

Networks Out of Control: Evolution \& Dynamics 1 Cascades

Project

Details:

- Pair project
- 4 page (2-column) report due Wednesday $23^{\text {rd }}$ May.
- 15 min presentation +5 min questions on Monday $28^{\text {th }}$ May to be scheduled between $2 \mathrm{pm}-7 \mathrm{pm}$.

Contact Farnood with the following by Friday 20 April:

- Who your team is (pairs)
- In case you do not find a team, respond to the other two points and we will match you with someone
- List of 3 preferred papers, in order, on which you would like to do your project (ties get broken by when the email was sent).
- Availability to present in the $2 \mathrm{pm}-4 \mathrm{pm}$ time slot on Monday.

Cascades

- There is a network of people, and a behavior that spreads through the network from person to person across edges.
- E.g., an idea, product, illness or habit spreads across the network.
- (Already discussed this informally in the context of homophily)
- How does it spread?
- Direct-benefit effects
- Rational effects
- What do we study?
- Will it spread to the entire network?
- Are there threshold properties that determine if/when it does?

Cascades 0:
Shelling Threshold Model

Schelling Threshold Model

- There are n people (labeled $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-1$). Each has a
"willingness to riot" coefficient r_{i} which is how many others decide to riot before they join in.
- Can think of this process as occurring on the complete graph:
- Is there a complete riot in this situation?

Schelling Threshold Model

- There are n people (labeled $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-\mathrm{l}$). Each has a
"willingness to riot" coefficient r_{i} which is how many others decide to riot before they join in.
- Can think of this process as occurring on the complete graph:
- Is there a complete riot in this situation?

- I.e., the existence of a cascade depends on the parameters.

Schelling Threshold Model

- There are n people (labeled $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-\mathrm{l}$). Each has a
"willingness to riot" coefficient r_{i} which is how many others decide to riot before they join in.
- Can think of this process as occurring on arbitrary graphs:
- Is there a complete riot in this situation?

- I.e., the existence of a cascade depends on the network.

Cascades 1:
Direct-Benefit Effects

Crash Course in Game Theory

- Agents: two or more participants.
- Actions: options available to the agent.
- Outcome: global end result (function of all agent's actions).
- Utility: real-valued function of outcome for a given agent.
- In game theory:
- Agents want to maximize their own utility (selfish behavior)
- We study Nash equilibira, i.e., outcomes such that no agent can unilaterally increase their utility by changing their action.

Diffusion on Networks

- There are two products, A and B
- There is a social network G, and each node (agents) can select to use a single product A or B (actions).
- Let $n_{A}(v)$ be the number of v's neighbors using A. Similarly $n_{B}(v)$
\bullet Let $\mathrm{a}, \mathrm{b}>0$. The utility for agent v is
- If vuses $A: \mathrm{an}_{\AA}(\mathrm{v})$
- If v uses B: $b n_{B}(v)$
- When does v select A instead of B ?
- $\mathrm{p}>\mathrm{b} /(\mathrm{a}+\mathrm{b})$
- When does the whole network converge (cascade) to one option?

Example

- Let $\mathrm{a}=3$ and $\mathrm{b}=2$
- So p = 2/5 is the threshold for selecting A

$+$

Example

- Let $\mathrm{a}=3$ and $\mathrm{b}=2$ (so p = 2/5)
- Is there a complete cascade?

Example

- Let $\mathrm{a}=3$ and $\mathrm{b}=2$ (so $\mathrm{p}=2 / 5$).
- Is there a complete cascade?

Example

- Let $\mathrm{a}=3$ and $\mathrm{b}=2$ (so $\mathrm{p}=2 / 5$).
- Is there a complete cascade?

Example

- Let $\mathrm{a}=3$ and $\mathrm{b}=2$ (so $\mathrm{p}=2 / 5$).
- Has applications to viral marketing - which nodes should one target (and then hope they influence their neighbors)?
- Will a cascade always occur?

Cascades

-Will a cascade always occur?

Cascades

- Will a cascade always occur?
- No - "clusters" can get in the way.

- A p-dense cluster is a set of nodes such that all of nodes in the cluster have at least a p fraction of their neighbors inside the cluster.

Cascades

- A p-dense cluster is a set of nodes such that all of nodes in the cluster have at least a p fraction of their neighbors inside the cluster.
- Theorem: Consider an initial set of adopters V' and a threshold p for adoption. The nodes in $V \backslash V^{\prime}$ contain a cluster of density greater than l-p if and only if a complete cascade does not occur.

