
Announcements:
Exam (counts 70%): 1. July 2019, 12h20-15h00

- paper and pencil,
- no textbook/no slides/no calculator
- 1 sheet A5, double-sided, handwritten notes.
- sample exam from last year online
- similar to exercises (and a few quiz questions)

Miniprojects (count 30%).
- miniproject validated after ‘fraud detection interview’
- miniproject 2a/2b (Sequences or RL)
- handout before Easter
- teams of 2 students, individual submission

Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 8

Reinforcement Learning and SARSA
Objectives for today:
- Reinforcement Learning is learning by rewards
- Agents and actions
- Exploration vs Exploitation
- Bellman equation
- SARSA algorithm

Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2nd edition 2018, also online)

Background reading:
Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4

Review: Artificial Neural Networks for classification

input

output

car

feedforward network

review: Artificial Neural Networks for classification

input

output 0.05
0.9

Aim of learning:
Adjust connections such
that output 𝒚𝒚𝜇𝜇 is correct

𝒚𝒚𝜇𝜇=𝒕𝒕𝜇𝜇
(for each static input image,
𝒙𝒙𝜇𝜇)

{ 𝒙𝒙𝜇𝜇, 𝒕𝒕𝜇𝜇 , 1 ≤ 𝜇𝜇 ≤ 𝑃𝑃 };

Prerequisite for learning:
labeled data base

review: Artificial Neural Networks for classification

{ 𝒙𝒙𝜇𝜇, 𝒕𝒕𝜇𝜇 , 1 ≤ 𝜇𝜇 ≤ 𝑃𝑃 };

Prerequisite for learning:
labeled data base

Question: Is this realistic?

Where is the supervisor?
Where is the labeled data?

1. Artificial Neural Networks for action learning

Replaced by:
‘Value of action’
- ‘goodie’ for dog
- ‘success’
- ‘compliment’
BUT:
Reward is rare:
‘sparse feedback’ after
a long action sequence

Reward information is available in the brain
Neuromodulator dopamine:
Signals reward minus
expected reward

Dopamine

Schultz et al., 1997,
Waelti et al., 2001
Schultz, 2002

‘success signal’

Review: Modeling – the role of reward

i

j

Barto 1985, Schultz et al. 1997; Waelti et al., 2001;
Reynolds and Wickens 2002;
Lisman et al. 2011

success

Three factors for changing a connection
- activity of neuron j
- activity of neuron i
- success

Reinforcement learning = learning based on reward

1. Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing
the shift of the middle bar

Feedback:
tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.
shift

1. Examples of reinforcement learning: animal conditioning

1. Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find
the hidden platform

(Because they like to
get out of the cold water)

Time to find platform

10 trials

Morris Water Maze

Chess Artificial neural network
(AlphaZero) discovers different
strategies by playing against itself.

In Go, it beats Lee Sedol

Go

1. Deep reinforcement learning (in 3 weeks)

1. Deep reinforcement learning
Network for choosing action

2e output for value of state:
probability to win

input

output

action:
Advance king

learning:
- change connections
aim:
- Choose next action to win
aim for value unit:
- Predict value of current
position

1. Deep Reinforcement Learning: Self-driving cars

advance and accerate Value: security,
duration of travel

Lex Friedman, MIThttps://selfdrivingcars.mit.edu/

1. Deep Reinforcement Learning: Lunar Lander (miniproject)

advance push
left

actions

value

Aim: land between poles

Quiz: Rewards in Reinforcement Learning

[] Reinforcement learning is based on rewards
[] Reinforcement learning aims at optimal action choices
[] In chess, the player gets an external reward after every move
[] In table tennis, the player gets a reward when he makes a point
[] A dog can learn to do tricks if you give it rewards at appropriate
moments

[x]
[x]
[]
[x]
[x]

