Announcements: Exam (counts 70%): 1. July 2019, 12h20-15h00

- paper and pencil,
- no textbook/no slides/no calculator
- 1 sheet A5, double-sided, handwritten notes.
- sample exam from last year online
- similar to exercises (and a few quiz questions)

Miniprojects (count 30%).

- miniproject validated after 'fraud detection interview'
- miniproject 2a/2b (Sequences or RL)
- handout before Easter
- teams of 2 students, individual submission

Artificial Neural Networks: Lecture 8 Reinforcement Learning and SARSA

- **Objectives for today:**
- Reinforcement Learning is learning by rewards
- Agents and actions
- Exploration vs Exploitation
- Bellman equation
- SARSA algorithm

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for this week:

Sutton and Barto, Reinforcement Learning (MIT Press, 2nd edition 2018, also online)

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4

Background reading:

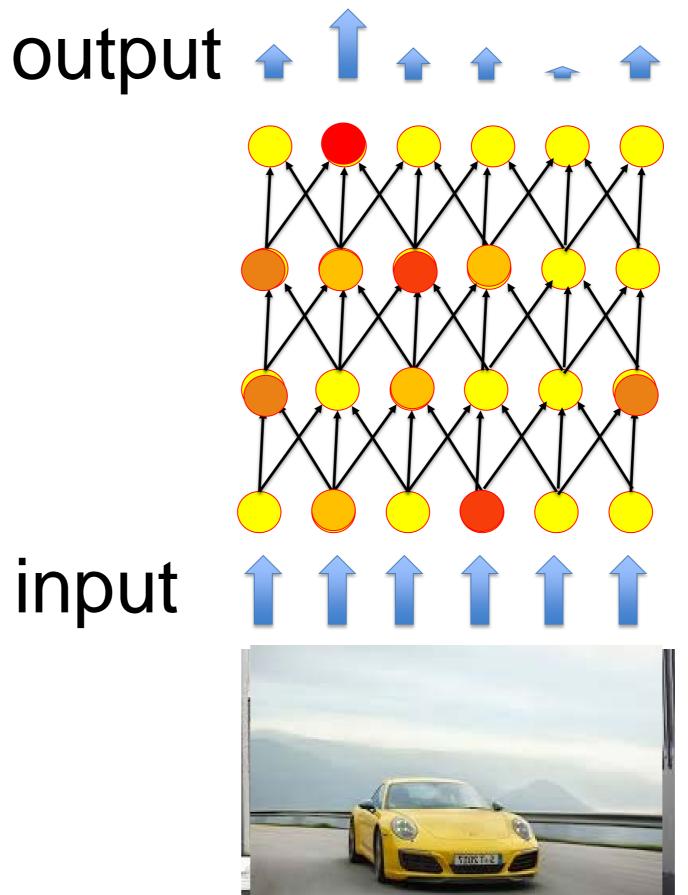
Silver et al. 2017, Archive Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Review: Artificial Neural Networks for classification

feedforward network

input

car

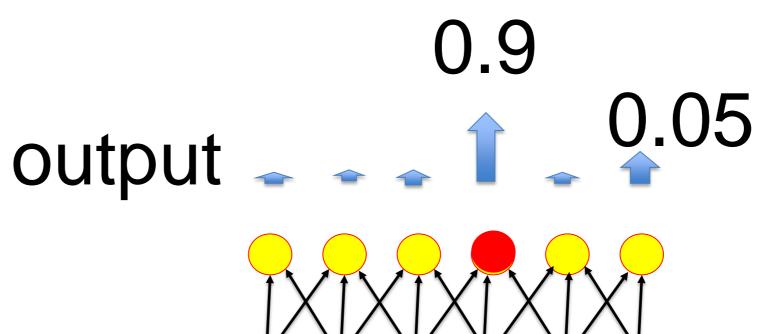


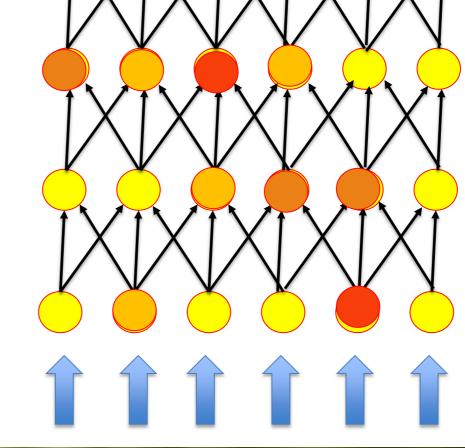
review: Artificial Neural Networks for classification

Prerequisite for learning: labeled data base Outp

{ (x^{μ}, t^{μ}) , $1 \le \mu \le P$ };

Aim of learning: Adjust connections such that output y^{μ} is correct input $y^{\mu} = t^{\mu}$ (for each static input image, x^{μ})





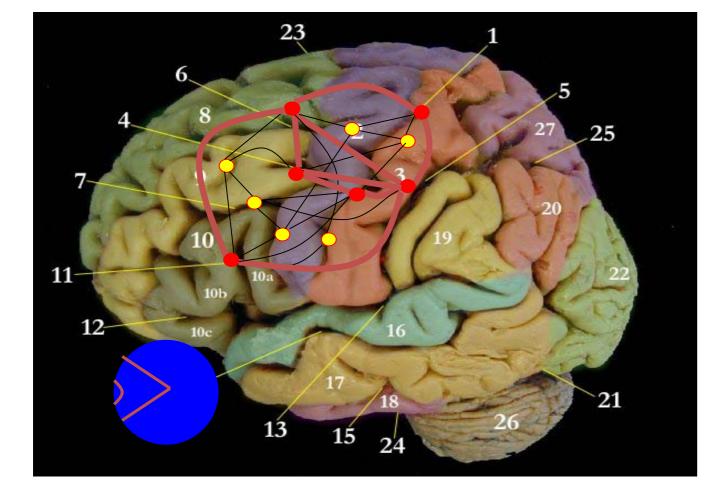
review: Artificial Neural Networks for classification

Prerequisite for learning: labeled data base

{ (x^{μ}, t^{μ}) , $1 \le \mu \le P$ };

Question: Is this realistic?

1. Artificial Neural Networks for action learning



- Replaced by: 'Value of action' 'goodie' for dog - 'success'
- 'compliment' BUT: Reward is rare: 'sparse feedback' after a long action sequence

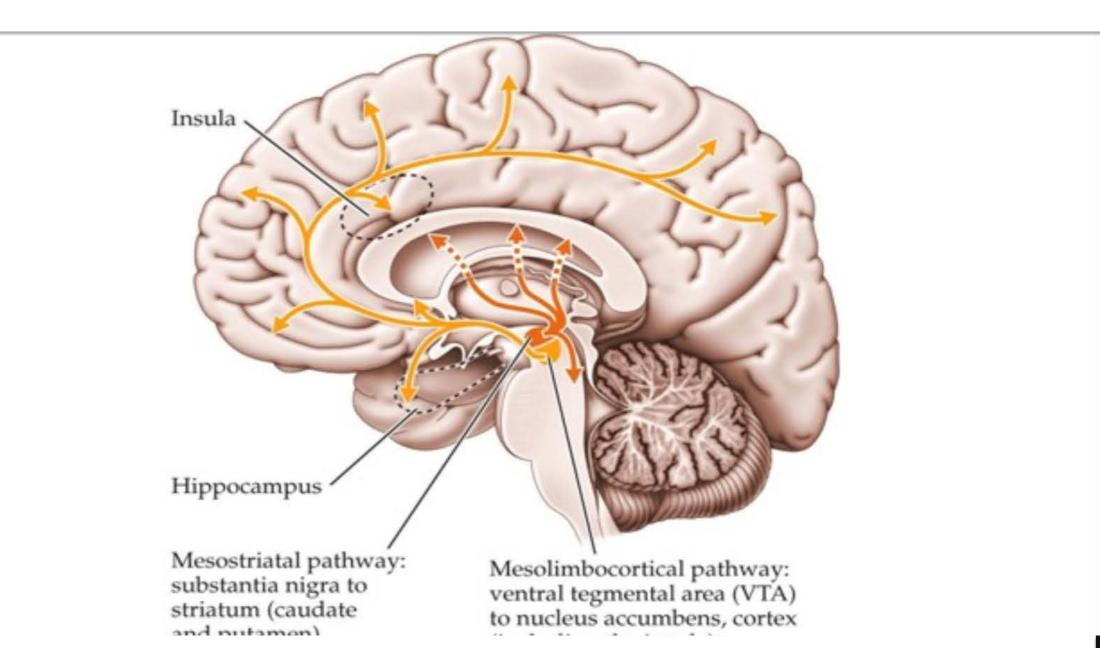
Where is the supervisor? Where is the labeled data?

Reward information is available in the brain Neuromodulator **dopamine**: Signals reward minus expected reward

Schultz et al., 1997, Waelti et al., 2001 Schultz, 2002

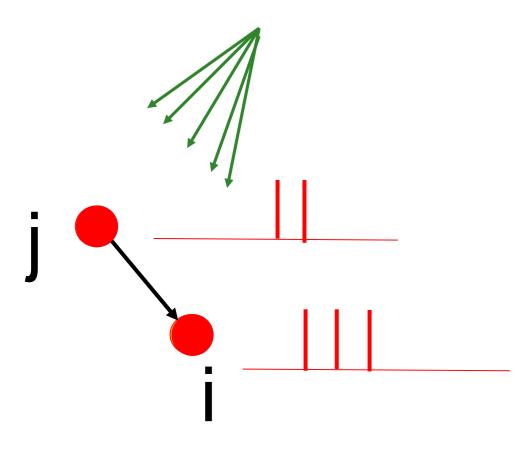
'success signal'

Dopamine



Review: Modeling – the role of reward

SUCCESS



Three factors for changing a connection - activity of neuron j - activity of neuron i

- SUCCESS

Barto 1985, Schultz et al. 1997; Waelti et al., 2001; Reynolds and Wickens 2002; Lisman et al. 2011

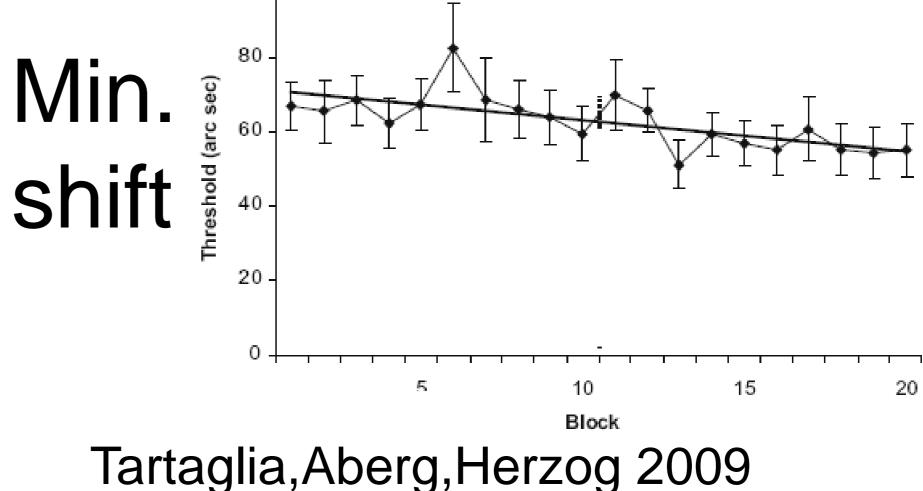
Reinforcement learning = learning based on reward

1. Examples of reinforcment learning

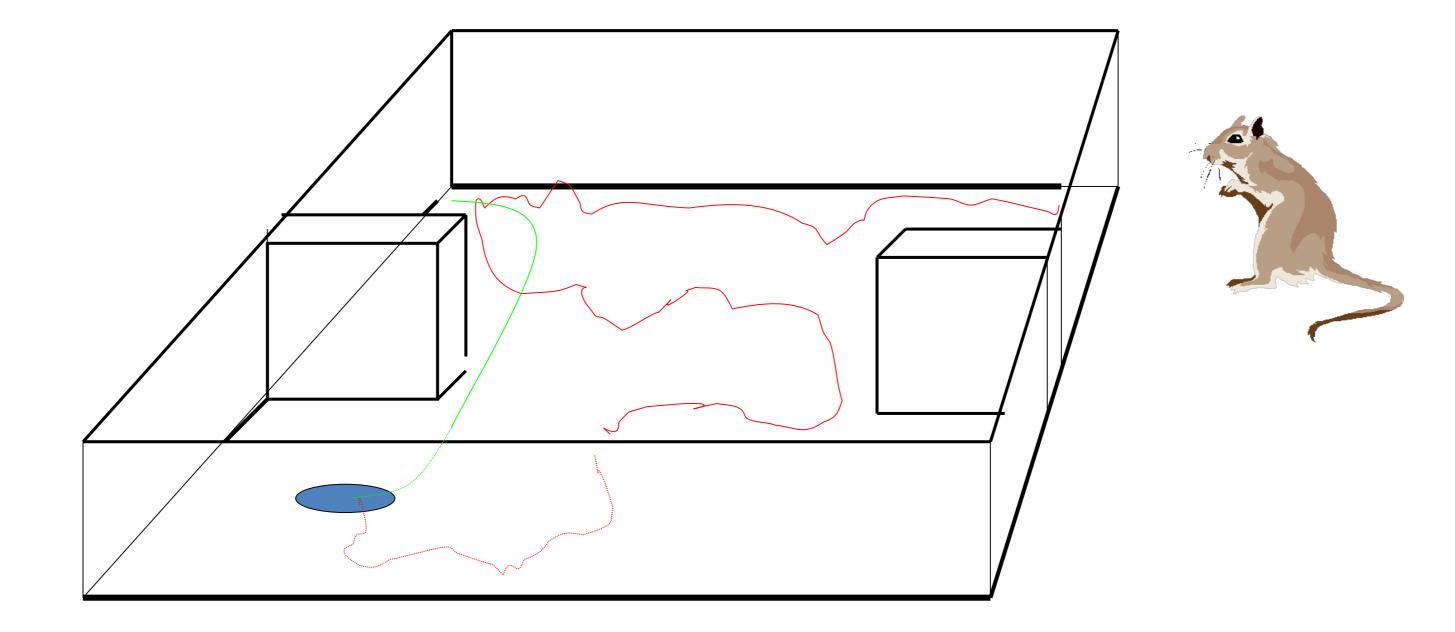
Middle bar: shifted left or shifted right?

Observers get better at seeing the shift of the middle bar

Feedback: tone for wrong response

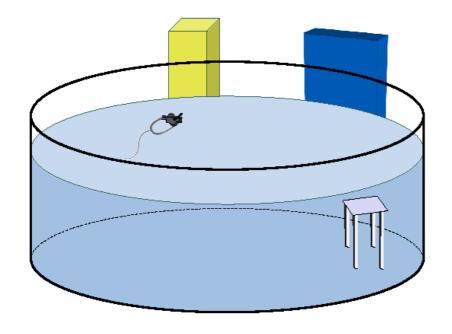


1. Examples of reinforcement learning: animal conditioning



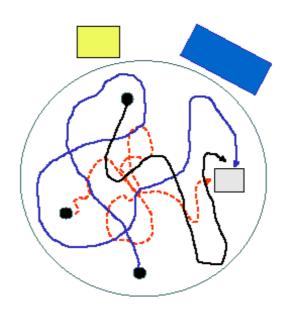
1. Examples of reinforcement learning animal conditioning

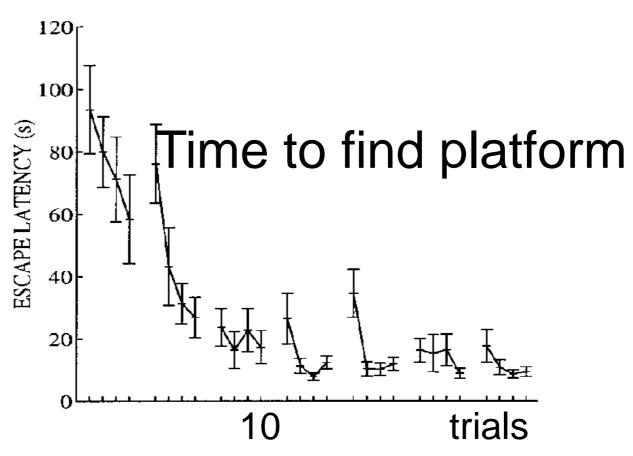
Morris Water Maze



Rats learn to find the hidden platform

(Because they like to get out of the cold water)

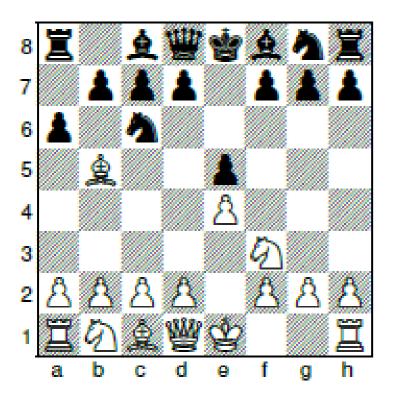




) Foster, Morris, Dayan 2000

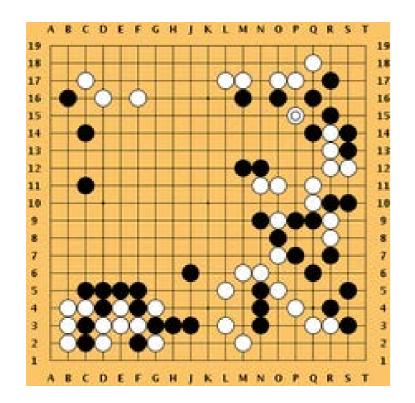
1. Deep reinforcement learning (in 3 weeks)

