Week 8 — Recap

Pamela Delgado
April 10, 2019

File System Interface

File

* Un-interpreted un-typed sequence of bytes
* |dentified by a globally unique uid

Open File

* File instance accessed by a process
* |dentified by a per-process unique tid or fd

Directory

* Set of mappings (string =» uid)

File System Primitives

Access: Create(), Delete(), Read(), Write()
Random vs. Sequential and Seek()
Concurrency: Open(), Close()

Naming:

— Insert(), Lookup(), Remove()

— CreateDirectory(), DeleteDirectory(), List()

Hierarchical Directory Structures

* Tree
e (Acyclic) Graph
— Allows sharing of two uids under different names

* Two additional primitives
— HardLink() and SoftLink()

Linux: Collapsed Interface
for Storage and Naming

* Creat(string)*
* fd = Open(string, [optional args])
* Read(fd, buffer, bytes)

* Close(fd)

* Open can also create a file, Creat use not so
favored

Disks and Disk Optimization

Disk

track t <— spindle
a L 2>
- -
.--" |
sector s | |
|
g .’: —~
N
| |
| |
. | | d it
cylinder ¢ — | read-write
| | head
I I
<~ ..z \
DYy e v O
platter
arm A

rotation

— arm assembly

Disk API

* ReadSector(logical sec _no, buffer)
* WriteSector(logical sec_no, buffer)

Disk Access Times

* Disk access >> memory access
* Seek > Rotational Latency > Transfer

Disk Access Optimizations

Caching Avoid disk access
Read-ahead Avoid waiting for disk
Disk allocation Avoid seek and rotational latency

Disk scheduling Avoid seek

Another Way to Think about Disk Access

 Disks are random access devices
* But, sequential access >> random access

— Bandwidth 100x greater for sequential
* Applications should aim for sequential access
e Systems should aim for sequential access

Week 9 —
Basic File System Implementation

Pamela Delgado
May 1, 2018

based on:

- W. Zwaenepoel slides
- Arpaci-Dusseau book
- Silbershatz book

Aside: learning about systems

Learn about principles/concepts
Tradeoffs
Develop a mental model

Not (so much) about an specific way of
implementing some particular OS/System

Two Main Functionalities

 Naming/Directory

— Use file to store directory

* Storage
— On-disk data structures
— In-memory data structures

* Focus on storage

File System Implementation

The main task of the file system is to translate

From user interface methods 2
Read(uid, buffer, bytes) ,!

To disk interface methods
ReadSector(logical sector number, buffer) *

Two Small Simplifications - 1

e User Read() allows arbitrary number of bytes
e Simplify to only allowing Read() of a block

— Read(uid, block_number)

A block is fixed-size

Two Small Simplifications - 2

* Typically
— Block size = 2An * sector size
* For instance

— Block size = 4,096 bytes
— Sector size = 512 bytes

* For simplicity of presentation in class
— Block size = sector size

Terminology/Presentation Note

When talking about disks
The word “pointer” is often used
It means

— A disk address, i.e., a logical _sector number
— Not a memory address

Pictures often contain “arrays”
They mean here regions of sectors on disk

Disk vs. In-Memory

* Simple but golden rule
* |fitis not on disk and you crash, it is gone!
* |f you need it after a crash, it must be on disk

Disk Data Structures

Boot block
Device directory

User ¢
Free s

ata
pdCe

Boot Block

» At fixed location on disk (usually sector 0)
— Own format
— Boot operating system
— Otherwise, empty
e Contains boot loader
— Information about file system

— To load and execute kernel

e Read on machine boot

Disk Data Structures

Boot block
Device directory

User ¢
Free s

ata
pdCe

partition A <

partition B <

a4

Device Directory

directory

files

directory

files

> disk 1

partition C <

directory

files

N\

> disk 2

- disk 3

Device Directory

Fixed, reserved area on disk
Array of records (device directory entry or DDE)
Indexed by uid

Record contains

— In-use bit (more generally, reference count)
— Size

— Other info: access rights, etc.

— Disk address(es) pointing to file data

Device Directory

MAX_UID

uid

Device Directory Entry

refcount size admin info ‘ ‘ ‘ ‘ ‘ ‘

| |
J

disk addresses

Disk Data Structures

Boot block
Device directory
Jser data

Free space

Disk building blocks

e Divide disk into blocks
e Asume one size for now

* Fill in those blocks = with user data ! mostly
- the rest?

