
Week 8 – Recap

Pamela Delgado

April 10, 2019

File System Interface

File

• Un-interpreted un-typed sequence of bytes

• Identified by a globally unique uid

Open File

• File instance accessed by a process

• Identified by a per-process unique tid or fd

Directory

• Set of mappings (string ➔ uid)

File System Primitives

• Access: Create(), Delete(), Read(), Write()

• Random vs. Sequential and Seek()

• Concurrency: Open(), Close()

• Naming:

– Insert(), Lookup(), Remove()

– CreateDirectory(), DeleteDirectory(), List()

Hierarchical Directory Structures

• Tree

• (Acyclic) Graph

– Allows sharing of two uids under different names

• Two additional primitives

– HardLink() and SoftLink()

Linux: Collapsed Interface
for Storage and Naming

• Creat(string)*

• fd = Open(string, [optional_args])

• Read(fd, buffer, bytes)

• …

• Close(fd)

* Open can also create a file, Creat use not so
favored

Disks and Disk Optimization

Disk

Disk API

• ReadSector(logical_sec_no, buffer)

• WriteSector(logical_sec_no, buffer)

Disk Access Times

• Disk access >> memory access

• Seek > Rotational Latency > Transfer

Disk Access Optimizations

Optimization Goal

Caching Avoid disk access

Read-ahead Avoid waiting for disk

Disk allocation Avoid seek and rotational latency

Disk scheduling Avoid seek

Another Way to Think about Disk Access

• Disks are random access devices

• But, sequential access >> random access

– Bandwidth 100x greater for sequential

• Applications should aim for sequential access

• Systems should aim for sequential access

Week 9 –
Basic File System Implementation

Pamela Delgado

May 1, 2018

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book
- Silbershatz book

Aside: learning about systems

• Learn about principles/concepts

• Tradeoffs

• Develop a mental model

• Not (so much) about an specific way of
implementing some particular OS/System

Two Main Functionalities

• Naming/Directory

– Use file to store directory

• Storage

– On-disk data structures

– In-memory data structures

• Focus on storage

File System Implementation

• The main task of the file system is to translate

• From user interface methods

• Read(uid, buffer, bytes)

• To disk interface methods

• ReadSector(logical_sector_number, buffer)

Two Small Simplifications - 1

• User Read() allows arbitrary number of bytes

• Simplify to only allowing Read() of a block

– Read(uid, block_number)

• A block is fixed-size

Two Small Simplifications - 2

• Typically

– Block size = 2^n * sector size

• For instance

– Block size = 4,096 bytes

– Sector size = 512 bytes

• For simplicity of presentation in class

– Block size = sector size

Terminology/Presentation Note

• When talking about disks

• The word “pointer” is often used

• It means

– A disk address, i.e., a logical_sector_number

– Not a memory address

• Pictures often contain “arrays”

• They mean here regions of sectors on disk

Disk vs. In-Memory

• Simple but golden rule

• If it is not on disk and you crash, it is gone!

• If you need it after a crash, it must be on disk

Disk Data Structures

• Boot block

• Device directory

• User data

• Free space

Boot Block

• At fixed location on disk (usually sector 0)

– Own format

– Boot operating system

– Otherwise, empty

• Contains boot loader

– Information about file system

– To load and execute kernel

• Read on machine boot

Disk Data Structures

• Boot block

• Device directory

• User data

• Free space

Device Directory

Device Directory

• Fixed, reserved area on disk

• Array of records (device directory entry or DDE)

• Indexed by uid

• Record contains

– In-use bit (more generally, reference count)

– Size

– Other info: access rights, etc.

– Disk address(es) pointing to file data

Device Directory

…

MAX_UID

uid

Device Directory Entry

refcount size admin info …

disk addresses

Disk Data Structures

• Boot block

• Device directory

• User data

• Free space

Disk building blocks

• Divide disk into blocks

• Asume one size for now

• Fill in those blocks → with user data ! mostly

→ the rest?

Disk building blocks

• Divide disk into blocks

• Asume one size for now

• Fill in those blocks → with user data ! Mostly

• The rest? → information for file system

– Which data blocks make a file

– Size

– Owner, access rights

– Access/modify time

inode

Disk building blocks

• Divide disk into blocks

• Fill in those blocks → with user data ! Mostly

• The rest? → information for file system

– Which data blocks make a file

– Size

– Owner, access rights

– Access/modify time

• Something missing?

inode

128/256 bytes

inode

inode (short for index node) =
structure that holds metadata of

a given file such as its length,
permissions and the location of

its constituent blocks

source: R. and A. Arpacci-Dusseau, Operating systems Three easy pieces

User Data Allocation

• Contiguous

• Linked list

• Indexed

• Indexed with indirect blocks

• Extent-based

Goals:
1. Use disk space effectively!
2. Quick file access

Contiguous Allocation

• Disk data blocks contiguous on disk

• Need only 1 pointer in device directory entry

Contiguous Allocation

Directory

Contiguous Allocation

• Creates disk fragmentation

– Many un-usable holes

• Impractical

Linked List Allocation

• Each data block contains pointer to next

Linked List Allocation

• Only 1 pointer in device directory entry (head)

• 2 if you want to store the tail

Directory

Linked List Allocation

• Inefficient access (esp. random access)

• Pointer space in data block

How would
you make

this better?