Cascades

- A p-dense cluster is a set of nodes such that all of nodes in the cluster have at least a p fraction of their neighbors inside the cluster.
- Theorem: Consider an initial set of adopters V' and a threshold p for adoption. The nodes in $\mathrm{V} \backslash \mathrm{V}$ ' contain a cluster of density greater than l-p if and only if a complete cascade does not occur.

Small Exercise

- If you wanted to initiate a cascade, which vertex would you want to as an initial adopter?

Information Cascades

- Two options A and B
- You have some (private) information as to which option is better.
- You have some public information as to which option other people think is better.

Cascades

- Example:
- $A=$ guess red urn, $B=$ guess blue urn
- Noisy signal = sample from urn
- Public decision = guess of previous players

Cascades

- Two options A and B
- Each player receives a private noisy signal that indicates which option is better.
- Each player observes sequential public decisions.

B
R
B
B
B

B

Cascade Example

- How should players make their decisions?

$$
\operatorname{Pr}[\text { majority-blue } \mid \text { what she has seen and heard }]>\frac{1}{2}
$$

- In order to analyze this, we'll make heavy use of Bayes' rule:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Note:

$$
\operatorname{Pr}[\text { majority-blue }]=\operatorname{Pr}[\text { majority-red }]=\frac{1}{2} .
$$

$$
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3}
$$

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Cascade Example

$\operatorname{Pr}[$ majority-blue $]=\operatorname{Pr}[$ majority-red $]=\frac{1}{2}$.

$$
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3} .
$$

- Consider the first player:
- Assume they saw blue (the argument for red is symmetric).
$\operatorname{Pr}[$ majority-blue \mid blue $]=$
$\operatorname{Pr}[b l u e]$
$\operatorname{Pr}[$ majority-blue \mid blue $]=\frac{1 / 3}{1 / 2}=\frac{2}{3}$.

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Cascade Example

$$
\begin{array}{r}
\operatorname{Pr}[\text { majority-blue }]=\operatorname{Pr}[\text { majority-red }]=\frac{1}{2} . \\
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3} .
\end{array}
$$

- Consider the second player:
- If the first player saw blue and they also see blue:
- Clearly P[majority-blue] > 1/2 so they say blue
- If the first player saw blue and they see red:
- Won't do this formally, but with Bayes' rule can prove that $\mathrm{P}[$ majority-blue $]=\mathrm{P}[$ majority-red $]=1 / 2$
- Tiebreak - (let's assume they stick with color they see).

$$
\begin{array}{r}
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} . \\
\operatorname{Pr}[\text { majority-blue }]=\operatorname{Pr}[\text { majority-red }]=\frac{1}{2} . \\
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3} .
\end{array}
$$

Cascade Example

- Consider the third player:
- If the first two see one red and one blue
- Reduces to the first-player setting because first two samples were not informative.
- If all three see blue
- Clearly P[majority-blue] > 1/2, and they say blue.
- If the first two see blue and they see red...

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Cascade Example

$\operatorname{Pr}[$ majority-blue $]=\operatorname{Pr}[$ majority-red $]=\frac{1}{2}$.

$$
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3} .
$$

- Consider the third player:
- Assume the first two see blue, but they see red.
$\operatorname{Pr}[$ majority-blue \mid blue, blue, red $]$

$$
\begin{aligned}
& \operatorname{Pr}[\text { blue, blue, red } \mid \text { majority-blue }] \\
& \operatorname{Pr}[\text { blue }, \text { blue }, \text { red }]
\end{aligned}
$$

$\operatorname{Pr}[$ majority-blue \mid blue, blue, red $]=\frac{\frac{4}{27} \cdot \frac{1}{2}}{\frac{1}{9}}=\frac{2}{3}$

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Cascade Example

$\operatorname{Pr}[$ majority-blue $]=\operatorname{Pr}[$ majority-red $]=\frac{1}{2}$.

$$
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3} .
$$

- Consider the fourth player:
- If the first thre players say:
- blue blue x
- blue red x
- Reduces to the three-player setting!

$+$
 Cascade Example

Information Cascades

- Generally, cascades
- Can lead to sub-optimal outcomes (the crowd may not be wise)
- Can be based on very little information
- Are fragile
- Main bottleneck to "wisdom" -- decisions NOT independent.
- Also known as "herding"
- Can think of this process as occurring on a graph.