1. Learning by Reward: Reinforcement Learning
2. Elements of Reinforcement Learning

Artificial Neural Networks: Lecture 8
Reinforcement Learning and SARSA

2. Elements of Reinforcement Learning:

-states
-actions
-rewards

2. Elements of Reinforcement Learning:

- discrete states
- discrete actions
- sparse rewards

2. Elements of Reinforcement Learning:
- discrete states:

old state
new state

𝑠𝑠
𝑠𝑠𝑠

- Mean rewards for transitions:
𝑅𝑅𝑠𝑠→𝑠𝑠′
𝑎𝑎

- current state: 𝑠𝑠𝑡𝑡

- current reward: 𝑟𝑟𝑡𝑡

𝑠𝑠 𝑠𝑠𝑠

often most transitions have zero reward

- discrete actions: 𝑎𝑎

a

2. States Reinforcement Learning:
- discrete states:

old state
new state

𝑠𝑠
𝑠𝑠𝑠

- current state: 𝑠𝑠𝑡𝑡

𝑠𝑠 𝑠𝑠𝑠

state = current configuration/well-defined situation
= generalized ‘location’ of actor in environment

a

reward if tip above line

From Book:
Sutton and Barto

2. Reinforcement Learning: Example Acrobot

States?
 discretize!

Suppose 5 states per dimension,
How many states in total?
[] 5
[] 25
[] 125
[] 625

3 actions: = no torque,
= torque +1 at elbow,
= torque -1 at elbow

a1
a2
a3

5x5x5x5=625

From Book:
Sutton and Barto

2. Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions
400th episode: short sequence of ‘smart’ actions

From Book:
Sutton and Barto

2. Reinforcement Learning: Example Acrobot
after 400 episodes

2. Reinforcement Learning: Example backgammon

From Book:
Sutton and Barto

Game position =
discrete states!

Suppose 2 pieces per player,
How many states in total?
[] 100<n<500
[] 500<n<5000
[] 5 000<n<50 000
[] n>50 000

30000<24x24x23x23<24x24x24x24<35000

2. Elements of Reinforcement Learning: Summary

- discrete actions:

- Mean reward for transition:
𝑅𝑅𝑠𝑠→𝑠𝑠′
𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎, 𝑠𝑠,

𝑎𝑎

- current actual reward: 𝑟𝑟𝑡𝑡

𝑠𝑠 𝑠𝑠𝑠

often most transitions have zero reward

There can be MANY states
Often need to discretize first

( next week we try to model in continuum)

𝑎𝑎

1. Learning by Reward: Reinforcement Learning
2. Elements of Reinforcement Learning
3. One-step horizon (bandit problems)

Artificial Neural Networks: Lecture 8
Reinforcement Learning and SARSA

coins

buttons

Slot Machine
1-armed bandid

action=button press

2. One-step horizon games (bandit)

2. One-step horizon games 𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

Blackboard1:
Q-valuesQ-value:

Expected reward for
action a starting from s Q(s,a1)

Q(s,a)

2. One-step horizon games Blackboard1:
Q-values

2. One-step horizon games: Q-value

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = �
𝑠𝑠′

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎 𝑅𝑅𝑠𝑠→𝑠𝑠′

𝑎𝑎

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1 𝑃𝑃𝑠𝑠→𝑠𝑠𝑠𝑎𝑎3

𝑠𝑠𝑠

𝑅𝑅𝑠𝑠→𝑠𝑠′
𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠′, 𝑎𝑎, 𝑠𝑠

Q-value
Expected reward for
action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎
Similarly:

2. Optimal policy (greedy)

take action a* with

Q(s,a*)>Q(s,aj)

other actions

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]
optimal action:

Suppose all Q-values are known:

Optimal policy is also called ‘greedy policy’

=6 =2 =5

2. One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple
 take action with highest Q-value

BUT: we normally do not know the Q-values
 estimate by trial and error

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

Q(s,a3)

Exercise 1 now (in class)

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3
𝑄𝑄 𝑠𝑠, 𝑎𝑎 = �

𝑠𝑠′

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎 𝑅𝑅𝑠𝑠→𝑠𝑠′

𝑎𝑎

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

Expected reward 𝑄𝑄 𝑠𝑠, 𝑎𝑎1

Show that empirical averaging over k trials gives an update rule
∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]

𝑟𝑟𝑡𝑡

η

5 min, now!