Indexed Allocation

• Pointers to blocks in an index block (in order)

Indexed Allocation

• N pointers in device directory entry

• Point to index block

Indexed Allocation

• Efficient direct access

• No external fragmentation

• What if file only needs two blocks?

• What if file size > N * size of data block?

• No space-efficient

Indexed Allocation with Indirect Blocks

• N pointers in device directory entry

• First M (< N) point to first M data blocks

• Blocks M+1 to N point to indirect blocks

• Indirect blocks
– Do not contain data

– But pointers to subsequent data blocks

• Double-indirect blocks also possible

Indexed Allocation with Indirect Blocks

Indexed Allocation with Indirect and
Double-Indirect Blocks

Indexed Allocation with Indirect Blocks

• Efficient access for small files

• Possible to extend to very large files

Pre allocation?

Extent-Based Allocation

• Device directory entry

– Contains disk address and length of extent

– Instead of just disk address

– In other words, point to a sequence of disk blocks

Extent-Based Allocation

…

…

Extent-Based Allocation

• Good sequential and random access

• Can be combined with indirect blocks

• Common practice in Linux

Free Space

• Linked list

• Bitmap

– Array[#numsectors]

– Free / In-use

In-Memory Data Structures

• Cache

• Cache directory

• Queue of pending disk requests

• Queue of pending user requests

• Active file table

• Open file tables

Cache

• Fixed contiguous area of kernel memory

• Size = max number of cache blocks x block size

• A large chunk of memory of the machine

Cache Directory

• Usually a hash table

• index = hash(disk address)

• With an overflow list in case of collision

• Usually has a “dirty” bit

(System-Wide) Active File Table

• One array for the entire system

• One entry per open file

• Each entry contains

– Device directory entry of file

– Additional info

• Refcount of number of file opens

(Per-Process) Open File Tables

• One array per process

• One entry per file open of that process

• Indexed by file descriptor fd

• Each entry contains

– Pointer to entry in active file table

– File pointer fp

– Additional info

Picture of Open File Tables

fp

fp

fp

…

inode refcount

inode refcount

inode refcount

inode refcount

…Process 1 OFT

fp

fp

fp

…

Process 2 OFT

…

Active File Table

Putting it All Together

• File systems main methods
– Create(), Delete()

– Open(), Close()

– Read(), Write(), Lseek()

– Cache flush and replacement

• With some major simplifications
– No access permission checks

– No return value checks

– Etc.

uid = Create()

• Find a free uid (refcount = 0)

• Set refcount to 1

• Fill in additional info

• Write back to cache (and to disk)

• Device directory is cached in memory

• Usually easy to find free uid

Delete(uid)

• Find inode

• Decrement refcount

• If refcount == 0

– Free all data blocks and indirect blocks

– Set entries in free space bitmap to 0

• Write back to cache (and to disk)

Note

• In general, write-behind is used

• For user data ok

• For metadata

– Written to disk more aggressively

– Affects integrity of file system

tid = Open(uid)

• Check in Active File Table if uid already open

• If so,

– Refcount in Active File Table ++

– Allocate entry in Open File Table

– Point to entry in Active File Table

– Set fp = 0

tid = Open(uid)

• Check in Active File Table if uid already open

• If not,

– Find free entry in Active File Table

– Read inode and copy in Active File Table entry

– Refcount = 1

– Allocate entry in Open File Table

– Point to entry in Active File Table

– Set fp = 0

Close(tid)

• Find entry in Active File Table

• Refcount --

• If refcount == 0 remove entry Active File Table

• Remove entry from Open File Table

Read()

• Find fp in Open File Table and increment

• Compute block number to be read

• Find disk address in inode in Active File Table

• Look up in Cache Directory (disk address)

• If present, return

• If not, find free entry in cache

• ReadSector(disk address, free cache block)

Write()

• Find fp in Open File Table and increment

• Compute block number to be written

• Find/allocate disk address in Active File Table

• Look up in cache directory (disk address)

• If present, overwrite and return

• If not, find free cache entry and overwrite

Lseek(tid, new_fp)

• In Open File Table set fp = new_fp

Cache Replacement

• Keep LRU list

– Unlike memory management, here easy to do

– Accesses are far fewer (file vs memory access)

• If no more free entries in the cache

– Replace “clean” block according to LRU

– Replace “dirty” block according to LRU

Cache Flush

• Find “dirty” entries in cache

• WriteSector(…)

• Periodically (30 seconds)

• When disk is idle

What About Directories?

