Computational Neuroscience: Neuronal Dynamics of Cognition

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for plasticity: NEURONAL DYNAMICS - Ch. 19.1-19.3

Cambridge Univ. Press

1. Synaptic plasticity motivation and aims

- 2. Classification of plasticity
 - short-term vs. long-term
 - unsupervised vs. reward modulated
- 3. Model of short-term plasticity
- 4. Models of long-term plasticity
 - Hebbian learning rules
 - Bienenstock-Cooper-Munro rule
- 5. Spike-Timing Models of plasticity
- 6. From spiking models to rate models
- 7. Triplet STDP model
- 8. Online learning of memories

1. Behavioral Learning – and Memory

Learning actions: \rightarrow riding a bicycle **Remembering facts** \rightarrow previous president of the US \rightarrow name of your mother **Remembering episodes** \rightarrow first day at EPFL

which parking spot?

Synaptic Plasticity =Change in Connection Strength

1. Behavioral Learning – and synaptic plasticity

1. Synaptic plasticity – structural changes

Yagishita et al. Science, 2014

1. synaptic plasticity – molecular changes

Strong tetanization: tagging and PRPs, L-LTP expression

Bosch et al. 2012, Curr. Opinion Neurobiol.

Redondo and Morris 2011, Nature Rev. Neurosci.

1. synaptic plasticity – connections change

More space in hippocampus allocated - London taxi driver vs bus driver

More space in cortex allocated - musicians vs. non-musicians

Amunts et al. Human Brain Map. 1997 Gaser and Schlaug, J. Neuosci. 2003

Macquire et al. Hippocampus 2006

1. Synaptic plasticity

Should enable Learning - adapt to the statistics of task and environments - memorize facts and episodes - learn motor tasks Should avoid: - blow-up of activity

Aim: models that capture the essence

- (receptive fields, allocate space etc)
- homeostasis - unnecessary use of energy

1. Synaptic plasticity: program for this week

Hebbian learning

- Experiments on synaptic plasticity
- Mathematical Formulations of Hebbian Learning
- Mathematical models of Spike-Timing Dependent Plasticity
- Back to Attractor Memory Models

Computational Neuroscience: Neuronal Dynamics of Cognition

Synaptic Plasticity and Learning

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for plasticity: NEURONAL DYNAMICS - Ch. 19.1-19.3

Cambridge Univ. Press

- **1. Synaptic plasticity** motivation and aims
- 2. Classification of plasticity
 - short-term vs. long-term
 - unsupervised vs. reward modulated
- 3. Model of short-term plasticity
- 4. Models of long-term plasticity
 - Hebbian learning rules
 - Bienenstock-Cooper-Munro rule
- 5. Spike-Timing Models of plasticity
- 6. From spiking models to rate models
- 7. Triplet STDP model
- 8. Online learning of memories

2. Classification of synaptic changes: Short-term plasticity

2. Classification of synaptic changes: Long-term plasticity

Changes

- induced over 3 sec
- persist over 1 10 hours (or longer?)

2. Classification of synaptic changes

Short-Term

- induced over 0.1-0.5 sec
- recover over 1 sec

Protocol

- presynaptic spikes Model
 - well established

(Tsodyks, Pawelzik, Markram Abbott-Dayan)

vs/ Long-Term LTP/LTD/Hebb

Changes

- induced over 0.5-10sec
- remains over hours

Protocol

-presynaptic spikes + ...

Model

- we will see

2. Classification of synaptic changes

Induction of changes

- fast (if stimulated appropriately)
- slow (homeostasis)

Persistence of changes - long (LTP/LTD)

- short (short-term plasticity)

2. Review: Hebb rule

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j's efficiency as one of the cells firing i is increased

- local rule

Hebb, 1949

- simultaneously active (correlations)

no spike of i EPSP

Both neurons simultaneously active

 $\Rightarrow \Delta w_{ii} > 0$

no spike of i EPSP

Increased amplitude

2. Spike-timing dependent plasticity (STDP)

2. Classical paradigm of LTP induction – pairing

Fig. from Nature Neuroscience 5, 295 - 296 (2002) D. S.F. Ling, ... & Todd C. Sacktor See also: Bliss and Lomo (1973), Artola, Brocher, Singer (1990), Bliss and Collingridge (1993)

2. Classification of synaptic changes

Induction of changes

- fast (if stimulated appropriately)
- slow (homeostasis)

Persistence of changes

- long (LTP/LTD)
- short (short-term plasticity)

Functionality

- useful for learning a new behavior/forming new memories
- useful for development (wiring for receptive field development)
- useful for activity control in network: homeostasis
- useful for coding

2. Classification of synaptic changes: unsupervised learning Hebbian Learning

Hebbian Learning = unsupervised learning

 $W_{ij}\mathcal{E}(t-t_i^f)$

 $\Delta w_{ij} \propto F(pre, post)$

2.Limits of unsupervised learning

Is Hebbian Learning sufficient? No!

Image: Gerstner et al. NEURONAL DYNAMICS,

Reward/success

Schultz et al. 1997; Waelti et al., 2001;

→ Reinforcement learning: success = reward – (expected reward)

TD-learning, SARSA, Policy gradient (book: Sutton and Barto, 1997

2. Classification of synaptic changes: Reinforcement Learning

Reinforcement Learning = reward + Hebb

broadly transmitted signal: neuromodulator

2. Classification of synaptic changes unsupervised vs reinforcement

LTP/LTD/Hebb **Theoretical concept**

- passive changes
- exploit statistical correlations

Functionality -useful for development (wiring for receptive field)

Reinforcement Learning Theoretical concept

- conditioned changes
- maximise reward

pre

Functionality - useful for learning a new behavior

2. Three-factor rule of Hebbian Learning = Hebb-rule gated by a neuromodulator

Neuromodulators: Interestingness, surprise; attention; novelty

$\Delta w_{ij} \propto F(pre, post, MOD)$ local global

Neuromodulator projections

- 4 or 5 neuromodulators
- near-global action

Dopamine/reward/TD: Schultz et al., 1997, Schultz, 2002

Image: Biological Psychology, Sinauer

Dopamine

Noradrenaline

BIOLOGICAL PSYCHOLOGY 7e, Figure 4.5

Quiz 1. Synaptic Plasticity and Learning Rules

Long-term potentiation [] has an acronym LTP [] takes more than 10 minutes to induce [] lasts more than 30 minutes [] depends on presynaptic activity, but not on state of postsynaptic neuron

Short-term potentiation

- [] has an acronym STP
- [] takes more than 10 minutes to induce
- [] lasts more than 30 minutes
- [] depends on presynaptic activity, but not on state of postsynaptic neuron

Learning rules

- [] Hebbian learning depends on presynaptic activity and on state of postsynaptic neuron
- [] Reinforcement learning depends on neuromodulators such as dopamine indicating reward