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Network Formation Games
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Network Formation

u Models for Networks:
u G(n,p)

u G(n,r)

u Watts-Strogatz

u Preferential Attachment

u Commonality: 
u Defined by random processes.

u Alternative mentality:
u Consider motivations of participants in the network, and model behavior as 

a function of these goals.

u Will use game theory!



+
Games

u Agents: two or more participants.

u Strategies: options available to the agent.

u Outcome: global end result (function of all agent’s actions). 

u Utility: real-valued function of outcome for a given agent.

u In game theory: 
u Agents want to maximize their own utility (selfish behavior)

u We (often) study optimality, i.e., outcomes such that the average utility is 
maximized.

u We (often) study equilibira, i.e., outcomes such that no agent benefits by 
changing their action.
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Bimatrix Game
Example 1: prisoner’s dilemma

u Agents: two friends commit a crime and are caught.

u Actions: confess to the police or maintain innocence.

u Payoffs:

u Equilibrium: no one wants to defect (i.e., change their 
strategy).

Confess Lie

Confess -5, -5 -1, -10

Lie -10, -1 -2, -2



+
Bimatrix Game
Example 1: prisoner’s dilemma

u Agents: two friends commit a crime and are caught.

u Actions: confess to the police or maintain innocence.

u Payoffs:

u Equilibrium: no one wants to defect (i.e., change their 
strategy).

u In fact, this game has a Dominant Strategy Equilibrium.

Confess Lie

Confess -5, -5 -1, -10

Lie -10, -1 -2, -2
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Bimatrix Game
Example 2: coordination game

u Agents: you and your best friend are going for lunch.

u Actions: go to the Thai Food truck or go to the Pizza truck.

u Payoffs:

u Equilibrium: no one wants to defect.

Thai Food Pizza

Thai Food 2, 3 1, 1

Pizza -1, -1 3, 2
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Bimatrix Game
Example 2: coordination game

u Agents: you and your best friend are going for lunch.

u Actions: go to the Thai Food truck or go to the Pizza truck.

u Payoffs:

u Equilibrium: no one wants to defect.
u No Dominant strategy equilibrium.

u Two pure Nash equilibrium.

Thai Food Pizza

Thai Food 2, 3 1, 1

Pizza -1, -1 3, 2
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Bimatrix Game
Example 3: zero-sum game

u Agents: you and your worst enemy are going for lunch.

u Actions: go to the Thai Food truck or go to the Pizza truck.

u Payoffs:

u Equilibrium: no one wants to defect.

Thai Food Pizza

Thai Food -1, 1 1, -1

Pizza 1, -1 -1, 1
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Bimatrix Game
Example 3: zero-sum game

u Agents: you and your worst enemy are going for lunch.

u Actions: go to the Thai Food truck or go to the Pizza truck.

u Payoffs:

u Equilibrium: no one wants to defect.
u no pure Nash equilibrium. 

Thai Food Pizza

Thai Food -1, 1 1, -1

Pizza 1, -1 -1, 1
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Bimatrix Game
Example 3: zero-sum game

u Agents: you and your worst enemy are going for lunch.

u Actions: go to the Thai Food truck or go to the Pizza truck.

u Payoffs:

u Equilibrium: no one wants to defect.
u no pure Nash equilibrium. 

u However, mixed Nash equilibrium (each chosen with probability ½).

Thai Food Pizza

Thai Food -1, 1 1, -1

Pizza 1, -1 -1, 1
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Game Theory

u Any interaction can be modeled by a game
u In particular: Networks!
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Network Formation Games

u Agents: N = {1, …, n}

u Strategies: A subset Si of N x N (potential edges) 
u We also refer to the strategy vector S = (S1, S2, …, SN) .

u Outcome: A network G where V = N and E = Ui Si .

u Utility: real-valued functions ui of the network G .

u Objectives: 
u Agents select Si in order to maximize ui (selfish behavior)

u We study optima: graphs G such that the sum of utilities is maximized.

u We study stability: graphs G such that no agent wants to change their Si.
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Network Formation Games

u Local connection game (social / information networks)
u Agent can build edges from itself to other nodes (at a cost), and wants to 

be connected to all nodes via short paths.

