Lemma: A graph is balanced if and only if it contains no cycle
with an odd number of negative edges.

¢ We will conduct a process that either

¢ Results in an X/Y decomposition (which implied balancedness
from the complete graph theorem), or

¢ Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary.
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Structural Balance

¢ Lemma: A graph is balanced if and only if it contains no cycle
with an odd number of negative edges.

¢ We will conduct a process that either

¢ Results in an X/Y decomposition (which implied balancedness
from the complete graph theorem), or

¢ Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary).

- ——




Structural Balance

¢ Lemma: A graph is balanced if and only if it contains no cycle
with an odd number of negative edges.

¢ We will conduct a process that either

¢ Results in an X/Y decomposition (which implied balancedness
from the complete graph theorem), or

¢ Results in an odd-length negative cycle (which implies non-
balancedness from the above Corollary).



Structural Balance

¢ Theorem: Any graph is balanced if and only if it can be
decomposed into sets X and Y as below.

mutual
mutual friends antagonism mutual friends
inside X between inside Y
sets

set X setY