• Directories stored as files

Typical Operation

• fd = Open(string)

• Read(fd, …)

Typical Operation

• fd = Open(string)

– Directory lookup (disk reads)

– Inode lookups (disk reads)

• Read(fd, …)

– Data (disk reads)

Disk Behavior

• Head moves between

– Directories

– Inodes

– Data

Advanced Disk Layout

• Co-locate related

– Directories

– Inodes

– Data

• In same “cylinder group”

– Set of cylinders next to each other

Some Loose Ends

• File system checking

• Sector replication

• Defragmentation

• Memory-mapped files (mmap)

File System Startup

• Normally, nothing would be necessary

• Sometimes things are not normal

– Disk sector goes bad

– File system software has bugs

– …

• Common to “check” the file system (fsck)

File System Check

• No sectors are allocated twice

• No sectors are allocated and on free list

• Reconstruct free list

Replication

• Some key sectors are replicated

– Boot blocks

– Sometimes also device directory

Disk Fragmentation

• Free space consists

– Small “holes” (of 1 or 2 sectors)

– Spread all over the disk

• Happens even if good disk allocation

• No longer possible to do good disk allocation

Disk Defragmentation Utility

• Takes the file system offline

• Moves files into contiguous locations

• Better performance

• More room for good disk allocation

• Can be done online, but tricky

Alternative File Access Method:
Memory Mapping

• mmap()

– Map the contents of a file in memory

• munmap()

– Remove the mapping

Remember this Picture?
Typical Virtual Address Space

code

data

heap

stack

unused

0

2^31-1

Remember this Picture?
Typical Virtual Address Space

code

data

heap

stack

mmap region

0

2^31-1

Remember this Picture?
Typical Virtual Address Space

code

data

heap

stack

mmap region

0

2^31-1

mmapped file

Remember Large Address Spaces?

• 64 bit address space

• Do you know now understand why desirable?

• 32 bits ➔ 4 GBytes

• A few big files mmap()-ed

• You are out of virtual address space!

64-bit Address Space: Huge mmap() Region

code
data

heap

stack

mmap region

0

2^63-1

Example with 3 (Large) Files Mapped

code
data

heap

stack

0

2^63-1

file1

file2

file3

Access to mmap()-ed Files

• Access to memory region mmap()-ed

• Causes page fault

• Causes page/block of file to be brought in

mmap() Implementation - 1

• On mmap()

– Allocate page table entries

– Set valid bit to “invalid”

mmap() Implementation - 2

• On mmap()

– Allocate page table entries

– Set valid bit to “invalid”

• On access,

– Page fault

– File = backing store for mapped region of memory

– Just like in demand paging

– Except paged from mapped file

mmap() Implementation - 3

• On mmap()
– Allocate page table entries
– Set valid bit to “invalid”

• On access,
– Page fault
– File = backing store for mapped region of memory
– Just like in demand paging
– Except paged from mapped file

• After page fault handling
– Set valid bit to true

How to get data to disk for mmap?

• Through normal page replacement

• Or through an explicit call msync()

What is mmap() good for?

• Random access to large file

Random Access with mmap()

• addr = mmap()

• Use memory addresses in [addr, addr+len-1]

Random Access with Read() Interface

• Open

• Read entire file into memory buffer

• Then use memory address in buffer

Advantage with mmap()

• Only accessed portions brought in memory

• Huge advantage

– For large files

– Sparsely accessed

Random Access with LSeek()

• Open

• LSeek

• Read into Buffer

• Lseek

• Read into Buffer

Advantage with mmap()

• Much easier programming model

– Follow pointer in memory

– As opposed to (Lseek, Read) every time

• Easier if reuse

– VM system keeps page for you

– Otherwise, have to do your own replacement

mmap() Advantages for Random Access

• Easy to write

• Only bring in memory what you read

• Easy reuse

Issues with mmap()

• Alignment on page boundary

• Not easy to extend a file

• For small files

– Read() more efficient than mmap() + page fault

Another Use of mmap()

• Sharing memory between processes

• A form of interprocess communication

• Use shared and anonymous map flags

File System/memory Management
Implementation

• File system has buffer cache

– File data on disk, recently used data in memory

• Memory management has page replacement

– Data in memory, not recently used data on disk

• Same thing, but from an opposite angle

Integrated Buffer Cache

• One region of memory

• Used both as

– File system buffer cache

– Demand paged in-memory data

• Advantage:

– One piece of code instead of two

– Avoids “double caching”

Summary

• Device directory
• File data allocation methods

– Indexed, indirect, extent-based methods

• Free bitmap

• Cache (and cache directory)
• Queues of pending requests
• Active file table and open file table(s)

• Memory-mapped files