Chess

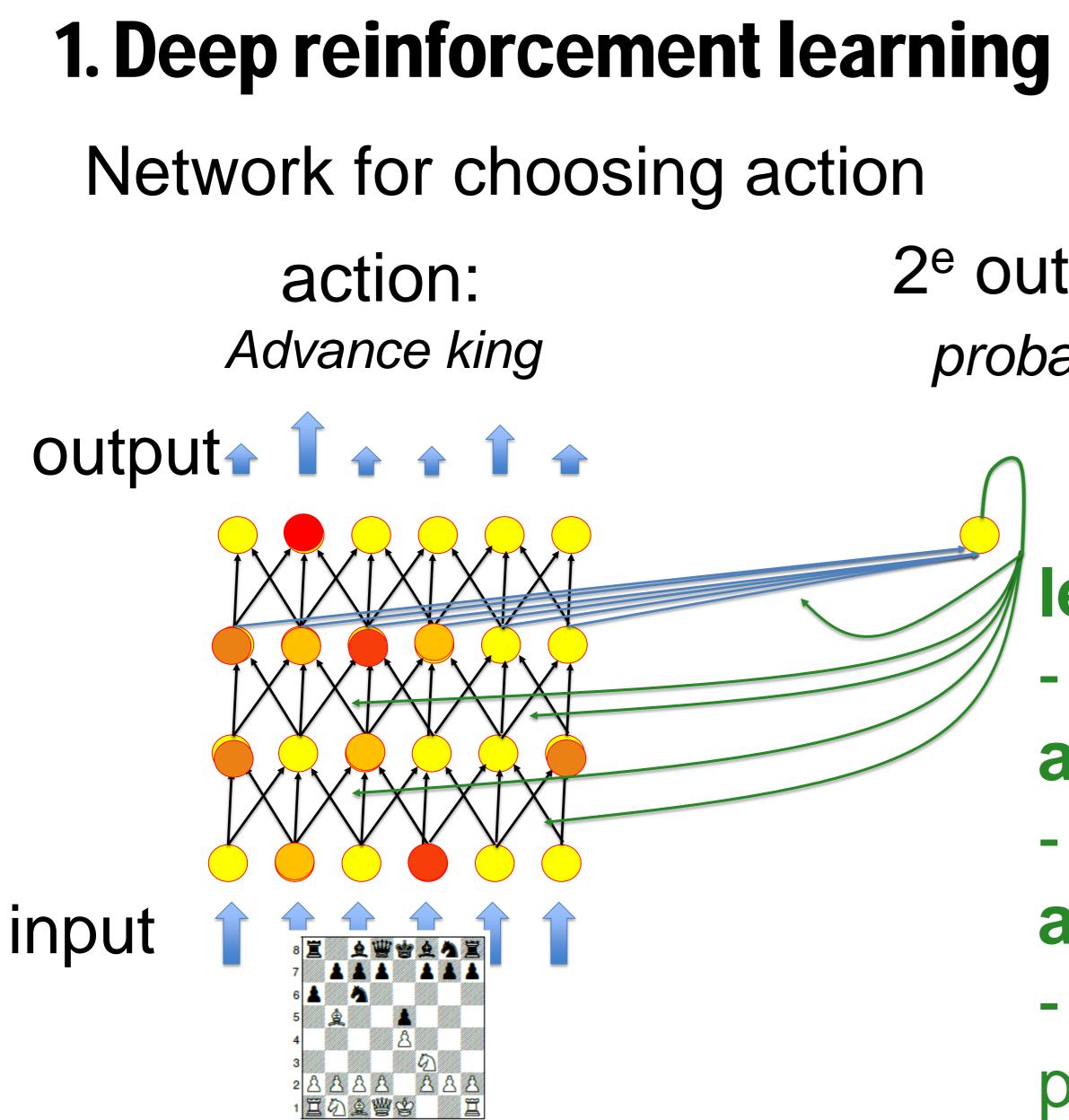


In Go, it beats Lee Sedol

Go



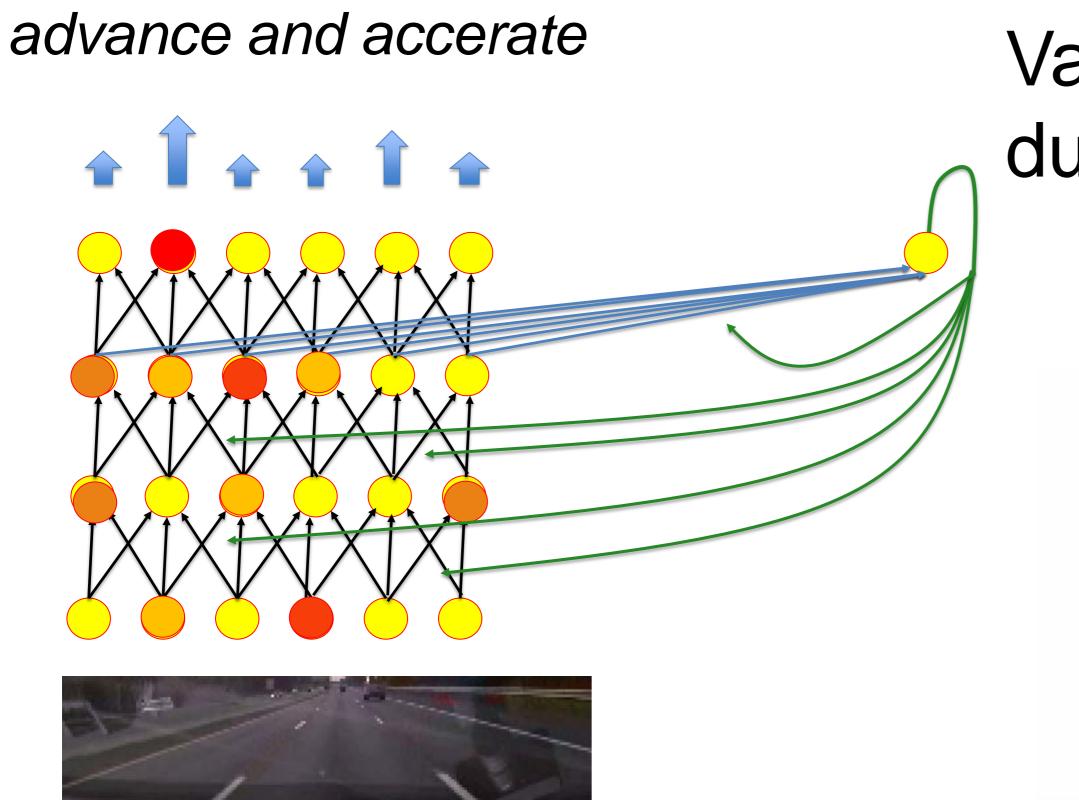
Artificial neural network (AlphaZero) discovers different strategies by playing against itself.



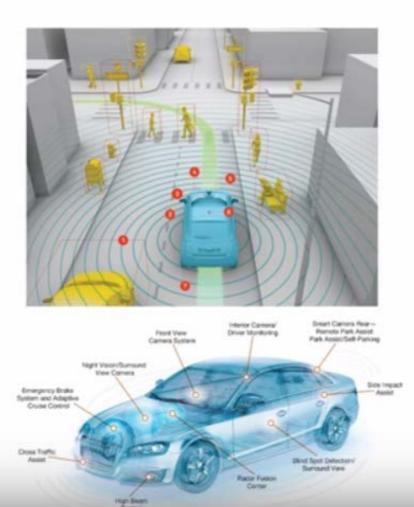
2^e output for value of state: probability to win

learning:
change connections
aim:
Choose next action to win
aim for value unit:
Predict value of current
position

1. Deep Reinforcement Learning: Self-driving cars Lex Friedman, MIT https://selfdrivingcars.mit.edu/



Value: security, duration of travel



External

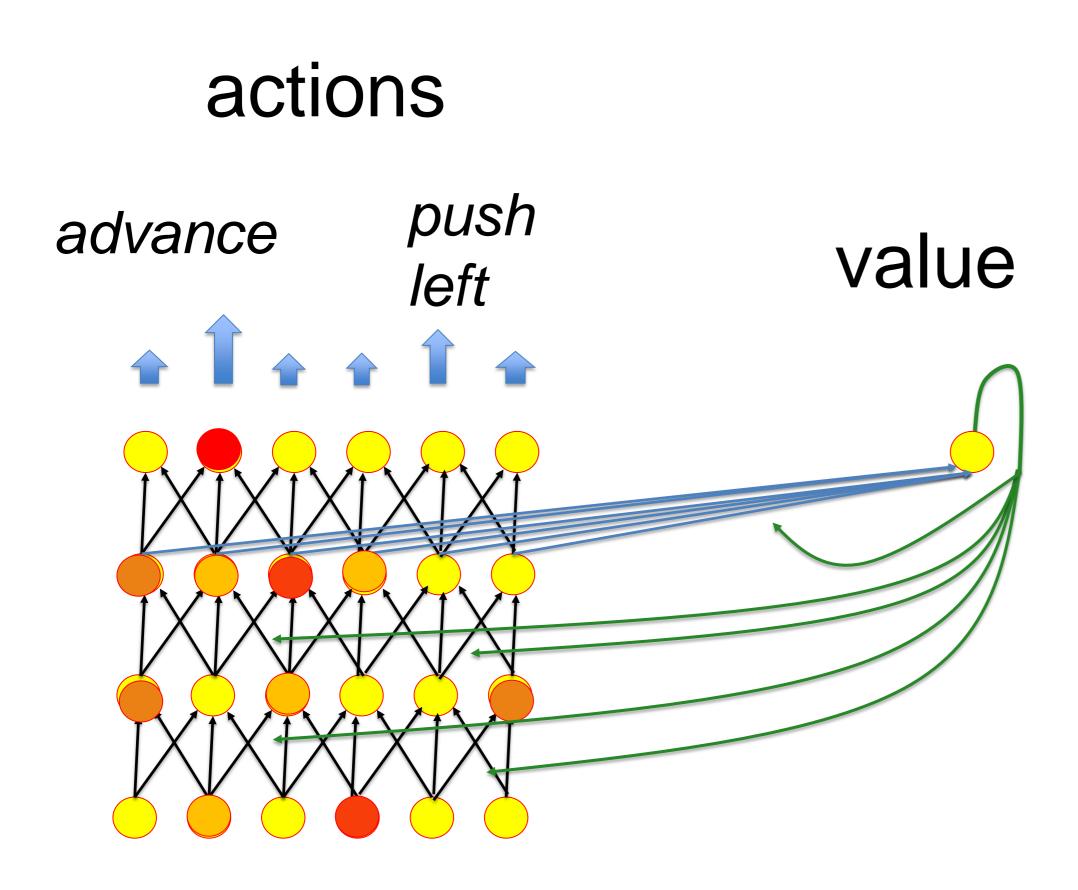
- 1. Radar
- Visible-light camera
- 3. LIDAR
- 4. Infrared camera
- 5. Stereo vision
- 6. GPS/IMU
- 7. CAN
- 8. Audio

Internal

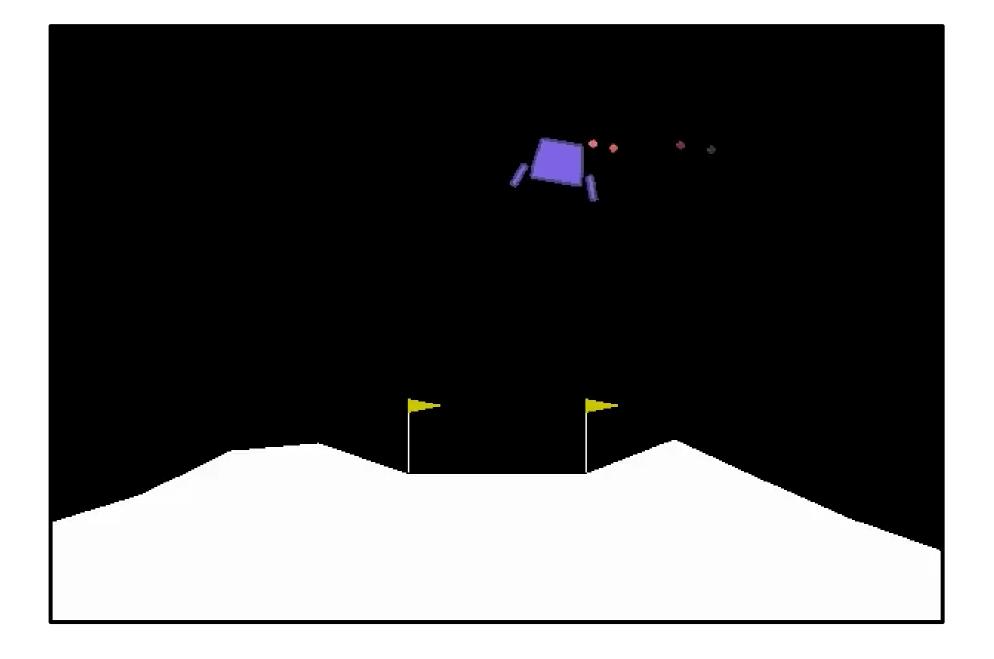
- 1. Visible-light camera
- 2. Infrared camera
- 3. Audio

Safety System \$

1. Deep Reinforcement Learning: Lunar Lander (miniproject)



Aim: land between poles



Quiz: Rewards in Reinforcement Learning

[] Reinforcement learning is based on rewards
[] Reinforcement learning aims at optimal action choices
[] In chess, the player gets an external reward after every move
[] In table tennis, the player gets a reward when he makes a point
[] A dog can learn to do tricks if you give it rewards at appropriate moments

Artificial Neural Networks: Lecture 8 Reinforcement Learning and SARSA

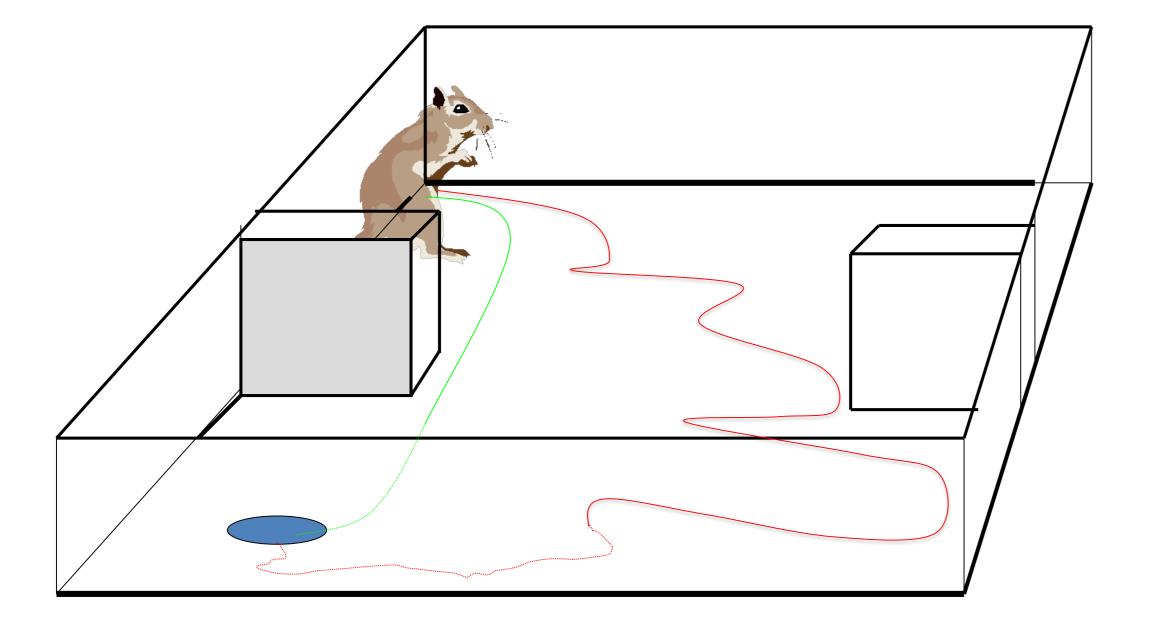
- 1. Learning by Reward: Reinforcement Learning
- 2. Elements of Reinforcement Learning

nent Learning rning

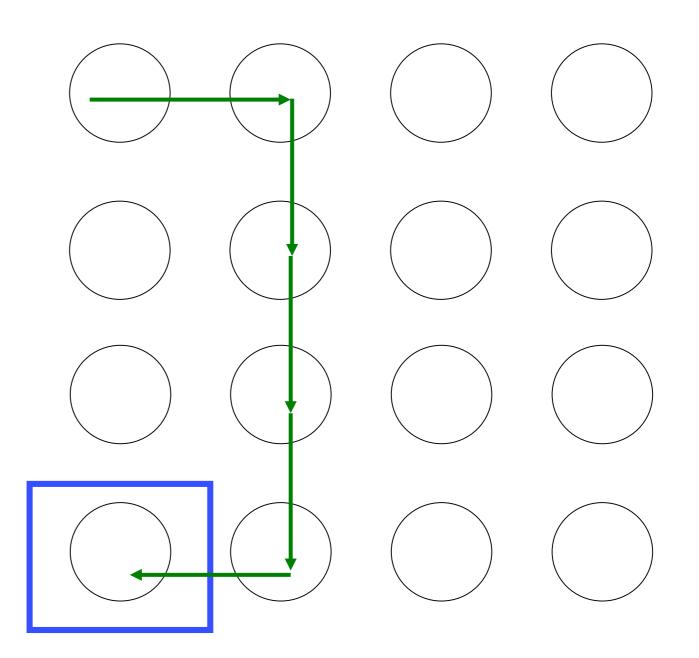
2. Elements of Reinforcement Learning:

-states -actions -rewards

2. Elements of Reinforcement Learning:



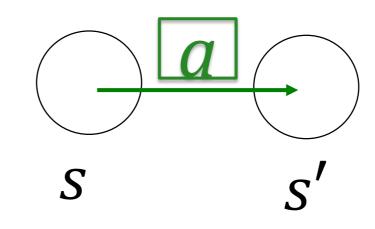
- discrete states
- discrete actions
- sparse rewards