Blackboard2:
Exercise 1

2. One-step horizon: summary
Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple
 take action with highest Q-value

If Q-value not known:
 estimate by trial and error
 update with rule

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η

Let learning rate η decrease over time

Convergence in Expectation
After taking action a in state s, we update with

(i) If (1) converges in expectation, then 𝑄𝑄 fluctuates
around,

(2)
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎] (1) η

(ii) If the learning rate η decreases,
fluctuations around 𝐸𝐸[𝑄𝑄 𝑠𝑠, 𝑎𝑎] decrease.

Blackboard3:
Proof of (i).

𝐸𝐸[𝑄𝑄 𝑠𝑠, 𝑎𝑎] = �
𝑠𝑠′

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎 𝑅𝑅𝑠𝑠→𝑠𝑠′

𝑎𝑎

1. Learning by Reward: Reinforcement Learning
2. Elements of Reinforcement Learning
3. Exploration vs Exploitation

Artificial Neural Networks: Lecture 8
Reinforcement Learning and SARSA

Problem: correct Q values not known
(since reward probabilities and
branching probabilities unknown)

Exploration versus exploitation

Take action which looks
optimal, so as to
maximize reward

Explore so as to
estimate reward
probababities

3. Exploration – Exploitation dilemma 𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

Ideal: take action with maximal 𝑄𝑄 𝑠𝑠, 𝑎𝑎

Exercise 2.a - 2.c now: Exploration-Exploitation

a1 a2

s

s’

s=state

a2 action

s’=new state

Q(s,a1)

2.c Calculate for both actions the expected reward Q(s,a)=∑ →→
'

''
s

a
ss

a
ss RP

rt=1

2.a Assume that you initialize all Q values with zero; set =0.2 (constant)
Trial 1: you choose action a1, you get rt=1
Trial 2: you choose action a2, you get rt=0.4

2.b Trial 3 – 5: continue ‘greedy’ (assume that you do not get rewards), update 𝑄𝑄

rt=0.4rt=0

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η

5 min, now!

η

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1 =0.25 𝑃𝑃𝑠𝑠→𝑠𝑠∗

𝑎𝑎2 =0.75

𝑠𝑠∗
rt=1 actual reward

𝑠𝑠0

Blackboard4:
Exercise 2a-2c

a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

greedy strategy:
- take action a* which looks best

Q(s,a*)>Q(s,aj)

Problem: correct Q values not known

3. Exploration and Exploitation

ATTENTION:
with ‘greedy’ you may get
stuck with a sub-optimal strategy

a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

greedy strategy:
- take action a* which looks best

Q(s,a*)>Q(s,aj)

Problem: correct Q values not known

-greedy strategy:
- take action a* which looks best

with prob

ε

ε−=1P

Optimistic greedy:
initialize with Q values that are too big

Softmax strategy: take action a’
with prob exp[(')](')

exp[()]
a

Q aP a
Q a

β
β

=
∑

3. Exploration and Exploitation: practical approach

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η

a1 a10

s

s’

R1 R10

3. Exploration and Exploitation: practical approach
Example: 10-armed bandit
with fluctuating reward

in each action, actual rewards
fluctuate around a mean

Rk= 𝑅𝑅𝑠𝑠→𝑠𝑠′
𝑎𝑎𝑘𝑘

Epsilon-greedy: simulation

Optimal action
ε=0.1
ε=0.01
ε=0

average reward

book: Sutton and Barto

Sutton and Barto, ch. 2

3. Exploration and Exploitation: practical approach

Epsilon-greedy, combined with iterative update of Q-values

3. Quiz: Exploration – Exploitation dilemma

[] With a greedy policy the agent uses the best possible action

[] Using an epsilon-greedy method with epsilon = 0.1
means that, even after convergence of Q-values,
in at least 10 percent of cases a suboptimal action is chosen.