u Global connection game (infrastructure networks)
u Agents are no longer nodes, each agent wants to ensure some s-t path is 

built, and can build edges anywhere (at a shared cost).
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Local Connection Game
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Local Connection Game
u Local connection game (social networks)

u Agent can build edges from itself to other nodes (at a cost), 
and wants to be connected to all nodes via short paths.

u Each of the n agents is a node. 
u The strategy space for node u is a subset Su of V.

u This corresponds to building uv edges for all v in Su.
u Each edge has a cost α
u The total distance to other nodes (using all edges) also incurs a cost. 
u Overall, node u wishes to minimize:

αnu + Σvd(u,v)
where nu is the size of Su and d(u,v) is the distance between u and v.

u The cost of the network is the sum of the costs of all agents:
Σu(αnu + Σvd(u,v) ) 

= αm + Σu,vd(u,v)
where m = |E|.
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Optimal Networks

u An optimal network minimizes:
αm + Σu≠v d(u,v)

u Goal: Characterize optimal networks.

u Lemma: optimal networks
u If α≤ 2, then the complete graph is an optimal network.

u If α≥ 2, then the star network is an optimal network. 

u Approach: 
u Lower bound the cost,

u Give network(s) that attain the lower bound. 
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Stable Networks

u Recall: Node u wishes to minimize:
αnu + Σvd(u,v)

u Goal: Find some stable networks

u Approach: 
u Is the complete graph stable?

u Is the star graph stable?

u Assume center node pays for all edges.

u (in fact true for any star)

u Lemma: 
u If α≤ 1, then the complete graph is stable.

u If α≥ 1, then the star graph is stable. 
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Price of Stability

u The Price of Stability is the ratio:

u Lemma: 
u If α≥ 2, then the optimal network is a star. 

u If α< 2, then the optimal network is a complete graph.

u Lemma: 
u If α≥ 1, then any star is a Nash equilibrium. 

u If α≤ 1, then the complete graph is a Nash equilibrium.

u Theorem: 
u For α≥ 2 andα≤ 1, the price of stability is 1. 

u For 1 <α< 2?

u Recall: opt value ≥ (α-2)m + 2n(n-1)

u The price of stability is at most 4/3. 

value of best equilibrium
value of optimal solution
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Exercise
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Local Connection Game

n Show that forα< 1 the complete graph is the unique 
equilibrium. 
n Does this imply anything about the price of anarchy?

n Construct a Nash equilibrium that is not a star for some N and 
someα> 2.



+
Global Connection Game
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Global Connection Game

u Agents are no longer nodes in the network, external agents 
with some desire over global properties of the network.
u For example, the vertices are neighborhoods and edges are roads, 

and you would like the path from your home to your office to be 
well-maintained.

u There are k agents, each with a source si and sink ti node. 
u The strategy space for agent i is the set of all paths P from si to ti . 

u We let Pi be the path she selects.

u Let ke be the number of agents using edge e:
ui = Σe in Pi ce/ke

u The sum of the agents costs is 
Σui = Σe in some Pi ce .

u Maximizing this quantity is known as the Steiner tree problem.
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Price of Anarchy

u For the given example:
u What is the optimal solution?

u What are the equilibria?

u What is the price of stability?

u What is the price of anarchy?

u Theorem: In any global connection game, the 
price of anarchy is at most k.
u Proof: 

u Let S be a stable network and S* be an optimal network, 

u Let wi be the weight of the shortest path from si to ti, and 
let w(Pi

*) be the weight of the path the optimal solution 
selects for i.

u What about the price of stability?

value of worst equilibrium
value of optimal solution

value of best equilibrium
value of optimal solution
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Price of Stability

u For the given example:
u What is the optimal solution?

u What are the equilibria?

u What is the price of stability?

u Theorem: 
The price of stability is always at most Hk.

u Proof: Potential Method for Games
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Price of Stability

u Theorem:  A pure Nash equilibrium always exists and the price of 
stability is at most Hk.