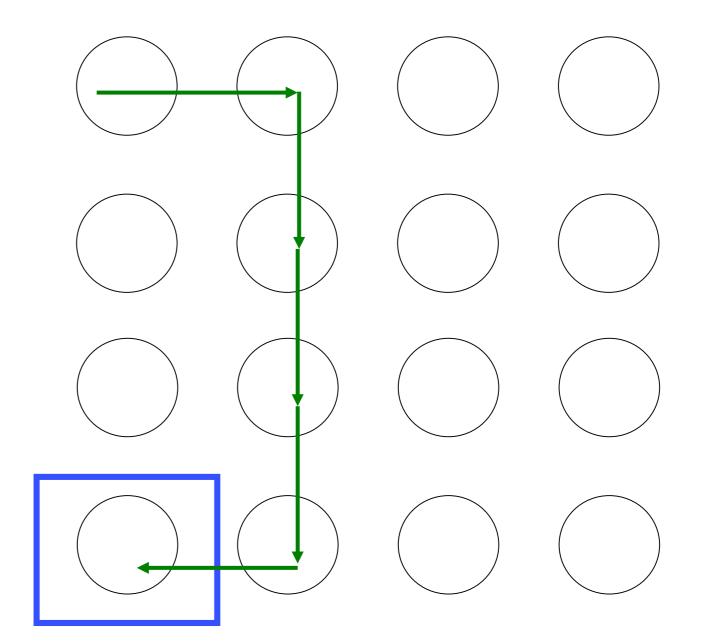


2. Elements of Reinforcement Learning:

- discrete states:
 old state s
 new state s'
- current state: s_t
- discrete actions: a
- Mean rewards for transitions: $R^{a}_{s \rightarrow s'}$
- current reward: r_t

often most transitions have zero reward

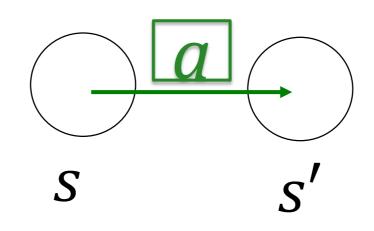




2. States Reinforcement Learning:

- discrete states: old state S s'new state
- current state: s_t

state = current configuration/well-defined situation = generalized 'location' of actor in environment

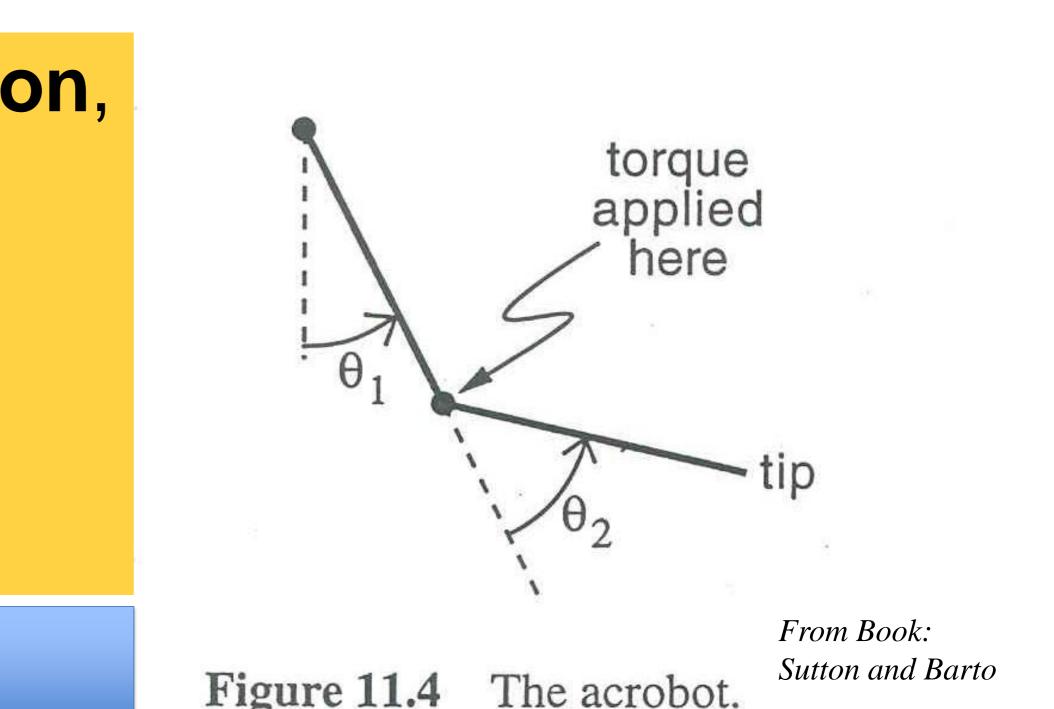


2. Reinforcement Learning: Example Acrobot

- 3 actions: a1 = no torque, = torque +1 at elbow, а2 = torque -1 at elbow *a*3 States?
 - \rightarrow discretize!

Suppose 5 states per dimension, How many states in total? | | 5 []25 125 625

reward if tip above line



2. Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions 400th episode: short sequence of 'smart' actions

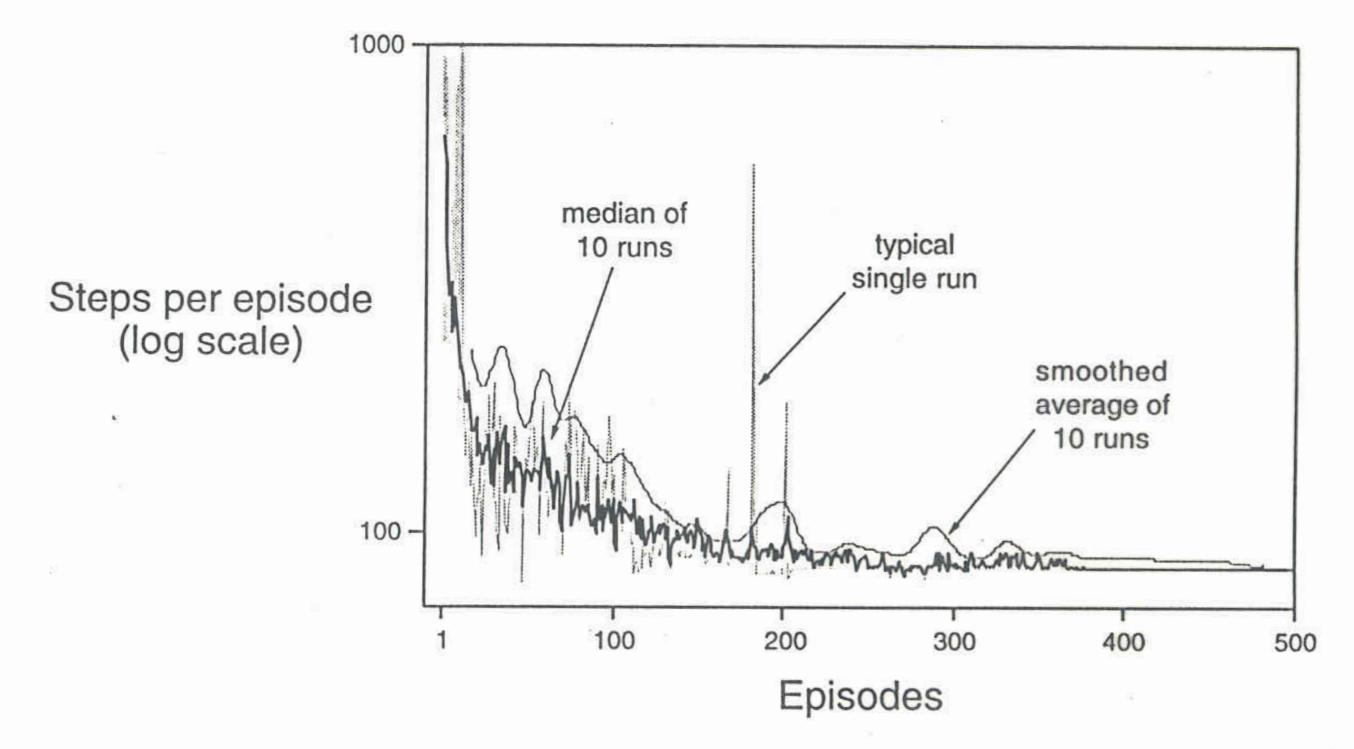


Figure 11.6 Learning curves for $Sarsa(\lambda)$ on the acrobot task.

From Book: Sutton and Barto

2. Reinforcement Learning: Example Acrobot

274 Case Studies

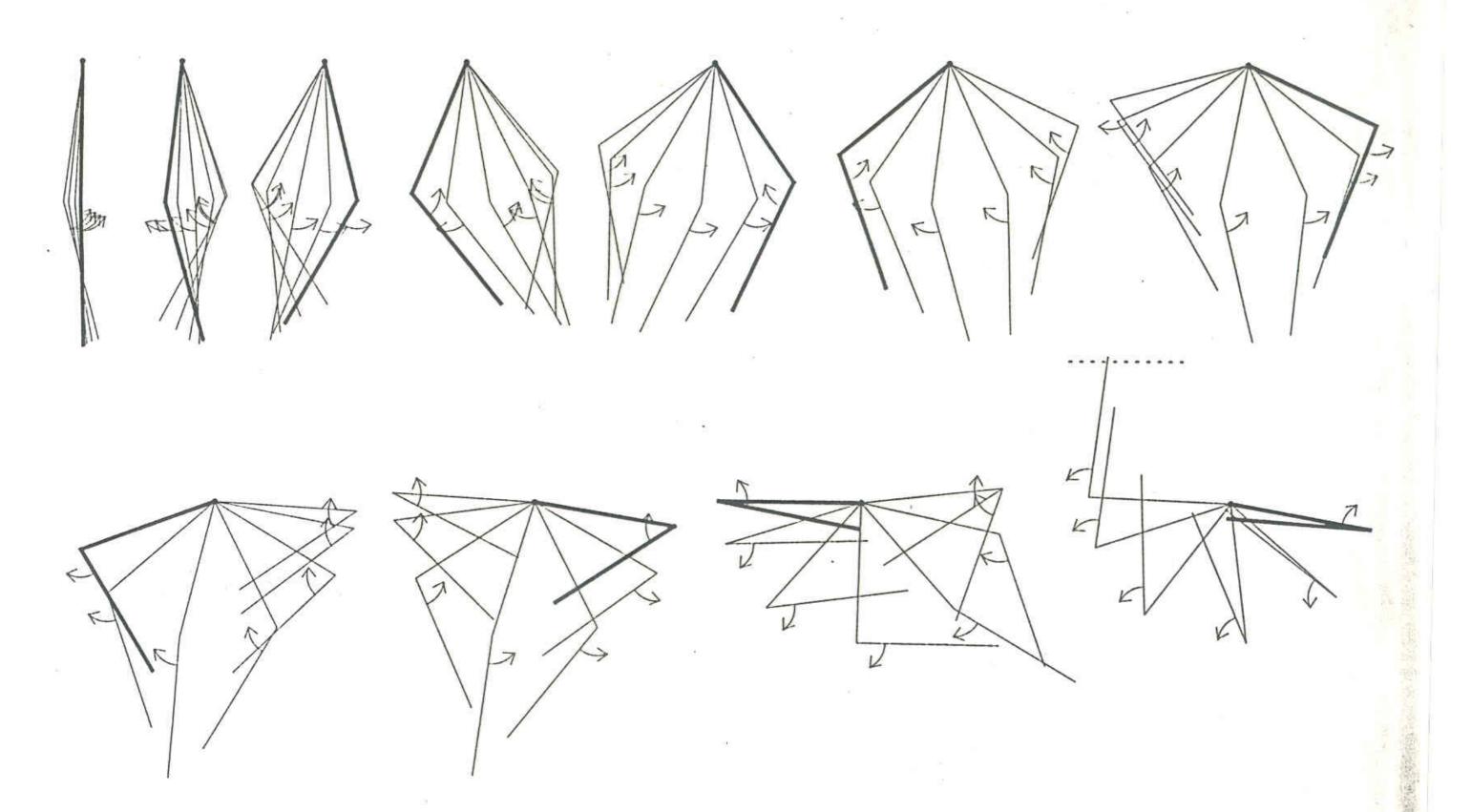


Figure 11.7 A typical learned behavior of the acrobot. Each group is a series of consecutive positions, the thicker line being the first. The arrow indicates the torque applied at the second joint.

after 400 episodes

From Book: Sutton and Barto

2. Reinforcement Learning: Example backgammon

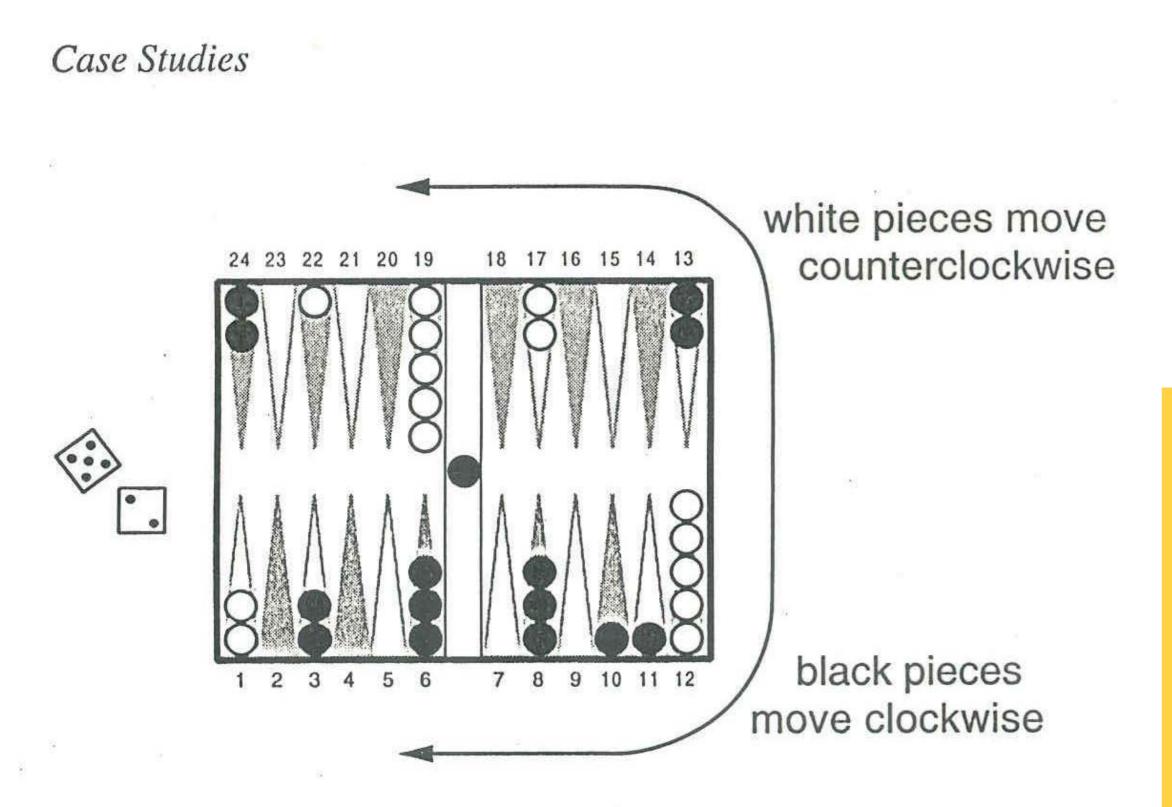


Figure 11.1 A backgammon position.

From Book: Sutton and Barto

Game position = discrete states!