[] If the rewards in the system are between 0 and 1 and Q-values
are initialized with Q=2, then each action is played at least
5 times before exploitation starts.

We use an iterative method and update Q-values with eta=0.1

[]

[x]

[x]

3. Quiz: Exploration – Exploitation dilemma

[] if we use softmax with beta = 10, then, after 100 steps,
action 2 is chosen almost always

[] if we use softmax with beta = 0.1, then action 2 is
taken about twice as often as action 1.

All Q values are initialized with the same value Q=0.1
Rewards in the system are r =0.5 for action 1 (always)

and r=1.0 for action 2 (always)

Softmax strategy: take action a’
with prob exp[(')](')

exp[()]
a

Q aP a
Q a

β
β

=
∑

[no], with beta=0.1, exp(beta*Q)=1+…
both action chosen with about the same prob.

We use an iterative method and update Q-values with eta=0.1

[yes], since beta[Q(a2)-Q(a1)]=5

1. Learning by Reward: Reinforcement Learning
2. Elements of Reinforcement Learning
3. Exploration vs Exploitation
4. Bellman equation

Artificial Neural Networks: Lecture 8
Reinforcement Learning and SARSA

4. Multistep horizon
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑠𝑠𝑠

a1 a2 a3

a1 a2 a3

Q(s,a3)𝜋𝜋 𝑠𝑠, 𝑎𝑎Policy

Examples of policy:
-epsilon-greedy
-softmax

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎

probability to choose
action a in state s

Stochasticity
probability to end in state s’
taking action a in state s

𝜋𝜋 𝑠𝑠, 𝑎𝑎1

1=∑𝑎𝑎′ 𝜋𝜋 𝑠𝑠, 𝑎𝑎′

𝜋𝜋 𝑠𝑠𝑠, 𝑎𝑎3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

4. Total expected (discounted) reward
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

a1 a2 a3

𝑄𝑄 𝑠𝑠, 𝑎𝑎1

Q(s,a) =
Starting in state s with action a

= � 𝑟𝑟𝑡𝑡 + 𝛾𝛾 𝑟𝑟𝑡𝑡+1+ 𝛾𝛾𝟐𝟐𝑟𝑟𝑡𝑡+2+ 𝛾𝛾𝟑𝟑 𝑟𝑟𝑡𝑡+3 ⟩+⋯

Discount factor: 𝛾𝛾 <1
-important for recurrent networks!
-avoids blow-up of summation
-gives less weight to reward in far future

= 𝐸𝐸[𝑟𝑟𝑡𝑡 + 𝛾𝛾 𝑟𝑟𝑡𝑡+1+ 𝛾𝛾𝟐𝟐𝑟𝑟𝑡𝑡+2+ 𝛾𝛾𝟑𝟑 𝑟𝑟𝑡𝑡+3 + … |𝑠𝑠, 𝑎𝑎)]

4. Bellman equation
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

a1 a2 a3

Blackboard5:
Bellman eq.

4. Bellman equation with policy π
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

a1 a2 a3

∑ ∑ 






 ′′′′+=
′

→→
'

''),(),(),(
s a

a
ss

a
ss asQasRPasQ πγ

Q(s,a1)

Q(s’,a’)
Bellman equation =

value consistency of
neighboring states

Remark:
Sometimes Bellman equation is written
for greedy policy: 𝜋𝜋 𝑠𝑠, 𝑎𝑎 = δ𝑎𝑎,𝑎𝑎∗

𝑎𝑎∗ = argmax
𝑎𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑎𝑎′)with action

4. Bellman equation (for optimal actions)
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

a1 a2 a3

∑ ∑ 






 ′′′′+=
′

→→
'