Disk building blocks

Divide disk into blocks
Asume one size for now

Fill in those blocks = with user data ! Mostly

The rest? = information for file system

— Which data blocks make a file

— Size

— Owner, access rights

inode

— Access/modify time

Disk building blocks

Divide disk into blocks
Fill in those blocks = with user data ! Mostly

The rest? = information for file system

— Which data blocks make a file
— Size

. — inode
— Owner, access rights

— Access/modify time

. [° ?
Something missing: 128/256 bytes

inode

source: R. and A. Arpacci-Dusseau, Operating systems Three easy pieces

User Data Allocation

Contiguous

ndexeo

ndexeo

Linked list

with indirect blocks

Extent-based

Goals:
1. Use disk space effectively!
2. Quick file access

Contiguous Allocation

* Disk data blocks contiguous on disk

A
~

count

o] 1] 2[] 3]
f
4] 5[] e[] 701
8] o[l1o[11101
tr
12[]13[J14[]15[]
16[_]17[J18[]19[]
mail
20[_]21[J22[]23[]
24 125 126]27[]

list

28[_]29[130[]31[]
w

Contiguous Allocation

\/Need only 1 pointer in device directory entry

—

Contiguous Allocation

X Creates disk fragmentation

— Many un-usable holes

* Impractical

Linked List Allocation

e Each data block contains pointer to next

N directory
\““*--~___ﬂfﬂ-~”/ file start end

jeep 9 25

8] pll1o[2]11[]
12[_J13[114/ 115[]
16[_J17[]18[]19[]
2052125235
24125126 127[]
28[]29[130[131[]
~

Linked List Allocation

\/Only 1 pointer in device directory entry (head)
e 2 if you want to store the tail

-F
-F

Linked List Allocation

K Inefficient access (esp. random access)
K Pointer space in data block

!

How would
you make

this better?

Indexed Allocation

* Pointers to blocks in an index block (in order)

//\ directory
] file index block
o] 11 2[] 3[] I==B 19

16
20[J21[J22[/23] |
24[125 [26[127[]
28]29[130 131 []

.

Indexed Allocation

* N pointers in device directory entry
* Point to index block

i

Indexed Allocation

\/Efficient direct access
\/No external fragmentation

 What if file only needs two blocks?
 What if file size > N * size of data block?

A No space-efficient

Indexed Allocation with Indirect Blocks

* N pointers in device directory entry
* First M (< N) point to first M data blocks
* Blocks M+1 to N point to indirect blocks

* Indirect blocks
— Do not contain data
— But pointers to subsequent data blocks

* Double-indirect blocks also possible

Indexed Allocation with Indirect Blocks

=

Indexed Allocation with Indirect and
Double-Indirect Blocks

-

Indexed Allocation with Indirect Blocks

\/Efficient access for small files
\/Possible to extend to very large files

Pre allocation?

Extent-Based Allocation

* Device directory entry
— Contains disk address and length of extent
— Instead of just disk address
— In other words, point to a sequence of disk blocks

Extent-Based Allocation

==

Extent-Based Allocation

\/Good sequential and random access
\/Can be combined with indirect blocks

* Common practice in Linux

Free Space

e Linked list

* Bitmap
— Array[#numsectors]
— Free / In-use

In-Memory Data Structures

Cache

Cache directory

Queue of pending disk requests
Queue of pending user requests
Active file table

Open file tables

Cache

* Fixed contiguous area of kernel memory
* Size = max number of cache blocks x block size
* Alarge chunk of memory of the machine

Cache Directory

Usually a hash table

index = hash(disk address)

With an overflow list in case of collision
Usually has a “dirty” bit

(System-Wide) Active File Table

* One array for the entire system
* One entry per open file
* Each entry contains

— Device directory entry of file
— Additional info

* Refcount of number of file opens

(Per-Process) Open File Tables

One array per process
One entry per file open of that process
Indexed by file descriptor fd

Each entry contains

— Pointer to entry in active file table
— File pointer fp

— Additional info

Picture of Open File Tables

inode refcount

inode refcount

inode refcount

inode refcount

Active File Table

Process 2 OFT

Putting it All Together

* File systems main methods
— Create(), Delete()
— Open(), Close()
— Read(), Write(), Lseek()
— Cache flush and replacement

* With some major simplifications
— No access permission checks

— No return value checks
— Etc.

uid = Create()

Find a free uid (refcount = 0)

Set refcountto 1

Fill in additional info

Write back to cache (and to disk)

Device directory is cached in memory
Usually easy to find free uid

Delete(uid)

Find inode
Decrement refcount

f refcount ==
— Free all data blocks and indirect blocks

— Set entries in free space bitmap to O
Write back to cache (and to disk)

Note

n general, write-behind is used
~or user data ok

~or metadata
— Written to disk more aggressively
— Affects integrity of file system

tid = Open(uid)

* Check in Active File Table if uid already open

e If so,
— Refcount in Active File Table ++
— Allocate entry in Open File Table
— Point to entry in Active File Table
—Setfp=0

tid = Open(uid)

* Check in Active File Table if uid already open

* If not,
— Find free entry in Active File Table
— Read inode and copy in Active File Table entry
— Refcount =1
— Allocate entry in Open File Table
— Point to entry in Active File Table
—Setfp=0

Close(tid)

~ind entry in Active File Table
Refcount --
f refcount == 0 remove entry Active File Table

Remove entry from Open File Table

Read()

Find fp in Open File Table and increment
Compute block number to be read

~ind disk address in inode in Active File Table
L.ook up in Cache Directory (disk address)

f present, return

f not, find free entry in cache

ReadSector(disk address, free cache block)

W

Find fp in Open File~
Compute block num

rite()

able and increment
ner to be written

ind/allocate disk ac

dress in Active File Table

L.ook up in cache directory (disk address)

f present, overwrite

and return

f not, find free cache entry and overwrite

Lseek(tid, new fp)

* In Open File Table set fp = new_fp

Cache Replacement

* Keep LRU list
— Unlike memory management, here easy to do
— Accesses are far fewer (file vs memory access)
* If no more free entries in the cache

— Replace “clean” block according to LRU
— Replace “dirty” block according to LRU

Cache Flush

Find “dirty” entries in cache
WriteSector(...)