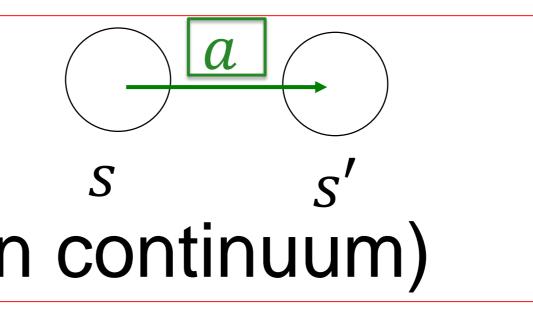
Suppose 2 pieces per player, How many states in total? [] 100<n<500 [] 500<n<5000 [] 5 000<n<50 000 [] n>50 000

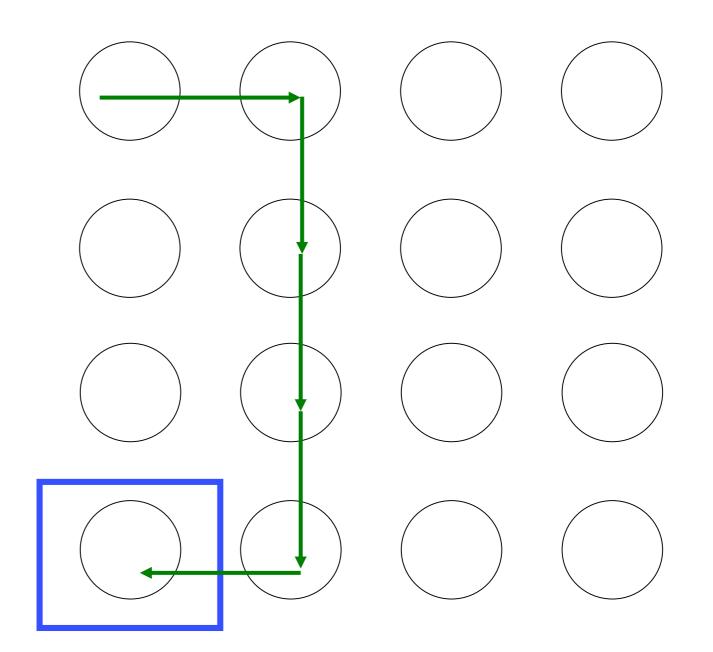
2. Elements of Reinforcement Learning: Summary

There can be MANY states Often need to discretize first $(\rightarrow \text{ next week we try to model in continuum})$

- discrete actions: a
- Mean reward for transition: $R^a_{s \to s'} = E(r|s, a, s')$
- current actual reward: r_t

often most transitions have zero reward



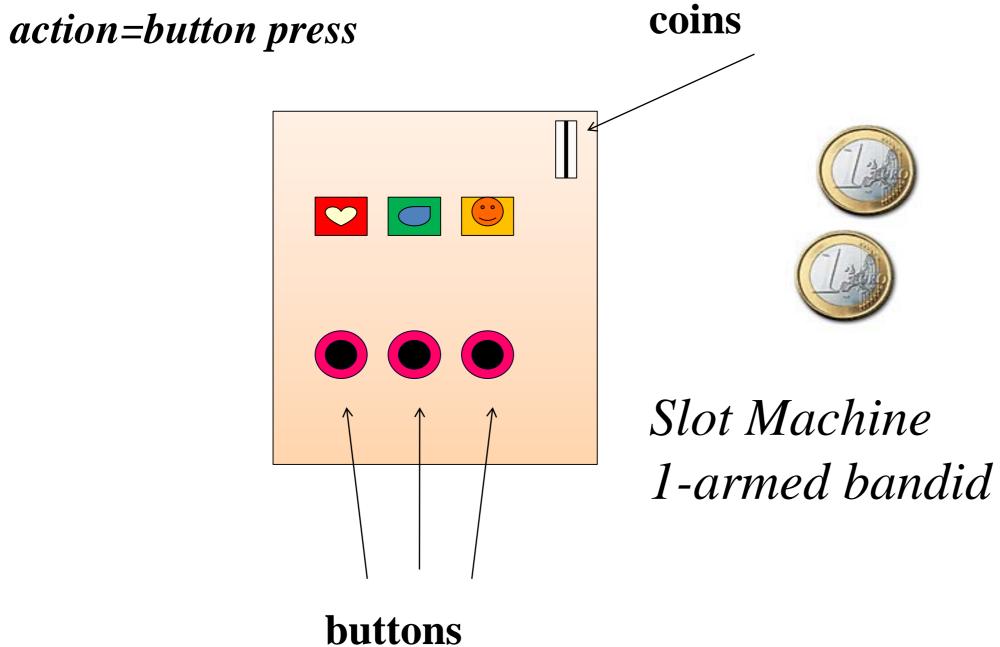


Artificial Neural Networks: Lecture 8 Reinforcement Learning and SARSA

- 1. Learning by Reward: Reinforcement Learning
- 2. Elements of Reinforcement Learning
- 3. One-step horizon (bandit problems)

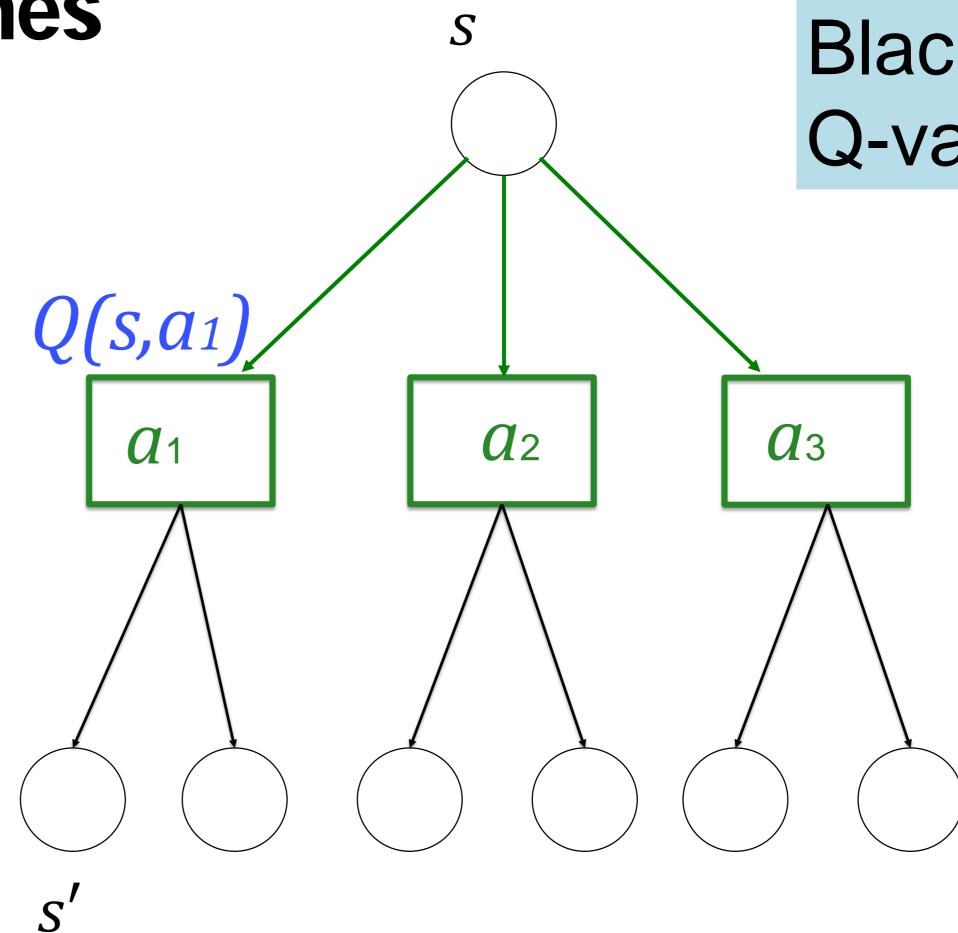
nent Learning rning ems)

2. One-step horizon games (bandit)



2. One-step horizon games

Q-value: *Q(s,a)* Expected reward for action *a* starting from *s*



Blackboard1: Q-values

2. One-step horizon games

Blackboard1: Q-values

2. One-step horizon games: Q-value Q-value Q(s,a)Expected reward for

action *a* starting from *s*

$$Q(s,a) = \sum_{s'} P^a_{s \to s'} R^a_{s \to s'}$$

Reminder:

$$R^{a}_{s \rightarrow s'} = E(r|s', a, s)$$

Similarly:

$$Q(s,a) = E(r|s,a)$$

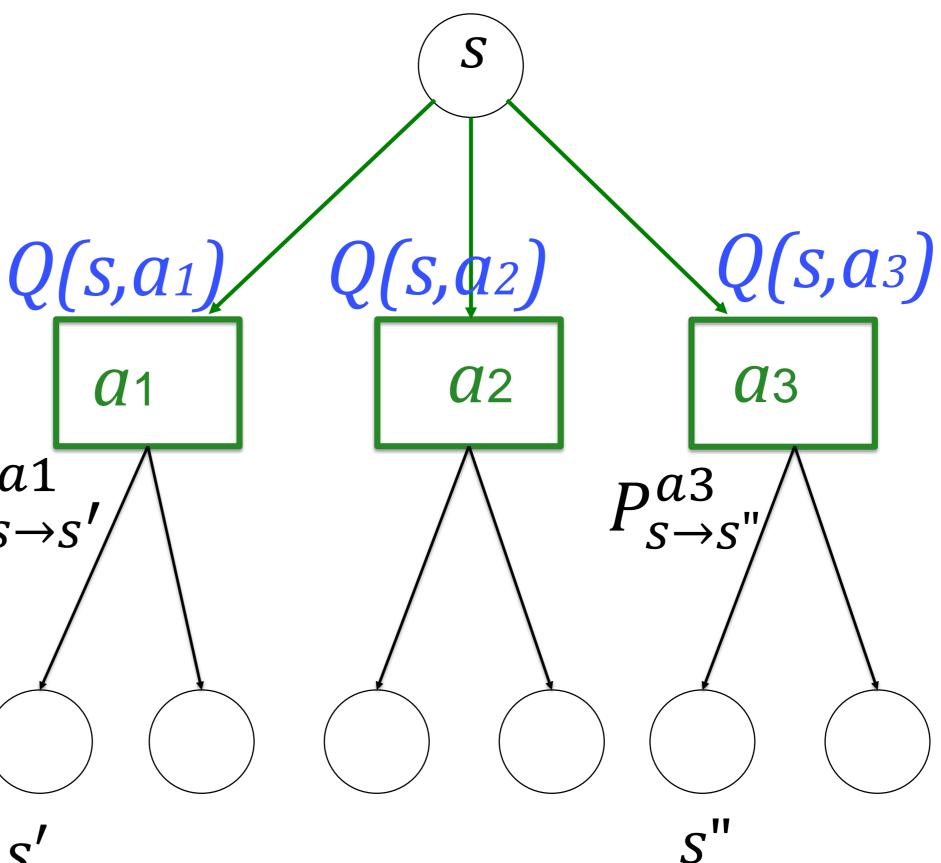
Now we know the Q-values: which action should you choose?

 a_1

 P^{a1}

 $S \rightarrow S$

S'



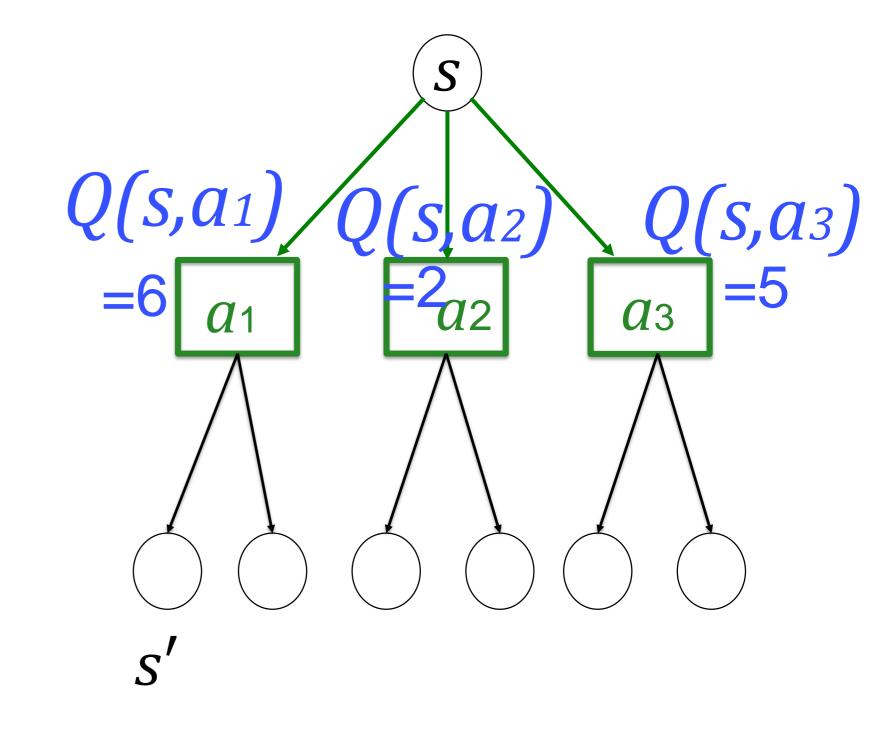
2. Optimal policy (greedy) Suppose all Q-values are known:

take action a* with

 $Q(s,a^*) > Q(s,a_j)$ \uparrow other actions

optimal action: a*= argmax_a [Q(s,a)]

Optimal policy is also called 'greedy policy'

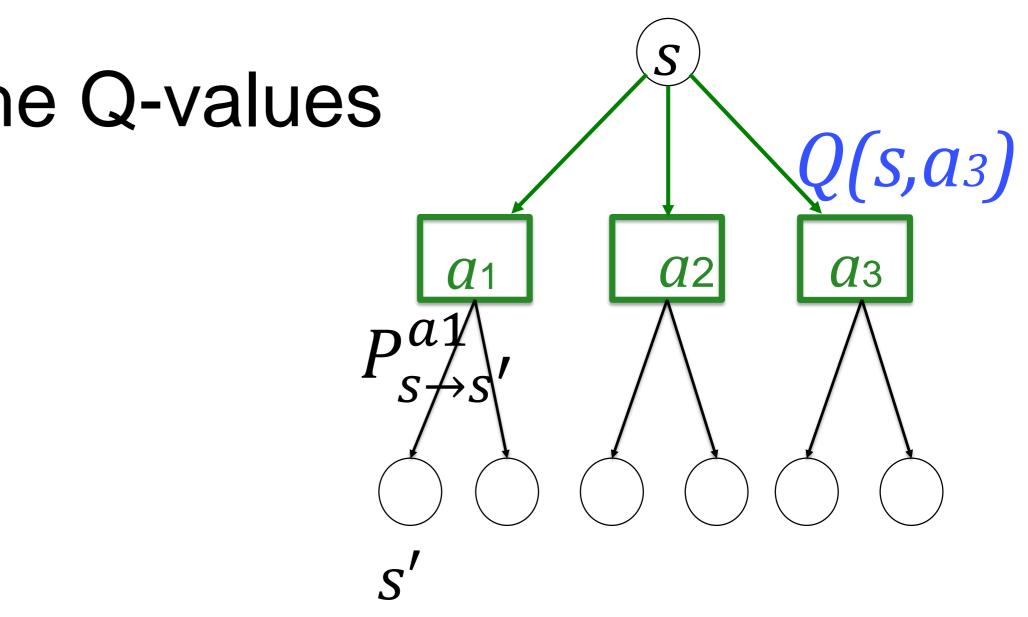


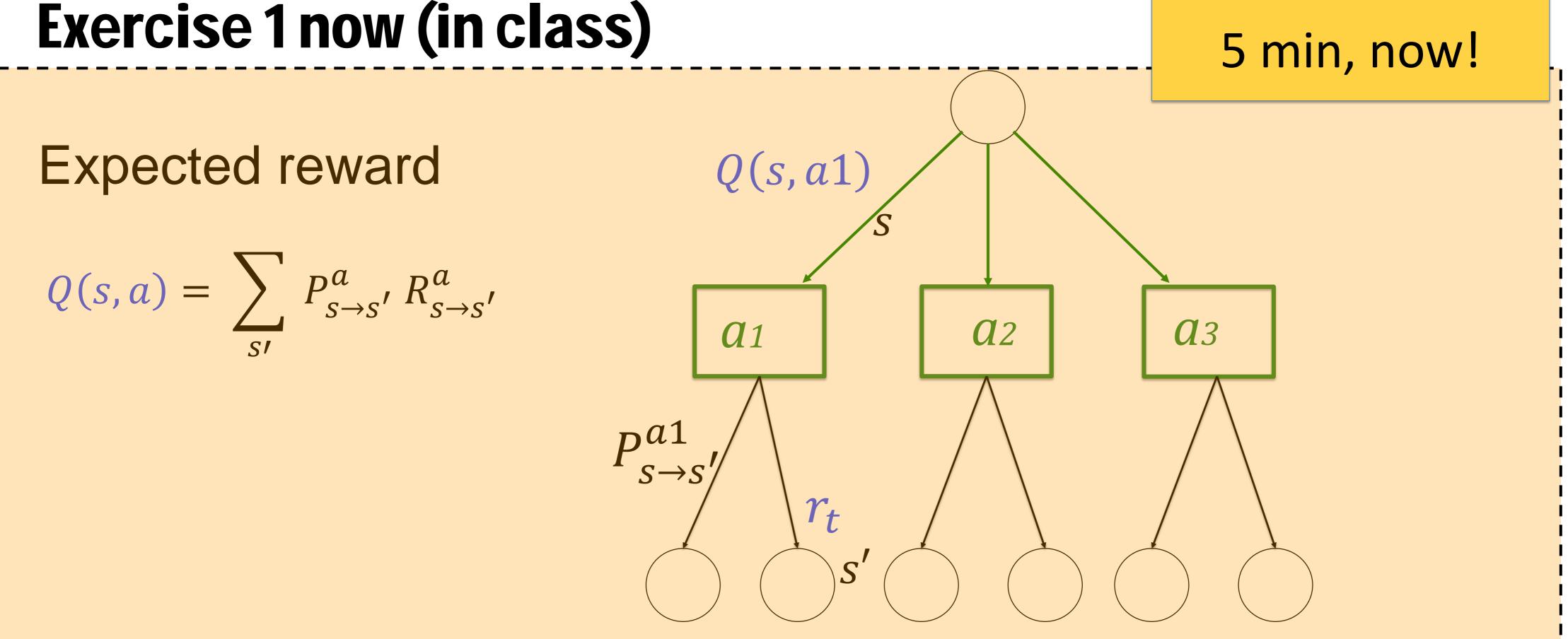
2. One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple \rightarrow take action with highest Q-value

BUT: we normally do not know the Q-values \rightarrow estimate by trial and error





Show that empirical averaging over k trials gives an update rule $\Delta Q(s,a) = \eta [r_t - Q(s,a)]$

Blackboard2: Exercise 1

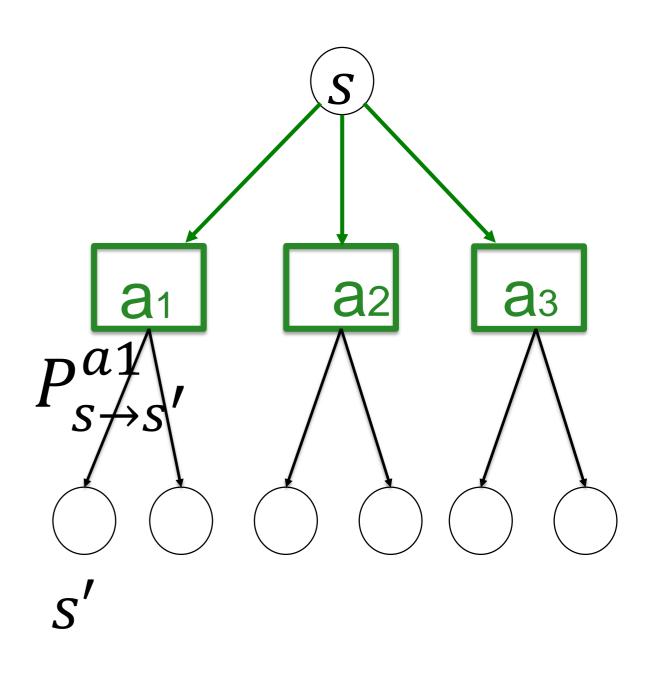
2. One-step horizon: summary

Q-value = expected reward for state-action pair

- If Q-value is known, choice of action is simple \rightarrow take action with highest Q-value
- If Q-value not known:
 - \rightarrow estimate by trial and error
 - \rightarrow update with rule

 $\Delta Q(s,a) = \eta [r_t - Q(s,a)]$

Let learning rate η decrease over time



Convergence in Expectation

After taking action a in state s, we update with $\Delta Q(s,a) = \eta \left[r_t - Q(s,a) \right]$

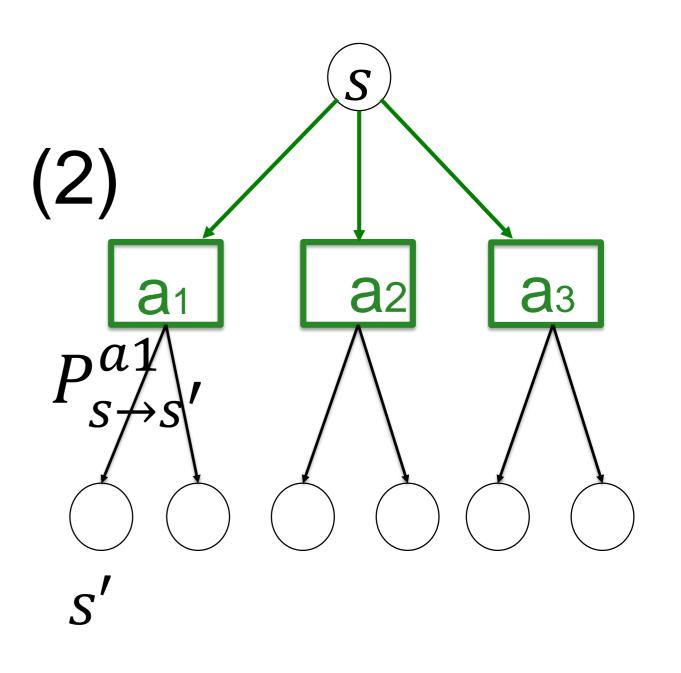
(i) If (1) converges in expectation, then *Q* fluctuates around,

$$E[Q(s,a)] = \sum_{s'} P^a_{s \to s'} R^a_{s \to s'}$$

(ii) If the learning rate η decreases, fluctuations around E[Q(s, a)] decrease.