''),(),(),(
s a

a
ss

a
ss asQasRPasQ πγ

Q(s,a1)

Q(s’,a’)
for greedy policy:

𝜋𝜋 𝑠𝑠, 𝑎𝑎 = δ𝑎𝑎,𝑎𝑎∗

𝑎𝑎∗ = argmax
𝑎𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑎𝑎′)with action

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = �
𝑠𝑠′

𝑃𝑃𝑠𝑠𝑠→𝑠𝑠𝑠𝑎𝑎 [𝑅𝑅𝑠𝑠𝑠→𝑠𝑠𝑠𝑎𝑎 +𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′𝑎𝑎′)]

4. Quiz: Bellman equation with policy π
𝑠𝑠

𝑠𝑠𝑠

a a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

a1 a2 a3

∑ ∑ 






 ′′′′+=
′

→→
'

''),(),(),(
s a

a
ss

a
ss asQasRPasQ πγ

Q(s,a)

Q(s’,a’)
[] The Bellman equation is linear

in the variables Q(s’a’)

[] The set of variables Q(s’,a’) that solve
the Bellman equation is unique and
does not depend on the policy

[]

[]

1. Learning by Reward: Reinforcement Learning
2. Elements of Reinforcement Learning
3. Exploration vs Exploitation
4. Bellman equation
5. SARSA algorithm

Artificial Neural Networks: Lecture 8
Reinforcement Learning and SARSA

a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

3. Iterative update of Q-values

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η
Solution: iterative update

while playing with policy 𝜋𝜋 𝑠𝑠, 𝑎𝑎

Problem: Q-values not given

𝑟𝑟𝑡𝑡

a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

5. Iterative update of Q-values for multistep environments

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η
Solution: iterative update

while playing with policy 𝜋𝜋 𝑠𝑠, 𝑎𝑎

Problem: Q-values not given
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

Q(s,a1)

Q(s’,a’)

?∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 =

𝑟𝑟𝑡𝑡

Blackboard6:
SARSA update

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

Q(s,a1)

Q(s’,a’)

5. Iterative update of Q-values for multistep environments

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η
Solution: iterative update

while playing with policy 𝜋𝜋 𝑠𝑠, 𝑎𝑎

Problem:
- Q-values not given
- branching probabilities not given
- reward probabilities not given

𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

Q(s,a1)

Q(s’,a’)

Bellman equation:
∑ ∑ 







 ′′′′+=
′

→→
'

''),(),(),(
s a

a
ss

a
ss asQasRPasQ πγ

a1 a2 a3

𝑟𝑟𝑡𝑡

5. SARSA vs. Bellman equation
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎1

𝑠𝑠𝑠

a1 a2 a3

𝑃𝑃𝑠𝑠′→𝑠𝑠𝑠𝑎𝑎3

a1 a2 a3

∑ ∑ 






 ′′′′+=
′

→→
'

''),(),(),(
s a

a
ss

a
ss asQasRPasQ πγ

Q(s,a1)

Q(s’,a’)

Bellman equation
= consistency of Q-values

across neighboring states

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η

SARSA update rule

= make Q-values of neighboring states
more consistent

5. SARSA algorithm
𝑠𝑠

𝑠𝑠𝑠

a1 a2 a3

𝑠𝑠𝑠

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]

1) being in state s
choose action a
[according to policy]

2) Observe reward r
and next state s’

3) Choose action a’ in state s’
[according to policy]

4) Update with SARSA update rule

5) set: s  s’; a  a’
6) Goto 1)

Initialise Q values
Start from initial state s

𝑟𝑟𝑡𝑡

Stop when all Q-values have converged

𝜋𝜋 𝑠𝑠, 𝑎𝑎

𝜋𝜋 𝑠𝑠, 𝑎𝑎

Update of Q values in SARSA

policy for action choice:

),(maxarg* asQa a
a

t =

Exercise now, 8 min (at home)

Pick most often action
Q(s1,a1)

r=1

Q(s’,a1)

a1
a2

s1

a1
a2

s’

a1

goal

r=0

r=0

goal

Consider a linear sequence
of states. Reward only at goal.