Periodically (30 seconds)
When disk is idle

What About Directories?

 Directories stored as files

Typical Operation

e fd = Open(string)
 Read(fd, ...)

Typical Operation

e fd = Open(string)
— Directory lookup (disk reads)
— Inode lookups (disk reads)

 Read(fd, ...)
— Data (disk reads)

Disk Behavior

* Head moves between
— Directories
— Inodes
— Data

Advanced Disk Layout

* Co-locate related
— Directories
— Inodes
— Data
* |In same “cylinder group”
— Set of cylinders next to each other

Some Loose Ends

File system checking

Sector replication
Defragmentation
Memory-mapped files (mmap)

File System Startup

* Normally, nothing would be necessary
* Sometimes things are not normal

— Disk sector goes bad

— File system software has bugs

e Common to “check” the file system (fsck)

File System Check

* No sectors are allocated twice
e No sectors are allocated and on free list
e Reconstruct free list

Replication

* Some key sectors are replicated
— Boot blocks
— Sometimes also device directory

Disk Fragmentation

* Free space consists
— Small “holes” (of 1 or 2 sectors)
— Spread all over the disk

* Happens even if good disk allocation
* No longer possible to do good disk allocation

Disk Defragmentation Utility

Takes the file system offline
Moves files into contiguous locations

Better performance
More room for good disk allocation

Can be done online, but tricky

Alternative File Access Method:
Memory Mapping

* mmap()

— Map the contents of a file in memory

* munmap()

— Remove the mapping

Remember this Picture?
Typical Virtual Address Space

2731-1

%

— unused

Remember this Picture?
Typical Virtual Address Space

2731-1

%

— mmap region

Remember this Picture?
Typical Virtual Address Space

2731-1

stack

]
mmapped file

— mmap region

Remember Large Address Spaces?

64 bit address space

Do you know now understand why desirable?
32 bits =» 4 GBytes

A few big files mmap()-ed

You are out of virtual address space!

64-bit Address Space: Huge mmap() Region

27°63-1pmmmrrrr e

— mmap region

Example with 3 (Large) Files Mapped

2763-1
stack

Access to mmap()-ed Files

* Access to memory region mmap()-ed
e Causes page fault
* Causes page/block of file to be brought in

mmap() Implementation - 1

e On mmap()

— Allocate page table entries
— Set valid bit to “invalid”

mmap() Implementation - 2

e On mmap()

— Allocate page table entries
— Set valid bit to “invalid”

* On access,
— Page fault
— File = backing store for mapped region of memory
— Just like in demand paging
— Except paged from mapped file

mmap() Implementation - 3

e On mmap()

— Allocate page table entries
— Set valid bit to “invalid”

* On access,
— Page fault
— File = backing store for mapped region of memory
— Just like in demand paging
— Except paged from mapped file

* After page fault handling
— Set valid bit to true

How to get data to disk for mmap?

 Through normal page replacement
* Or through an explicit call msync()

What is mmap() good for?

 Random access to large file

Random Access with mmap()

e addr = mmap()
 Use memory addresses in [addr, addr+len-1]

Random Access with Read() Interface

* Open
* Read entire file into memory buffer
* Then use memory address in buffer

Advantage with mmap()

* Only accessed portions brought in memory

* Huge advantage
— For large files
— Sparsely accessed

Random Access with LSeek()

Open
 Seek
Read into Buffer
_seek

Read into Buffer

Advantage with mmap()

* Much easier programming model

— Follow pointer in memory

— As opposed to (Lseek, Read) every time
* Easier if reuse

— VM system keeps page for you
— Otherwise, have to do your own replacement

mmap() Advantages for Random Access

* Easy to write
* Only bring in memory what you read
* Easy reuse

Issues with mmap()

e Alignment on page boundary
* Not easy to extend a file
* For small files

— Read() more efficient than mmap() + page fault

Another Use of mmap()

* Sharing memory between processes
* A form of interprocess communication
e Use shared and anonymous map flags

File System/memory Management
Implementation

* File system has buffer cache

— File data on disk, recently used data in memory

* Memory management has page replacement

— Data in memory, not recently used data on disk

* Same thing, but from an opposite angle

Integrated Buffer Cache

* One region of memory
e Used both as

— File system buffer cache
— Demand paged in-memory data

* Advantage:
— One piece of code instead of two
— Avoids “double caching”

Summary

Device directory

File data allocation methods
— Indexed, indirect, extent-based methods

Free bitmap
Cache (and cache directory)
Queues of pending requests

Active file table and open file table(s)

Memory-mapped files