Blackboard3: Proof of (i).

(1)



Artificial Neural Networks: Lecture 8 Reinforcement Learning and SARSA

- 1. Learning by Reward: Reinforcement Learning
- 2. Elements of Reinforcement Learning
- **3. Exploration vs Exploitation**

nent Learning rning

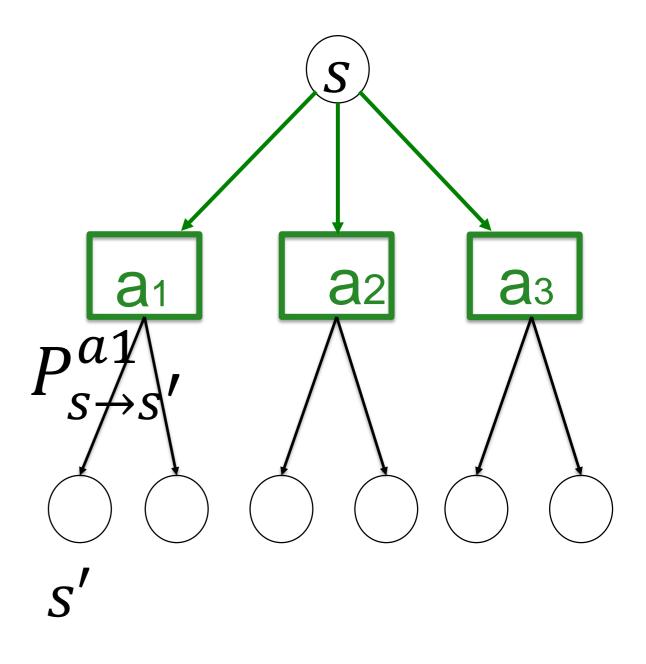
3. Exploration – Exploitation dilemma

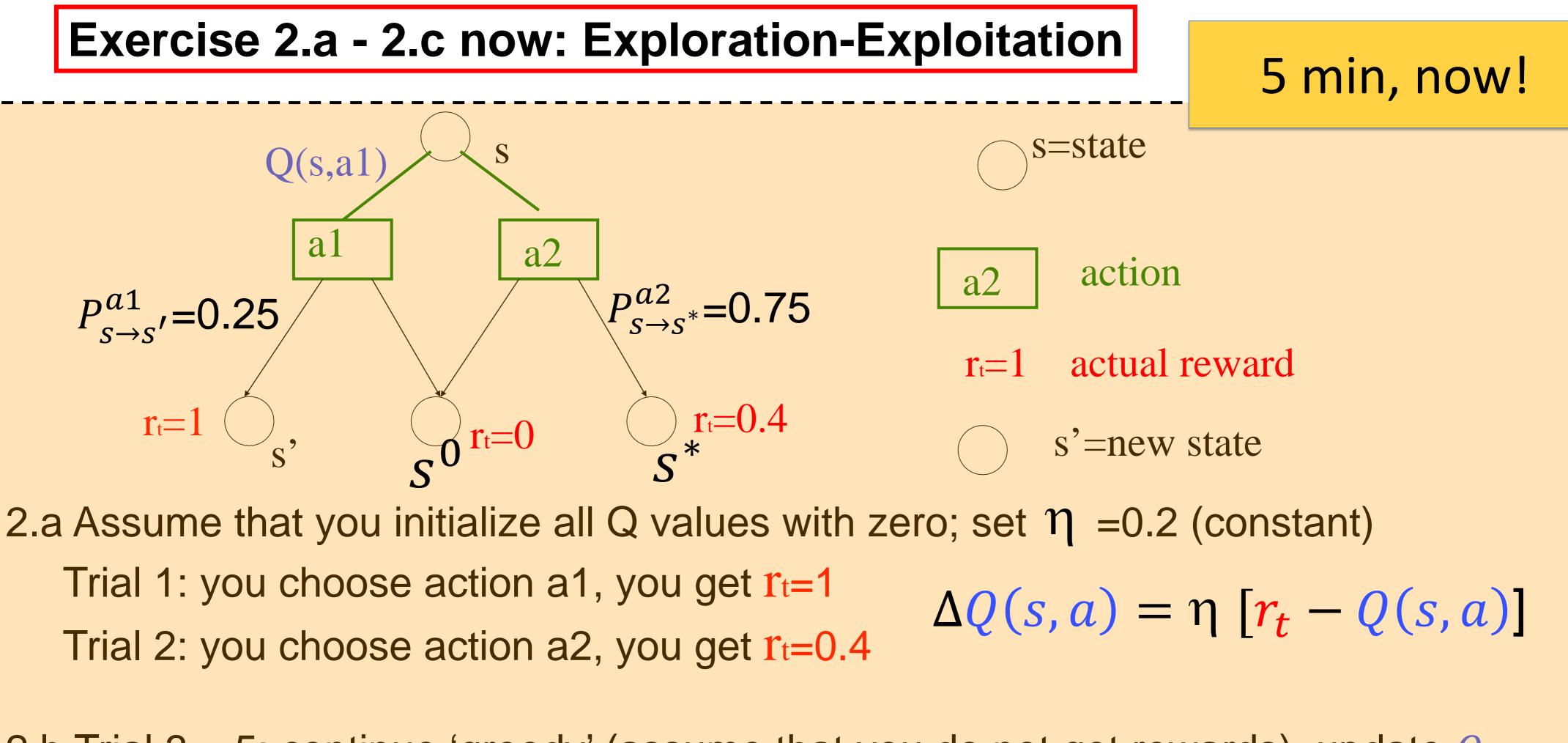
Ideal: take action with maximal Q(s, a)

Problem: correct Q values not known (since reward probabilities and branching probabilities unknown)

Exploration versus exploitation

Explore so as to estimate reward probababities Take action which looks optimal, so as to maximize reward



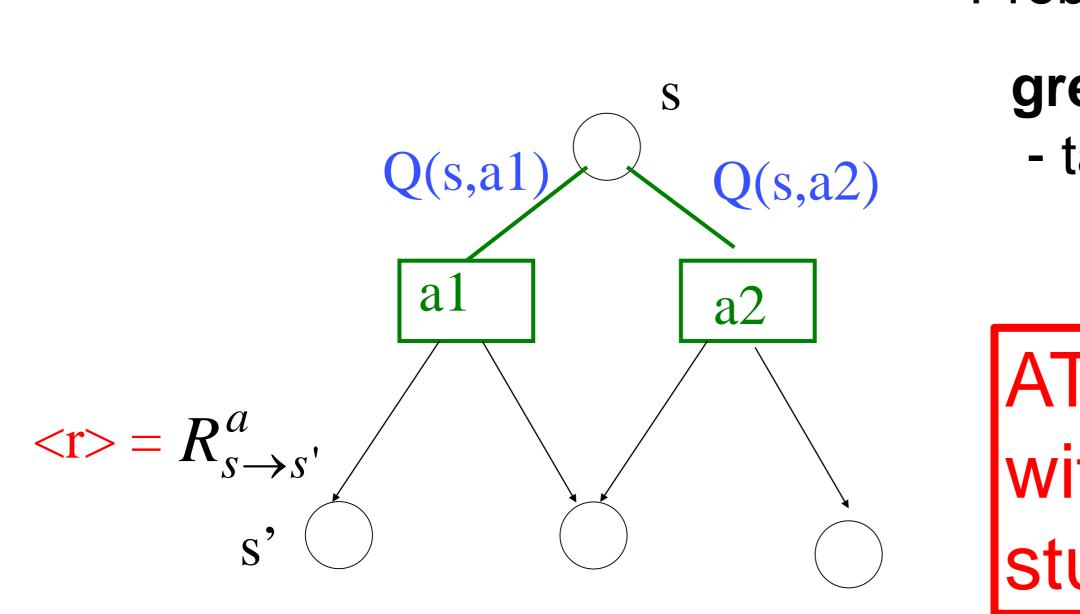


2.b Trial 3 – 5: continue 'greedy' (assume that you do not get rewards), update Q

2.c Calculate for both actions the expected reward $Q(s,a) = \sum P_{s \to s'}^{a} R_{s \to s'}^{a}$

Blackboard4: Exercise 2a-2c

3. Exploration and Exploitation



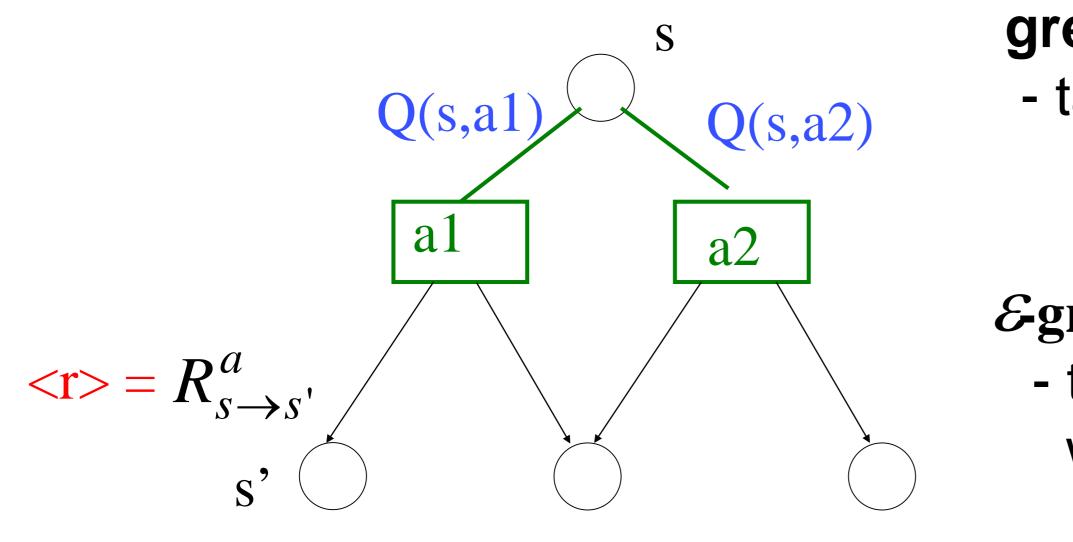
Problem: correct Q values not known

greedy strategy:
 - take action a* which looks best

 $Q(s,a^*)>Q(s,a_j)$

ATTENTION: with 'greedy' you may get stuck with a sub-optimal strategy

3. Exploration and Exploitation: practical approach

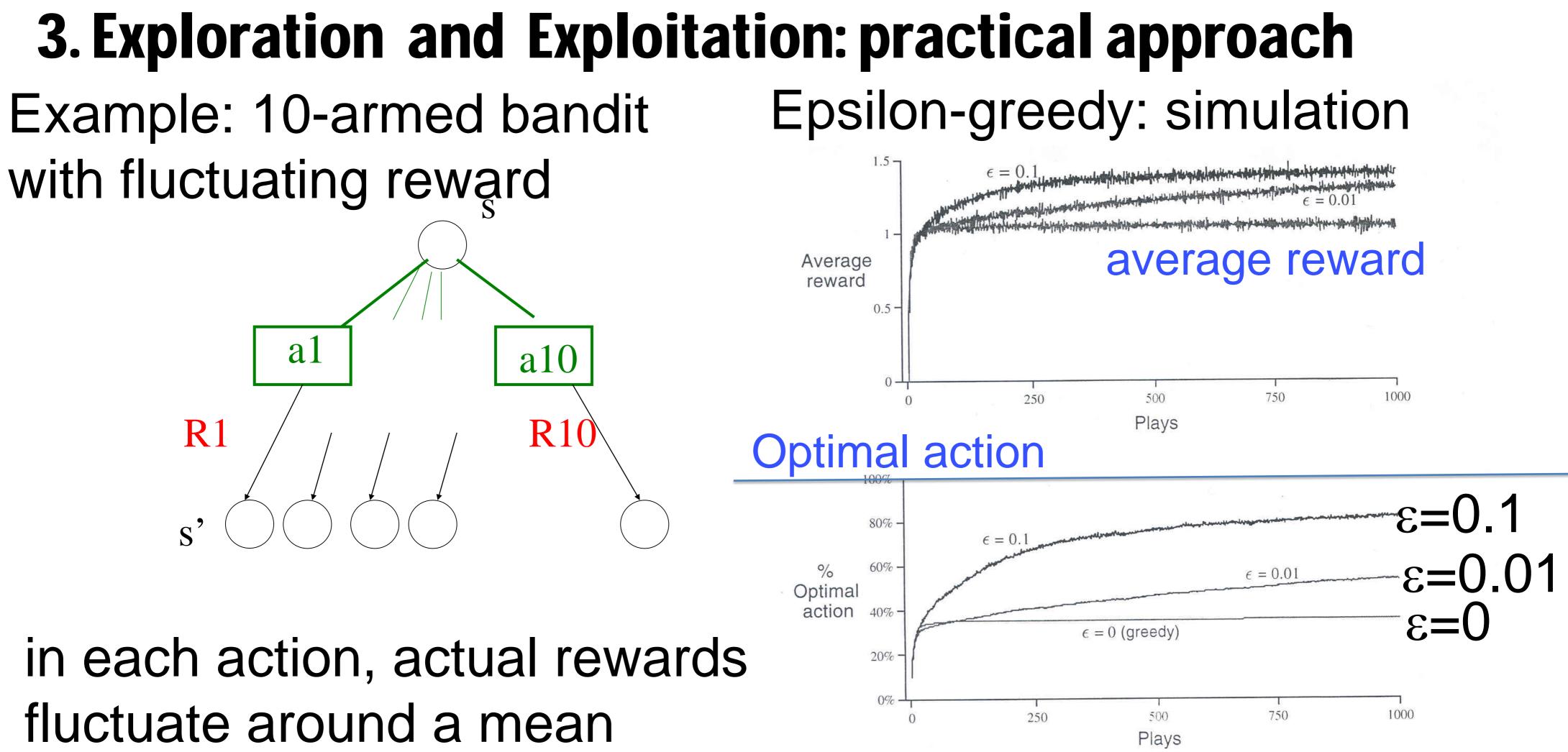


 $\Delta Q(s,a) = \eta \left[r_t - Q(s,a) \right]$

- Problem: correct Q values not known
 - greedy strategy: - take action a* which looks best

 $Q(s,a^*)>Q(s,a_i)$

- *&*-greedy strategy: - take action a* which looks best with prob $P = 1 - \varepsilon$
- Softmax strategy: take action a' with prob $P(a') = \frac{\exp[\beta Q(a')]}{\sum \exp[\beta Q(a)]}$
- Optimistic greedy: initialize with Q values that are too big



Rk= $R_{s \to s'}^{ak}$

Figure 2.1 Average performance of ϵ -greedy action-value methods on the 10-armed testbed. These data are averages over 2000 tasks. All methods used sample averages as their actionvalue estimates.

book: Sutton and Barto

3. Exploration and Exploitation: practical approach

Epsilon-greedy, combined with iterative update of Q-values

A simple bandit algorithm

```
Initialize, for a = 1 to k:
   Q(a) \leftarrow 0
   N(a) \leftarrow 0
```

Repeat forever:

 $A \leftarrow \begin{cases} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon & \text{(breaking ties randomly)} \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$ $R \leftarrow bandit(A)$ $N(A) \leftarrow N(A) + 1$ $Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right]$

Sutton and Barto, ch. 2

3. Quiz: Exploration – Exploitation dilemma

We use an iterative method and update Q-values with eta=0.1

[] With a greedy policy the agent uses the best possible action

[] Using an epsilon-greedy method with epsilon = 0.1means that, even after convergence of Q-values, in at least 10 percent of cases a suboptimal action is chosen.