u Potential function method:
u Define a function on edges Φe = ceHke and Φ = Σe Φe .

u If i unilaterally changes its strategy to S’, then 
can show that

Φ(S) – Φ(S’) = ui(S’) – ui(S)
(this is called a potential function).

u Can also show that:
cost(S) ≤ Φ(S) ≤ Hk cost(S)

u Theorem: A strategy that minimizes Φ is stable.

u Theorem: If A cost(S) ≤ Φ(S) ≤ B cost(S), then the price of stability is 
at most B/A.
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Co-Author Game
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Coauthor Game

u Coauthor game (buisness/collaboration networks)
u Agents can partner together, but the more partners an agent has the less 

resources she has to put into the partnership.

u Each of the n agents is a node. 
u Nodes benefit from partnerships (direct edge connections) to others due 

to “collaboration”.

u The amount a node benefits is inversely proportional to the amount of 
partnerships (i.e., degree) one has.
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Coauthor Game
u Let ni be the degree of node i

u Node i wishes to maximize:

u If 

u A network is optimal if it maximizes:
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Optimal Networks

u A network is optimal if it maximizes:

u Goal: Find an optimal network:

u Approach:
u First, upper bound 

u Show some network attains this bound:

u An optimal network on 2K agents consists of K pairs of nodes.

u Is this network is an equilibrium?
u No
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Stable Networks

u Node i wishes to maximize:

u Node i would like to link to node j if:

u Assume that 
u Does i want to link to j?

u Yes! What does this mean for stable networks?

u The only stable networks are complete networks.



+
Price of Stability / Price of Anarchy

u Recall: The optimal network has cost 

u Recall: The only stable networks are complete networks.

u The price of stability is:
u Is > 1/3

u The price of anarchy is:
u In this case, is the same!

value of best equilibrium
value of optimal solution

value of worst equilibrium
value of optimal solution
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Does this notion of stability 
make sense?
u We showed conditions under which i wants to connect to j. 

Does j also want to connect to i?
u In some cases, the notion of stability may be incomplete. 

u Pairwise stability:
u For all ij in g,we have ui(g) > ui(g-ij) and uj(g) > uj(g-ij).

u For all ij not in g,we have ui(g) < ui(g+ij) and uj(g) < uj(g+ij).

u Theorem: The pairwise-stable networks can be decomposed 
into fully connected components with no cross-component 
edges such that if the number nodes in each of the t 
components is k1 > k2 > … > kt , then ki-1 > ki

2.

u Proof: Similar analysis as before, but show that j in the smaller 
component only wants to connect to i if the above is satisfied.
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Complements vs Substitutes

u In the local connection game, the more connections other agents 
build, the fewer connections we build.
u This is a game of strategic substitutes.

u In the coauthor game, the more connections other agents build, the 
more connections we build.
u This is a game of strategic complements.
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Price of Anarchy

u The Price of Anarchy is the ratio:

u Lemma: 
u If α≥ 2, then the optimal network is a star. 

u If α< 2, then the optimal network is a complete graph.

u Lemma: 
u If α≥ 1, then any star is a Nash equilibrium. 

u If α≤ 1, then the complete graph is a Nash equilibrium.

u Theorem: The price of anarchy is at most O(√α).
u Bound the diameter of an equilibrium graph.

u Use this to bound the price of anarchy.

value of worst equilibrium
value of optimal solution



+
Price of Anarchy

u An optimal network minimizes:
α|E| + Σu≠v d(u,v)

u Theorem: The price of anarchy is at most O(√α).
u Bound the diameter of an equilibrium graph.

u Use this to bound the price of anarchy.

u Lemma: If a Nash equilibrium has 
diameter d, then its cost is at 
most O(d) times optimal.
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Price of Anarchy

u Theorem: The price of anarchy is at most O(√α).
u Bound the diameter of an equilibrium graph.

u Use this to bound the price of anarchy.

u Use Previous Lemma: If a Nash equilibrium has diameter d, then its 
cost is at most O(d) times optimal

u Lemma: The diameter of a Nash equilibrium is at most 2√α.

u Theorem: Price of anarchy is O(1) when α is O(√n).