Actions are up or down.
a)Initialise Q values at 0. Start at top.

How do Q values develop?
b)Q values after 2 complete trials?

∆Q(s,a)=η [r-(Q(s,a)-Q(s’,a’))]

5. Convergence in expectation of SARSA: theorem
𝑠𝑠

𝑠𝑠𝑠

a

𝑠𝑠𝑠

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑟𝑡𝑡

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 0
IF all Q-values have converged in expectation

THEN
The set of Q-values solves the Bellman eq.

∆𝑄𝑄 𝑠𝑠, 𝑎𝑎 = [𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ − 𝑄𝑄 𝑠𝑠, 𝑎𝑎]η

Assumption:
The SARSA algo has been applied
for a very long time, using updates

∑ ∑ 






 ′′′′+=
′

→→
'

''),(),(),(
s a

a
ss

a
ss asQasRPasQ πγ

𝑃𝑃𝑠𝑠→𝑠𝑠′
𝑎𝑎

π(s’,a’)

5. Convergence in expectation of SARSA: theorem
Blackboard7:
SARSA convergence

Look at graph to take expectations:
- if algo in state s, all remaining expectations are “given s”
- if algo on a branch (s,a), all remaining exp. are “given s and a”

5. SARSA algorithm

[] in SARSA, updates are applied after each move.
[] in SARSA, the agent updates the Q-value Q(s(t),a(t))

related to the current state s(t)

[] in SARSA, the agent updates the Q-value Q(s(t-1),a(t-1))
related to the previous state, when it is in state s(t)

[] in SARSA, the agent moves in the environment
using the policy

[] SARSA is an online algorithm

We have initialized SARSA and played for n>2 steps.
Is the following true?

𝜋𝜋 𝑠𝑠, 𝑎𝑎

[x]
[]

[x]

[x]

[x]

- Reinforcement Learning is learning by rewards
 world is full of rewards (but not full of labels)

- Agents and actions
 agent learns by interacting with the environment
 state s, action a, reward r

- Exploration vs Exploitation
 optimal actions are easy if we know reward probabilities
 since we don’t know the probabilities we need to explore

- Bellman equation
 self-consistency condition for Q-values

- SARSA algorithm: state-action-reward-state-action
 update while exploring environment with current policy

Reinforcement Learning and SARSA
Learning outcome and conclusions:

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 7
	Slide Number 9
	Slide Number 11
	Slide Number 13
	Slide Number 15
	Slide Number 17
	Slide Number 19
	Slide Number 21
	Slide Number 23
	Slide Number 25
	Slide Number 27
	Slide Number 29
	Slide Number 31
	Slide Number 33
	Slide Number 35
	Slide Number 37
	Slide Number 39
	Slide Number 41
	Slide Number 43
	Slide Number 45
	Slide Number 47
	Slide Number 49
	Slide Number 51
	Slide Number 53
	Slide Number 55
	Slide Number 57
	Slide Number 59
	Slide Number 61
	Slide Number 63
	Slide Number 65
	Slide Number 67
	Slide Number 69
	Slide Number 71
	Slide Number 73
	Slide Number 75
	Slide Number 77
	Slide Number 79
	Slide Number 81
	Slide Number 83
	Slide Number 85
	Slide Number 87
	Slide Number 89
	Slide Number 91
	Slide Number 93
	Slide Number 95
	Slide Number 97
	Slide Number 99
	Slide Number 101
	Slide Number 103
	Slide Number 105
	Slide Number 107
	Slide Number 109
	Slide Number 111
	Slide Number 113
	Slide Number 115
	Slide Number 117
	Slide Number 119
	Slide Number 121
	Slide Number 123
	Slide Number 125
	Slide Number 127
	Slide Number 129