[] If the rewards in the system are between 0 and 1 and Q-values are initialized with Q=2, then each action is played at least 5 times before exploitation starts.

3. Quiz: Exploration – Exploitation dilemma All Q values are initialized with the same value Q=0.1 Rewards in the system are r = 0.5 for action 1 (always)

- We use an iterative method and update Q-values with eta=0.1
- [] if we use softmax with beta = 10, then, after 100 steps, action 2 is chosen almost always [] if we use softmax with beta = 0.1, then action 2 is taken about twice as often as action 1.

and r=1.0 for action 2 (always)

Softmax strategy: take action a' with prob $P(a') = \frac{\exp[\beta Q(a')]}{\sum \exp[\beta Q(a)]}$

Artificial Neural Networks: Lecture 8 Reinforcement Learning and SARSA

- 1. Learning by Reward: Reinforcement Learning
- 2. Elements of Reinforcement Learning
- 3. Exploration vs Exploitation
- 4. Bellman equation

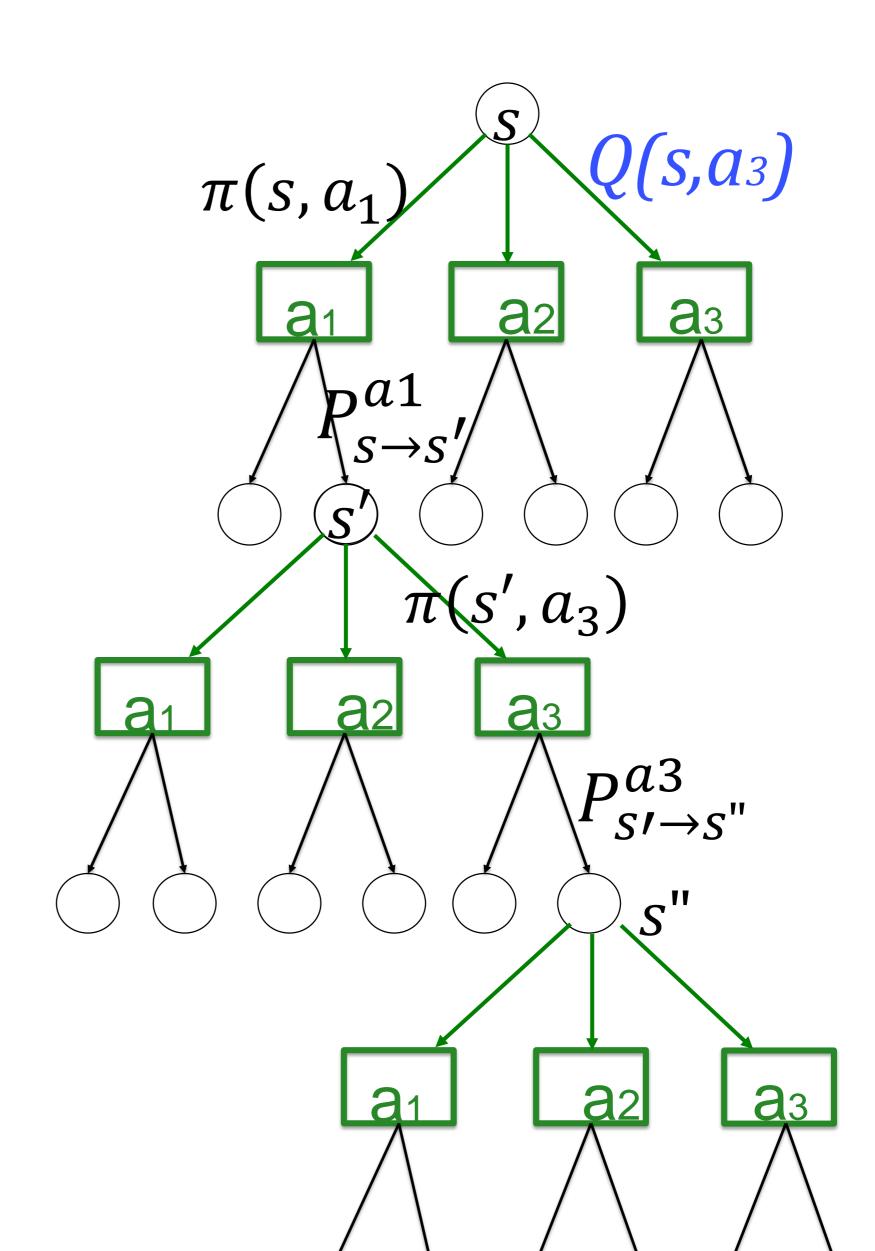
nent Learning rning

4. Multistep horizon Policy $\pi(s, a)$ probability to choose action *a* in state *s* $1=\sum_{a'}\pi(s,a')$

Examples of policy: -epsilon-greedy -softmax

Stochasticity $P_{s \to s'}^a$

probability to end in state s' taking action a in state s

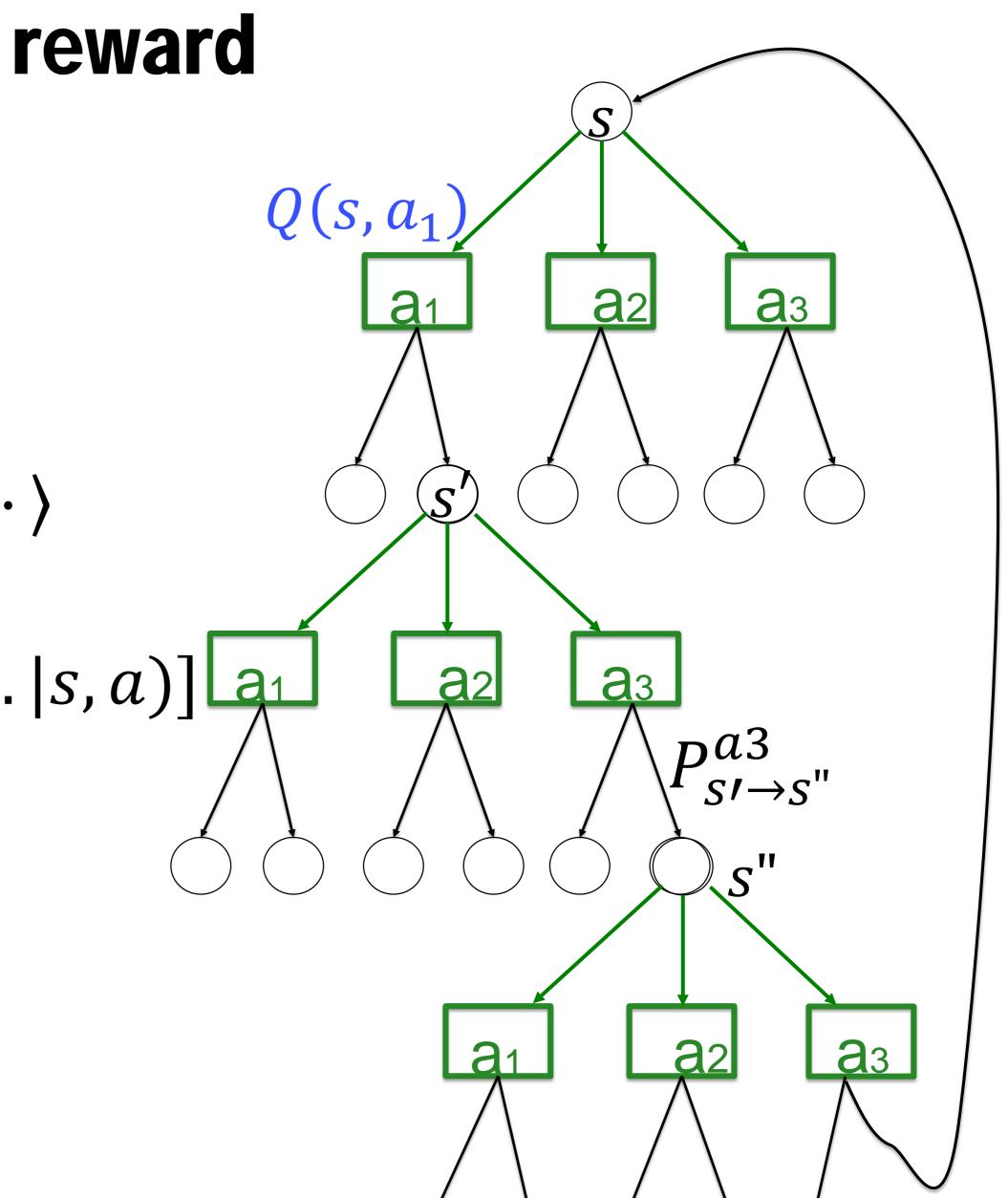


4. Total expected (discounted) reward

- Starting in state s with action aQ(s,a) =
- $= \left\langle r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots \right\rangle$
- $= E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots |s, a)] [a_1]$

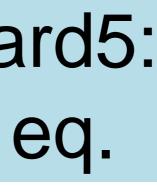
Discount factor: γ <1

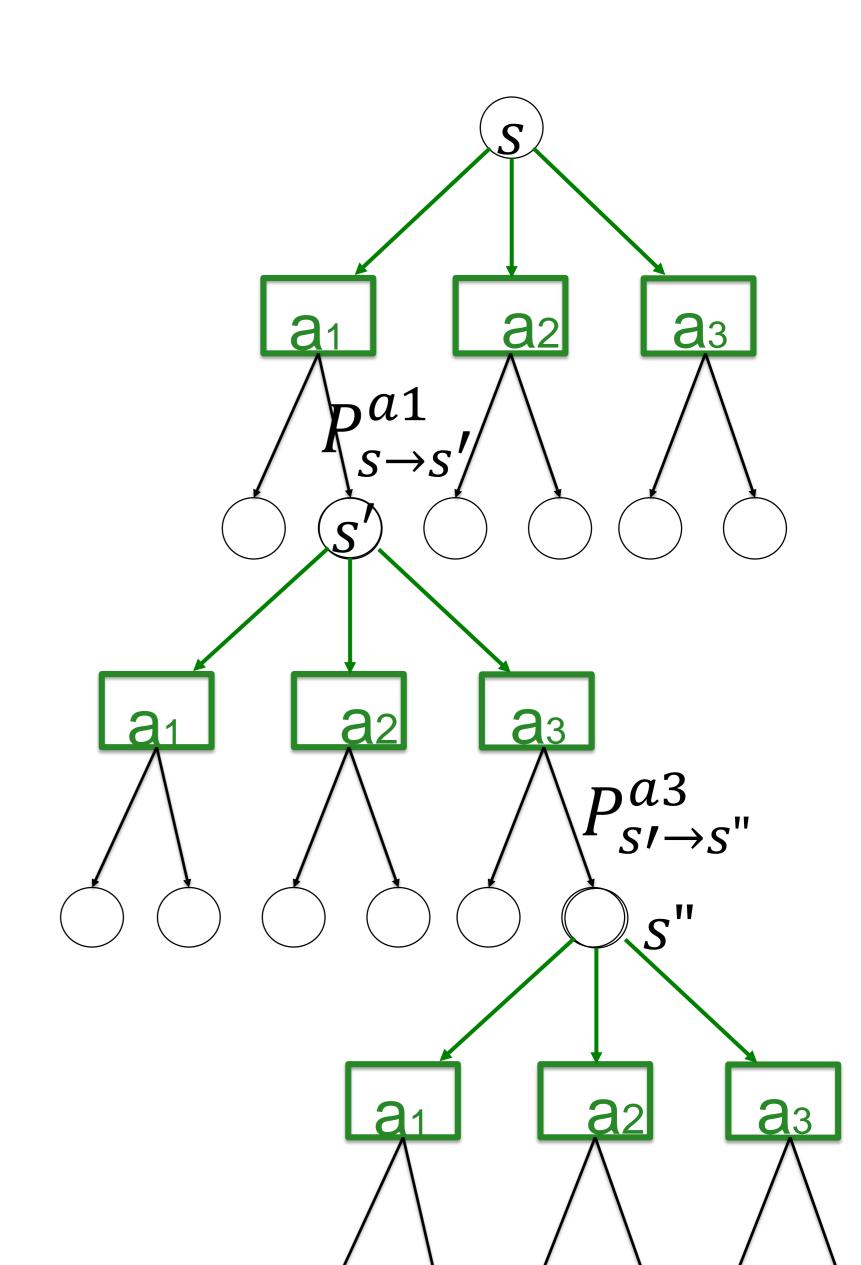
-important for recurrent networks! -avoids blow-up of summation -gives less weight to reward in **far** future



4. Bellman equation

Blackboard5: Bellman eq.





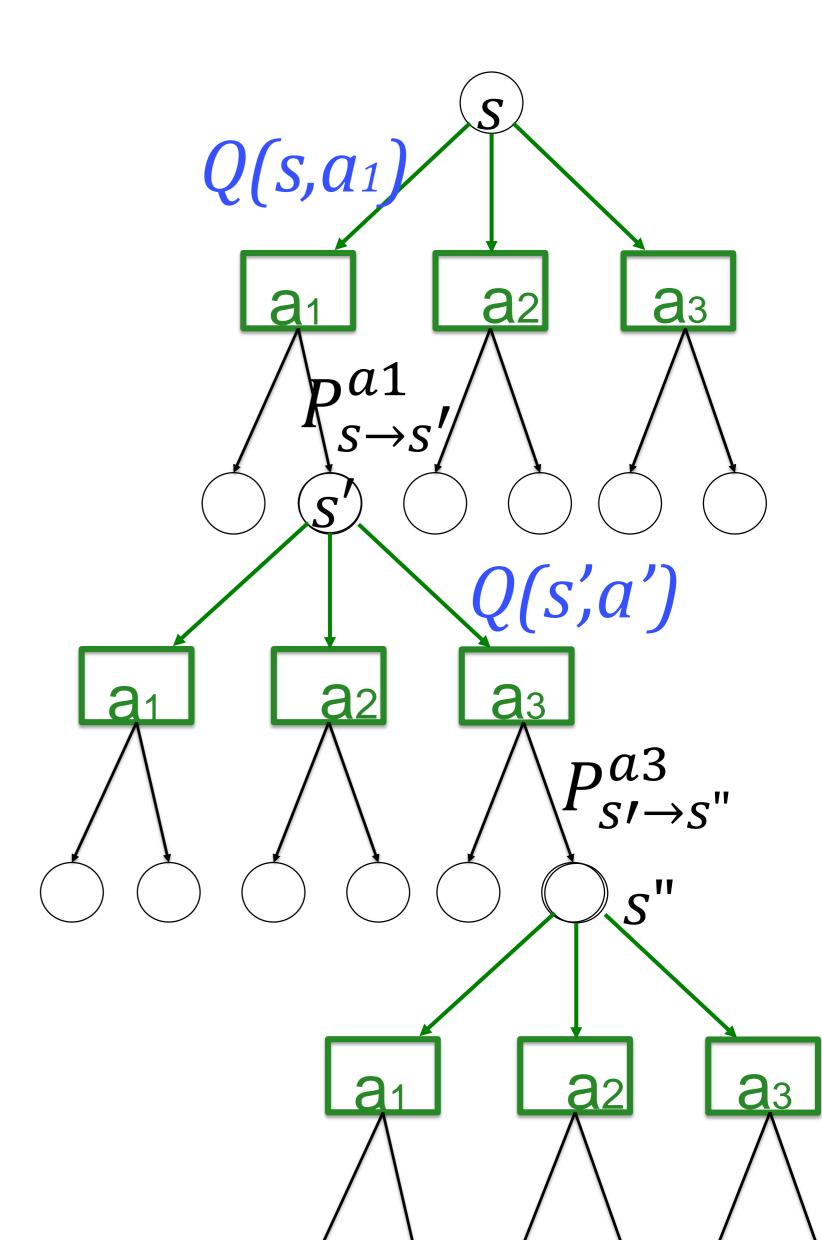
4. Bellman equation with policy π

$$Q(s,a) = \sum_{s'} P^a_{s \to s'} \left[R^a_{s \to s'} + \gamma \sum_{a'} \pi(s',a') Q(s',a') \right]$$

Bellman equation = value consistency of neighboring states

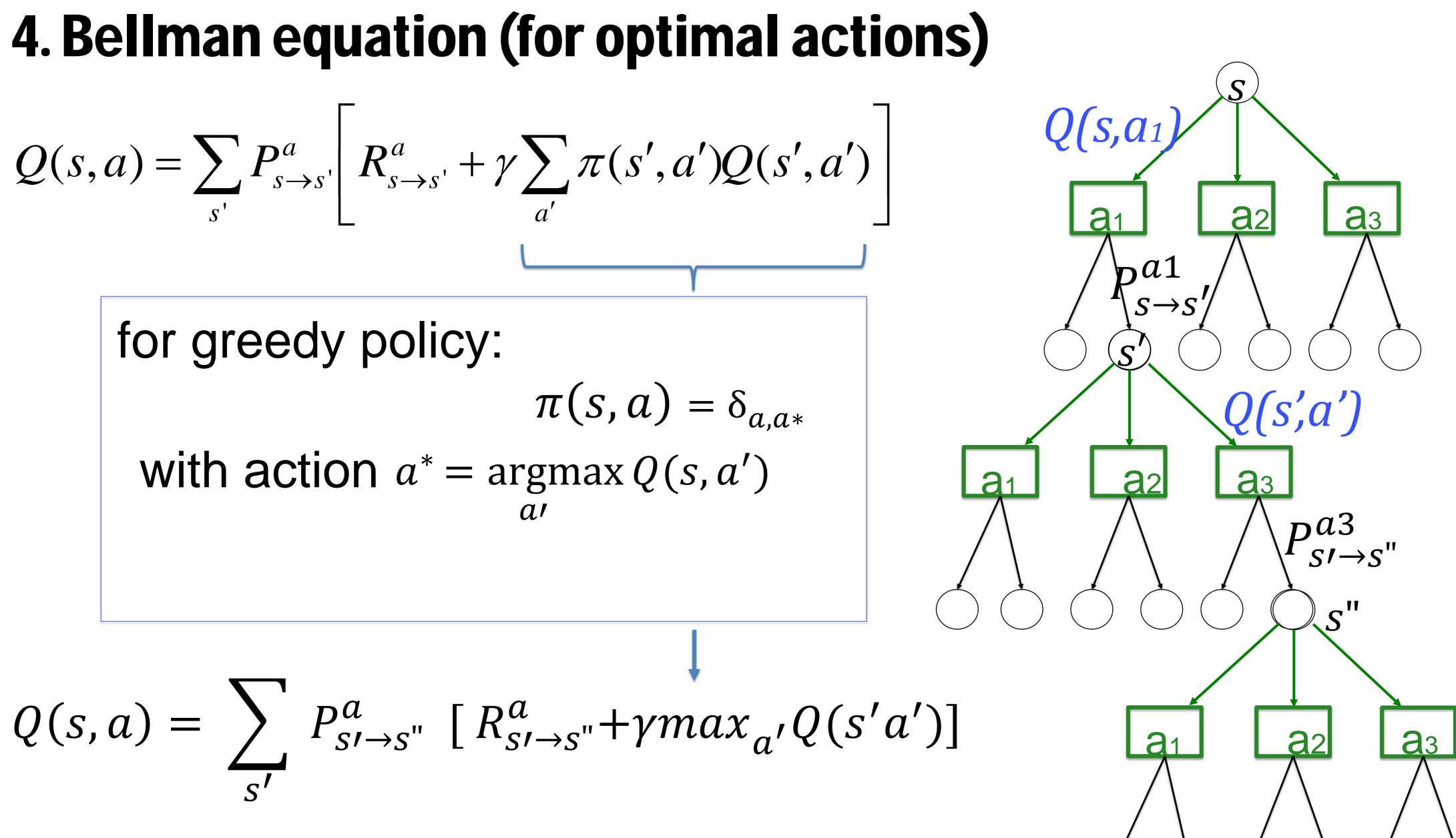
Remark:

Sometimes Bellman equation is written for greedy policy: $\pi(s, a) = \delta_{a,a*}$ with action $a^* = \operatorname{argmax} Q(s, a')$ *a*/



$$Q(s,a) = \sum_{s'} P^a_{s \to s'} \left[R^a_{s \to s'} + \gamma \sum_{a'} \pi(s',a') Q \right]$$

a'

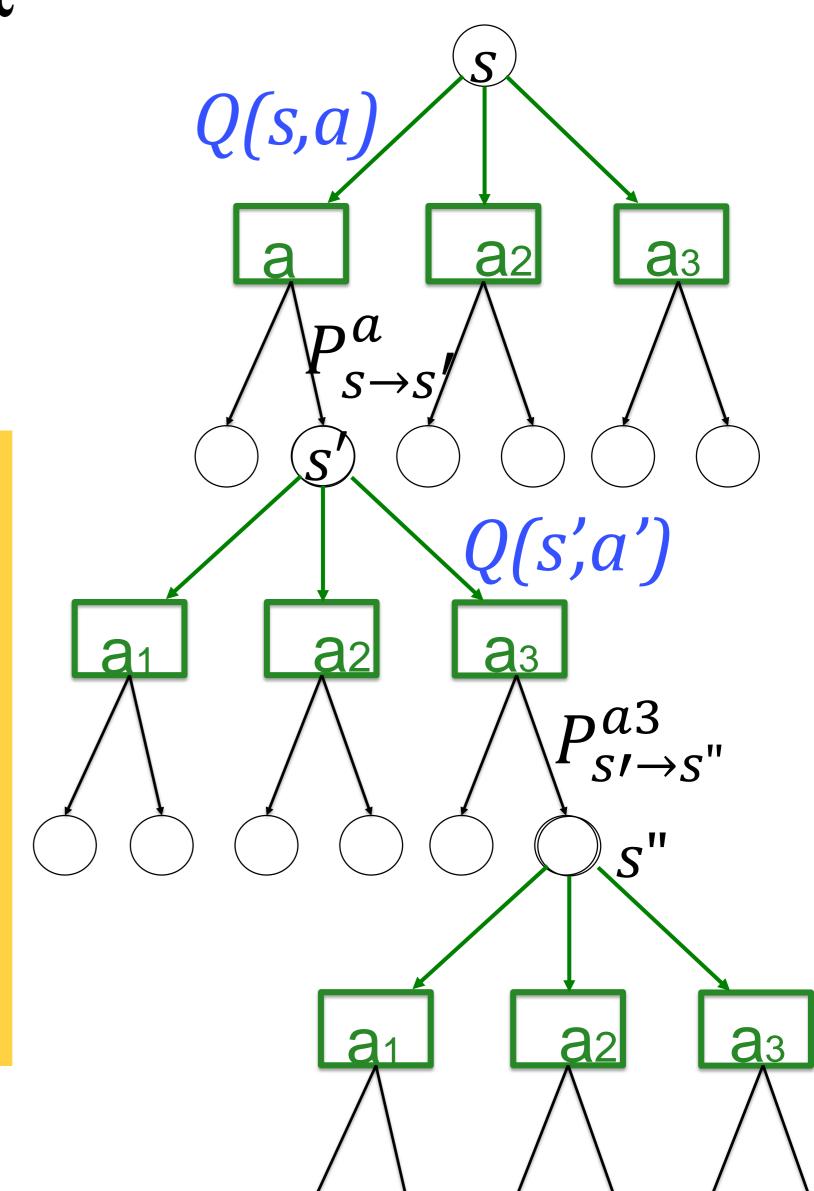


4. Quiz: Bellman equation with policy $\boldsymbol{\pi}$

$$Q(s,a) = \sum_{s'} P^{a}_{s \to s'} \left[R^{a}_{s \to s'} + \gamma \sum_{a'} \pi(s',a') Q(s',a') \right]$$

[] The Bellman equation is linear in the variables Q(s'a')

[] The set of variables *Q(s',a')* that solve the Bellman equation is unique and does not depend on the policy



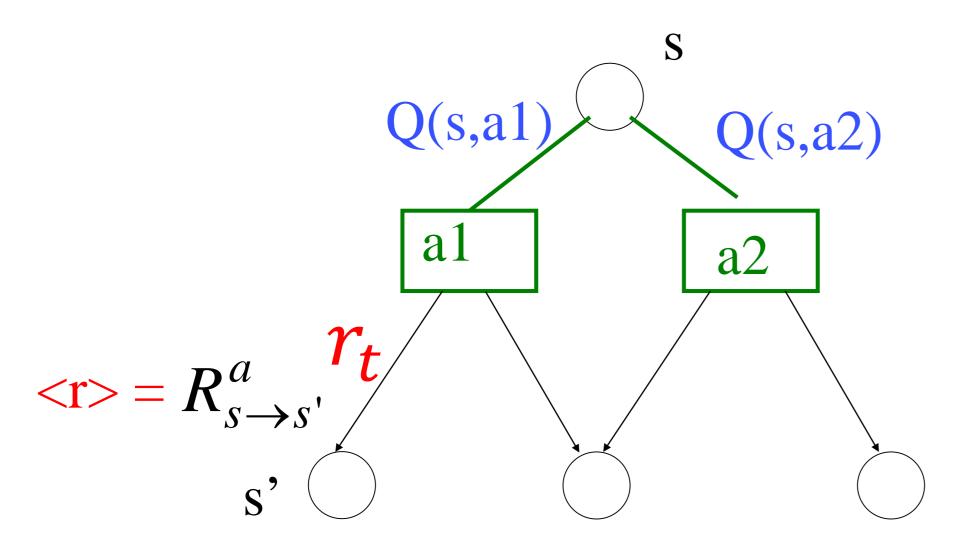
Artificial Neural Networks: Lecture 8 Reinforcement Learning and SARSA

- 1. Learning by Reward: Reinforcement Learning
- 2. Elements of Reinforcement Learning
- 3. Exploration vs Exploitation
- 4. Bellman equation
- 5. SARSA algorithm

nent Learning rning

3. Iterative update of Q-values

Problem: Q-values not given



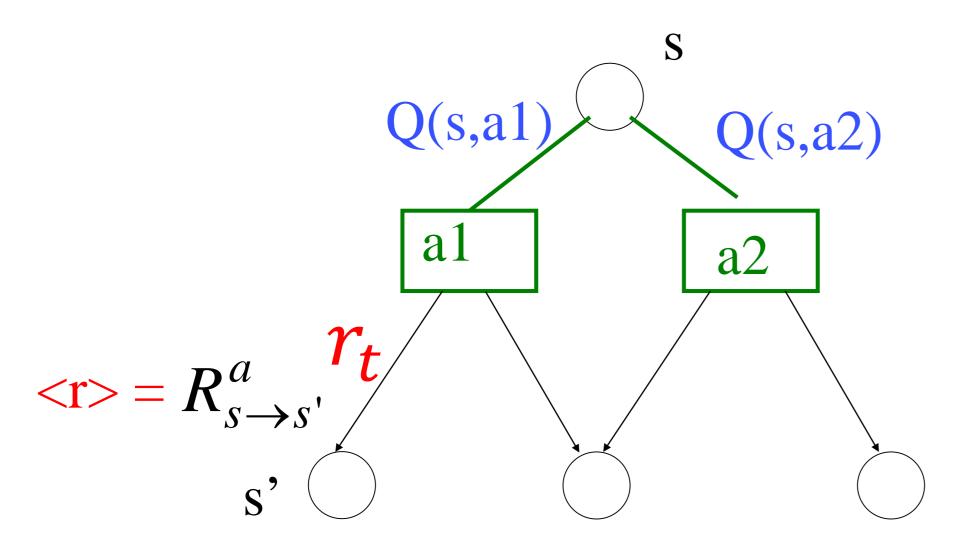
Solution: iterative update

 $\Delta Q(s,a) = \eta \left[r_t - Q(s,a) \right]$

while playing with policy $\pi(s, a)$

5. Iterative update of Q-values for multistep environments

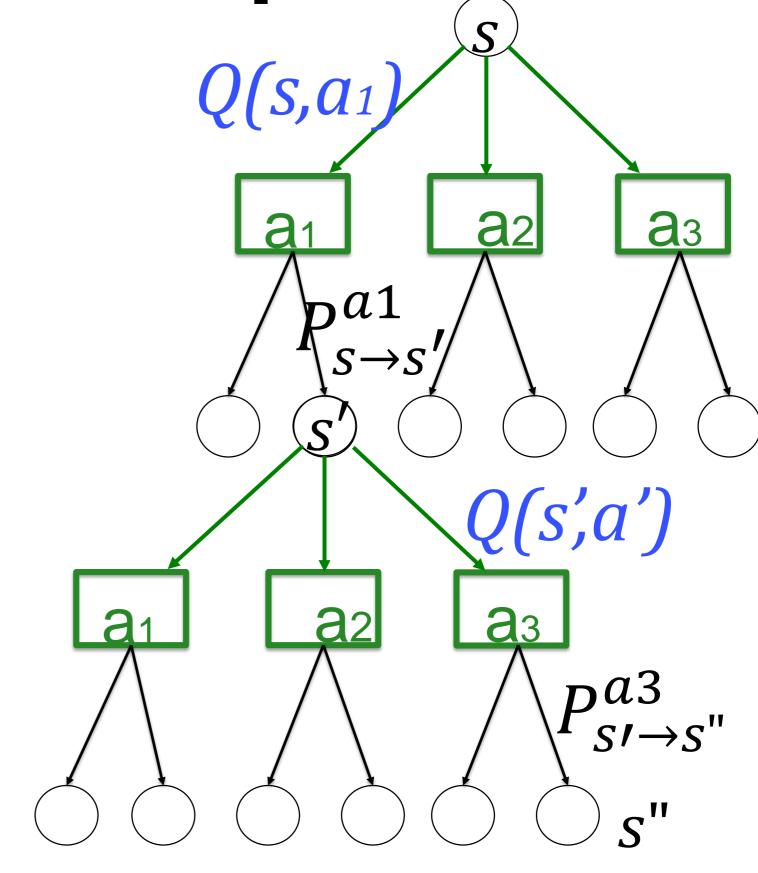
Problem: Q-values not given



Solution: iterative update

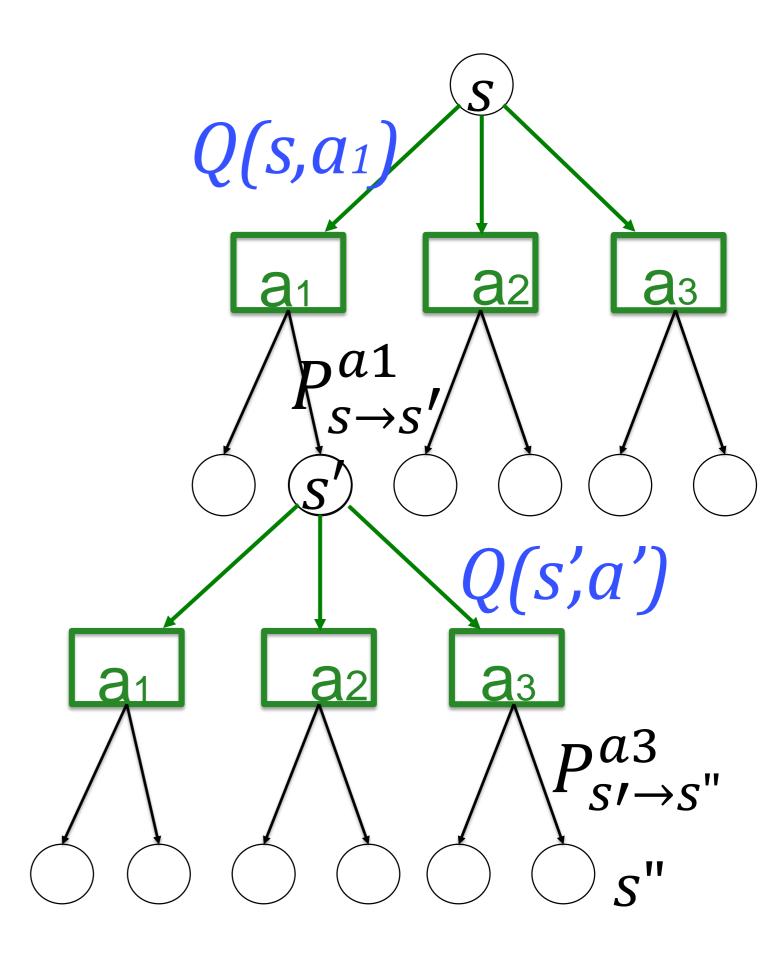
 $\Delta Q(s,a) = \eta \left[r_t - Q(s,a) \right]$

while playing with policy $\pi(s, a)$



 $\Delta Q(s,a) = ?$

Blackboard6: SARSA update



5. Iterative update of Q-values for multistep environments Bellman equation: $Q(s,a) = \sum_{s'} P_{s \to s'}^{a} \left[R_{s \to s'}^{a} + \gamma \sum_{a'} \pi(s',a') Q(s',a') \right]$

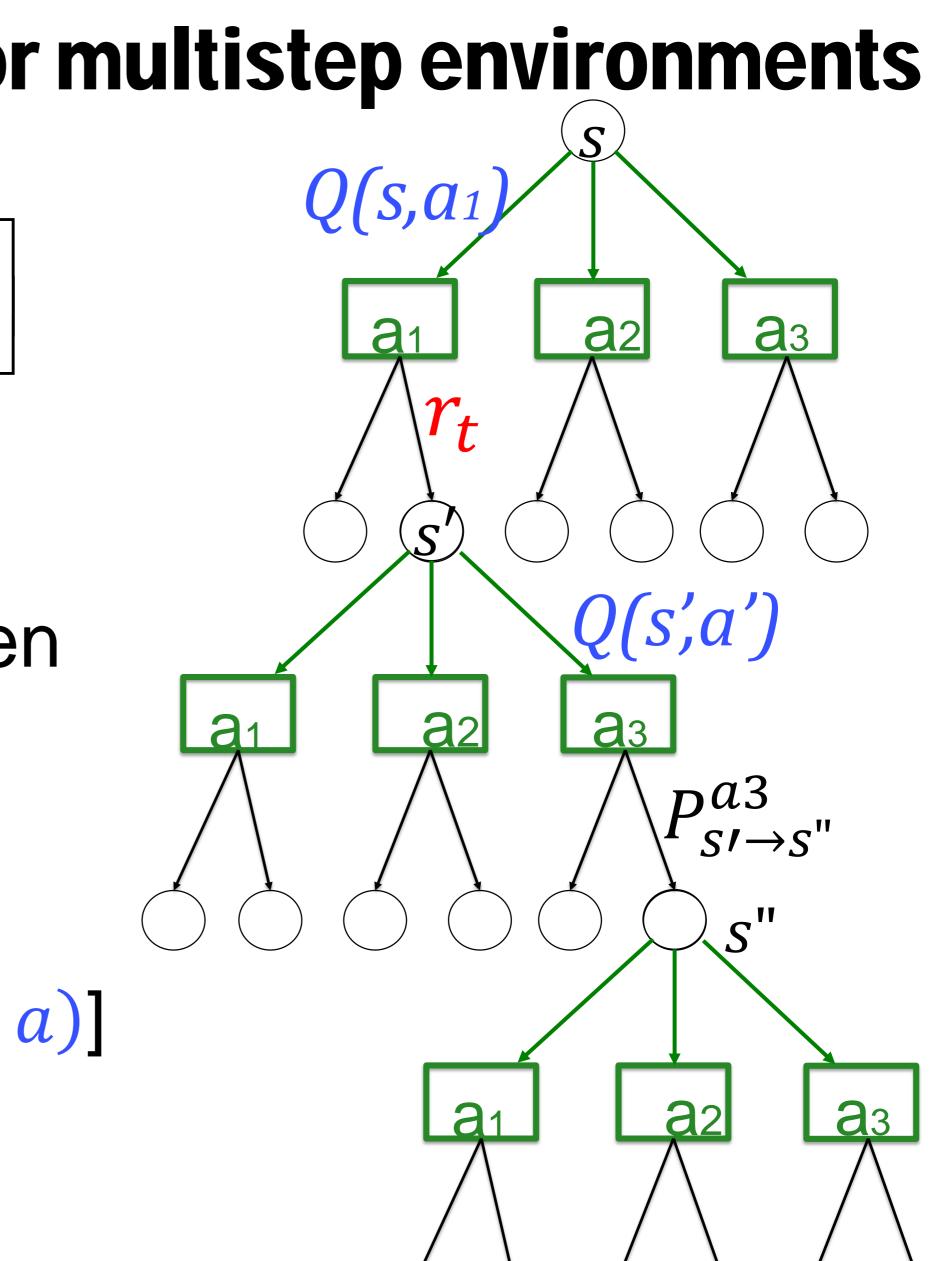
Problem:

- Q-values not given
- branching probabilities not given
- reward probabilities not given

Solution: iterative update

 $\Delta Q(s,a) = \eta \left[r_t + \gamma Q(s',a') - Q(s,a) \right]$

while playing with policy $\pi(s, a)$



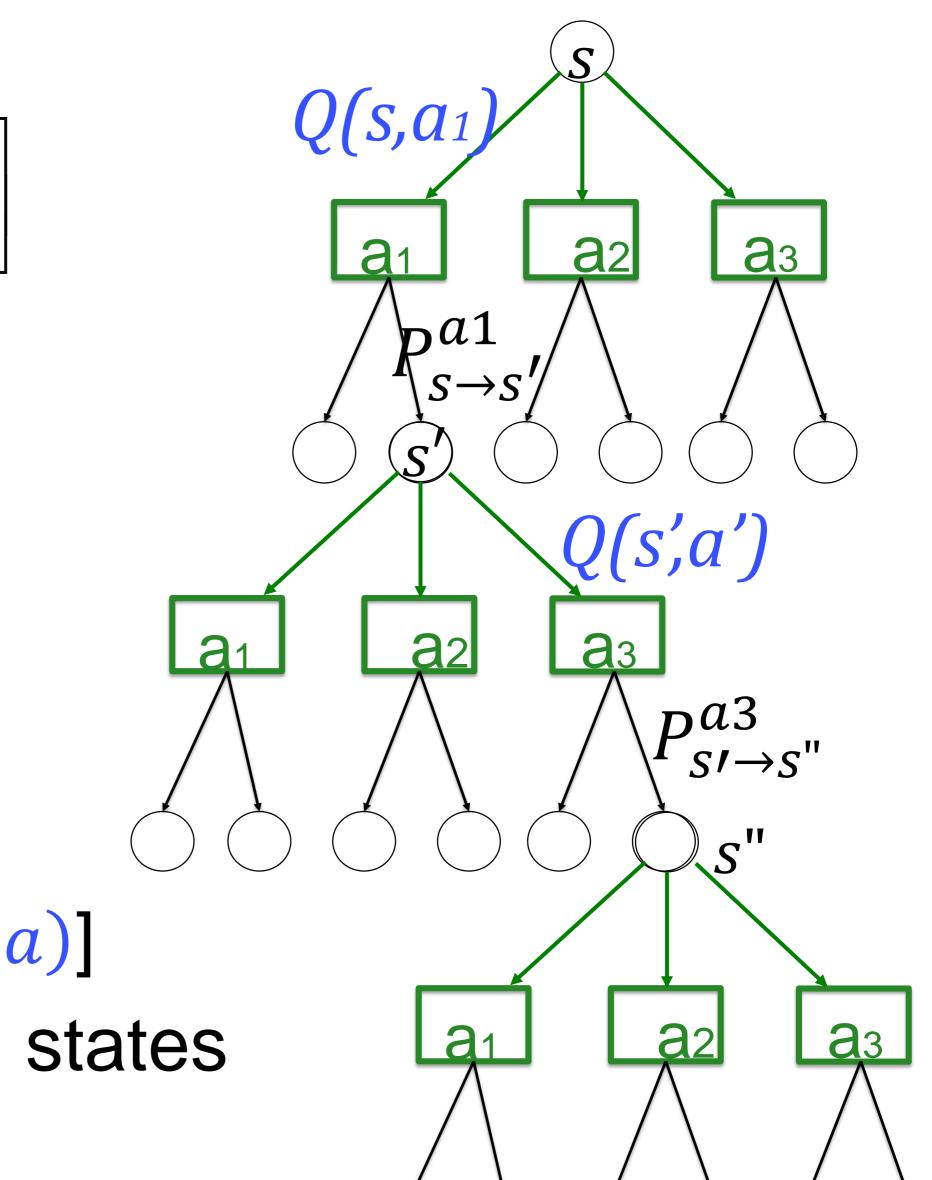
5. SARSA vs. Bellman equation

$$Q(s,a) = \sum_{s'} P^a_{s \to s'} \left[R^a_{s \to s'} + \gamma \sum_{a'} \pi(s',a') Q(s',a') \right]$$

Bellman equation = consistency of Q-values across neighboring states

SARSA update rule

- $\Delta Q(s,a) = \eta [r_t + \gamma Q(s',a') Q(s,a)]$
- = make Q-values of neighboring states more consistent

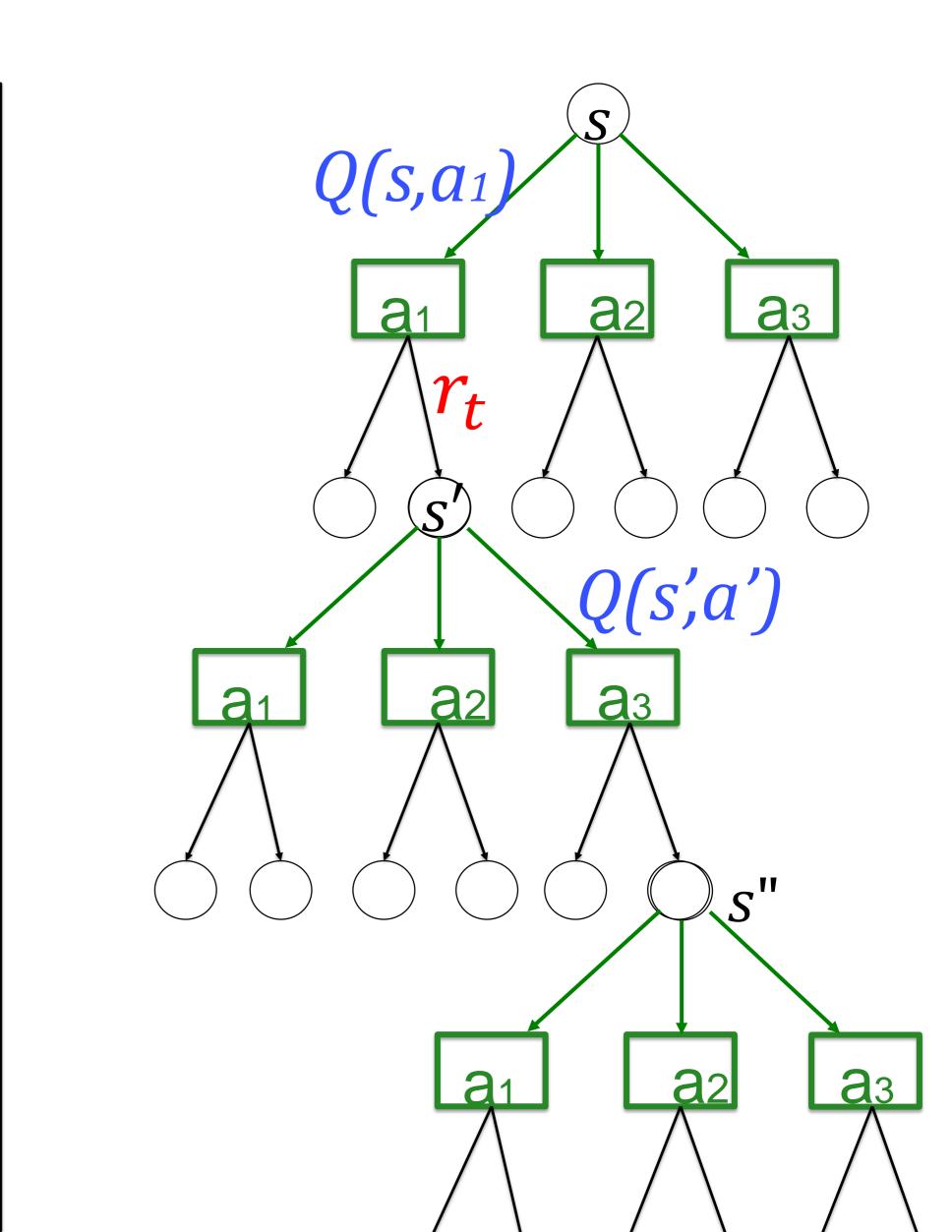


5. SARSA algorithm

Initialise Q values Start from initial state s

- being in state **s** 1) choose action a [according to policy $\pi(s, a)$] 2) Observe reward **r** and next state s' 3) Choose action a' in state s' [according to policy $\pi(s, a)$] 4) Update with SARSA update rule $\Delta Q(s,a) = [r_t + \gamma Q(s',a') - Q(s,a)]$
- 5) set: s ← s'; a ← a'
 6) Goto 1)

Stop when all Q-values have converged



Exercise now, 8 min (at home)

• Update of Q values in SARSA

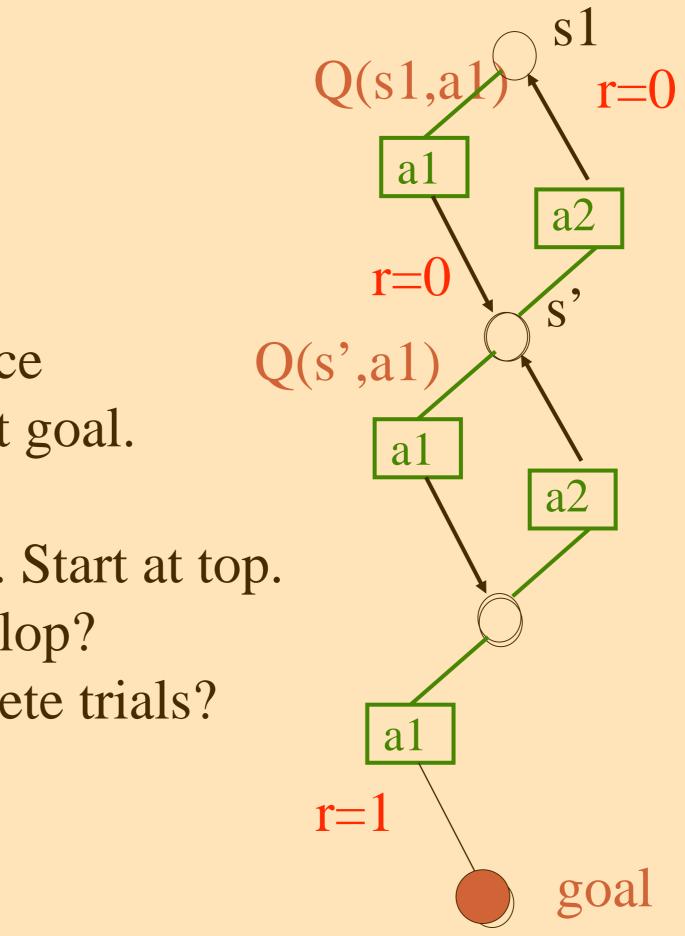
 $\Delta Q(s,a) = \eta \left[r - (Q(s,a) - Q(s',a')) \right]$

• policy for action choice: Pick most often action

 $a_t^* = \arg\max_a Q_a(s,a)$

goal

Consider a linear sequence Q of states. Reward only at goal.
Actions are up or down.
a) Initialise Q values at 0. Start at top. How do Q values develop?
b) Q values after 2 complete trials?



5. Convergence in expectation of SARSA: theorem Assumption:

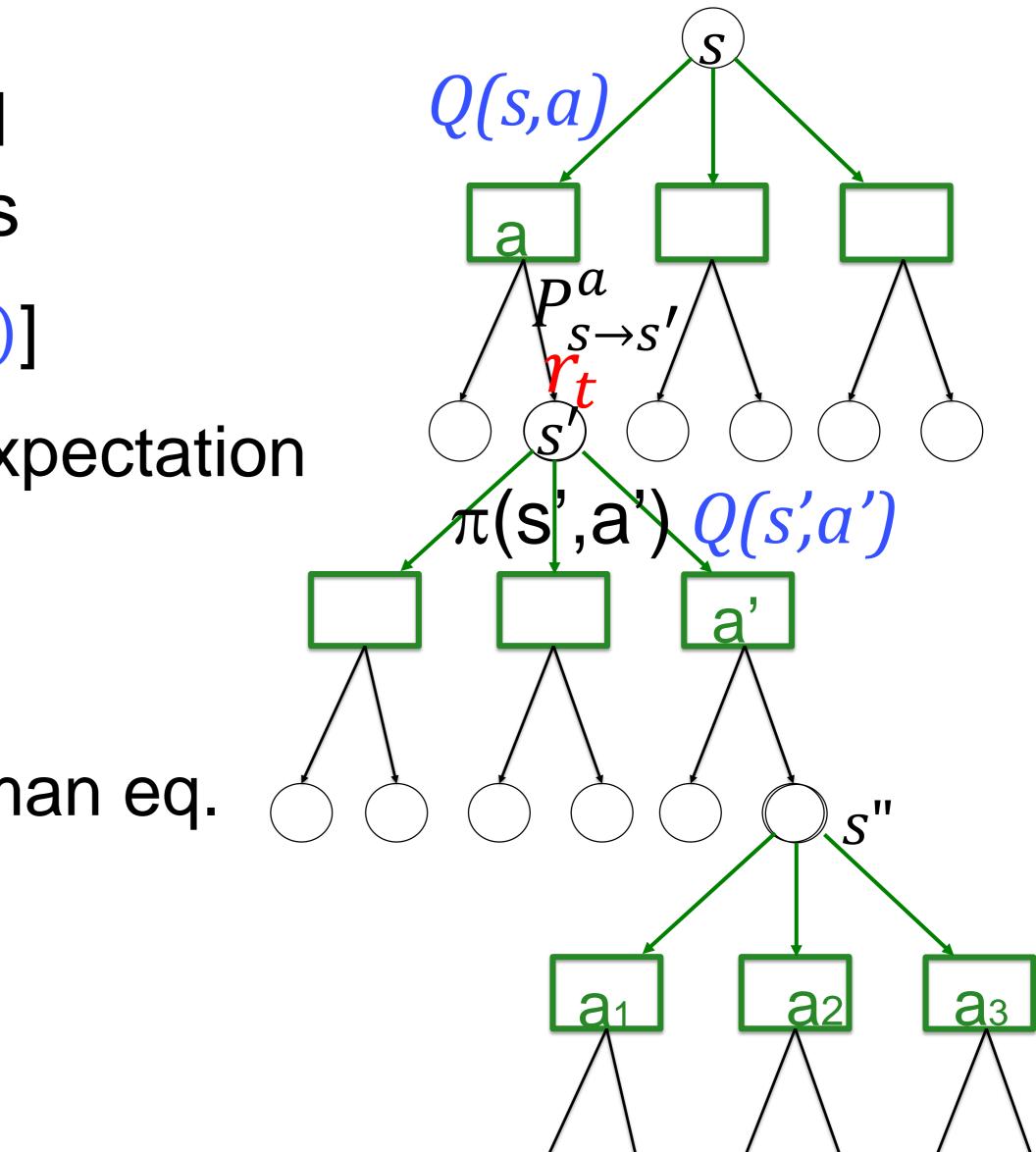
The SARSA algo has been applied for a very long time, using updates

 $\Delta Q(s,a) = \eta \left[r_t + \gamma Q(s',a') - Q(s,a) \right]$

IF all Q-values have converged in expectation $\langle \Delta Q(s,a) \rangle = 0$

THEN The set of Q-values solves the Bellman eq.

$$Q(s,a) = \sum_{s'} P^a_{s \to s'} \left[R^a_{s \to s'} + \gamma \sum_{a'} \pi(s',a') Q(s',a') \right]$$



5. Convergence in expectation of SARSA: theorem

Look at graph to take expectations:

- if algo in state s, all remaining expectations are "given s"
- if algo on a branch (s,a), all remaining exp. are "given s and a"

Blackboard7: SARSA convergence

xpectations are "given s" aining exp. are "given s and a"

5. SARSA algorithm

We have initialized SARSA and played for n>2 steps. Is the following true? [] in SARSA, updates are applied after each move. [] in SARSA, the agent updates the Q-value Q(s(t), a(t))related to the current state *s*(t) [] in SARSA, the agent updates the Q-value Q(s(t-1), a(t-1))related to the previous state, when it is in state s(t) [] in SARSA, the agent moves in the environment using the policy $\pi(s, a)$ [] SARSA is an online algorithm

Reinforcement Learning and SARSA

Learning outcome and conclusions: - Reinforcement Learning is learning by rewards

- \rightarrow world is full of rewards (but not full of labels)
- Agents and actions

 - \rightarrow agent learns by interacting with the environment \rightarrow state s, action a, reward r
- Exploration vs Exploitation

 - \rightarrow optimal actions are easy if we know reward probabilities \rightarrow since we don't know the probabilities we need to explore
- Bellman equation

 \rightarrow self-consistency condition for Q-values - SARSA algorithm: state-action-reward-state-action → update while exploring environment with current policy

