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File System Implementation

• The main task of the file system is to translate

• From user interface methods

• Read( uid, buffer, bytes )

• To disk interface methods

• ReadSector( logical_sector_number, buffer )



Disk Data Structures

• Boot block

• Device directory

• User data

• Free space



Indexed Allocation with Indirect and 
Double-Indirect Blocks

directory



Exemplifies Good System Design

• Optimizes the common case (small files)

• Accommodates the uncommon case (large files)



In-Memory Data Structures

• Cache

• Cache directory

• Queue of pending disk requests

• Queue of pending user requests

• Active file table

• Open file tables



Picture of Open File Tables
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Exemplifies good system design

• Allows open file data to be shared

• But with separate file pointer per open



Alternative File Access Method:
Memory Mapping

• mmap()

– Map the contents of a file in memory

• munmap()

– Remove the mapping



Remember this Picture?
Typical Virtual Address Space
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Remember this Picture?
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Access to mmap()-ed Files

• Access to memory region mmap()-ed

• Causes page fault

• Causes page/block of file to be brought in



mmap() implementation

• On mmap()
– Allocate page table entries
– Set valid bit to “invalid”

• On access,
– Page fault
– File = backing store for mapped region of memory
– Just like in demand paging
– Except paged from mapped file

• After page fault handling
– Set valid bit to true



How to get data to disk for mmap?

• Through normal page replacement

• Or through an explicit call msync()



What is mmap() good for?

• Random access to large file



mmap vs read()/lseek()

• read

– Entire file read into memory

• lseek

– Not easy to write-reuse (lseek+read every time)

• mmap

– Only load needed portions

– Easy to write-reuse
Huge advantage

for large files
sparsely accessed



Issues with mmap()

• Alignment on page boundary  unused space

• Not easy to extend a file

• For small files

– Read() more efficient than mmap() + page fault
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Consider this Piece of Code

• fd = Open( file )

• Write( fd, 0 )

• Write( fd, 1 )

• Write( fd, 2 )

• Write( fd, 3 )

• Close( fd )



Machine Crash 1

• fd = Open( file )

• Write( fd, 0 )

• Write( fd, 1 )

• Write( fd, 2 )

• Write( fd, 3 )

• Close( fd )

• Not really a problem (old file is there)

crash



Machine Crash 2

• fd = Open( file )

• Write( fd, 0 )

• Write( fd, 1 )

• Write( fd, 2 )

• Write( fd, 3 )

• Close( fd )

• Not really a problem (new file is there)

crash



Machine Crash 3

• fd = Open( file )

• Write( fd, 0 )

• Write( fd, 1 )

• Write( fd, 2 )

• Write( fd, 3 )

• Close( fd )

• It is a problem: half of old, half of new file

crash



With Write-Behind

• fd = Open( file )

• Write( fd, 0 )

• Write( fd, 1 )

• Write( fd, 2 )

• Write( fd, 3 )

• Close( fd )

• It could be a problem (new file perhaps not there)

crash



The Notion of Atomicity

• Atomicity means “all or nothing”

• Atomicity in a file system means

– All updates are on disk

– No updates are on disk

– Nothing in-between!



It can be Important

• Read( balance_checking )

• Balance_savings -= 100

• Write( balance_checking )

• Read( balance_savings )

• Balance_checking += 100

• Write( balance_savings )

checking

savings



It can be Important

• Read( balance_savings )

• Balance_savings -= 100

• Write( balance_savings )

• Read( balance_checking )

• Balance_checking += 100

• Write( balance_checking )

• Your 100CHFs are gone!

crash



How to Implement Atomicity

• In other words:

• How to make sure that all or no updates to an 
open file get to disk?



Assumption

• A single sector disk write is atomic



Assumption

• Before WriteSector

• After WriteSector returns successfully

• If failure

old

new

old newor

never: oldnew



Assumption True?

• With very high probability (99.999+%): yes

• Disk vendors work very hard at this

• We will assume it is true



How to Implement Atomicity?

• Make sure you have old copy on disk

• Make sure you have new copy on disk

• Switch atomically between the two



How to Switch Atomically?

• By doing a WriteSector()

• What to write in WriteSector()?



How to Switch Atomically?

• By doing a WriteSector()

• What to write in WriteSector()?

– Device directory entry!

– Because it is smaller than sector



How It Works (with Write-Through)

• Open()

– Read DDE into AFT

• Write()s

– Allocate new blocks on disk for data

– Fill in address of new blocks to memory DDE

– Write to cache and disk

• Close()

– Write memory DDE to disk DDE



Initial State

disk memory
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Open()

disk memory

DDE DDE



Write( block0 )
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Write( block1 )

disk memory

DDE DDE



Close()

disk memory

DDE DDE



How it Works (with Write-Behind)

• Open()
– Read DDE from disk into AFT

• Write()s
– Allocate new blocks for new data

– Fill in address of new blocks to memory DDE

– Write to cache

• Close()
– Write all cached blocks to new disk blocks

– Write memory DDE to disk DDE



What happens to old blocks?



What happens to old blocks?

• De-allocate them

• If crash before de-allocate, file system check



An Alternative Method: Intentions Log

• Reserve an area of disk for (intentions) log



During Normal Operation

• On write:

– Write to cache

– Write to log

– Make in-memory inode point to update in log



Initial State
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Write( block 0 )
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Write( block 1 )
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During Normal Operation

• On close:

– Write old and new inode to log in one disk write

– Copy updates from log to original disk locations

– When all updates done, overwrite inode with new 
value

– Remove updates and old and new inode from log



Close()
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Later: Step 1
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Later: Step 2
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Later: Step 3

disk memory
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Crash Recovery

• Search forward through log

• For each new inode found

– Find and copy updates to their original location

– If/when all updates are done, write new inode

– Remove updates and old and new inode from log



Invariant

• If new inode in the log and crash: new copy

• If new inode not in the log and crash: old copy

• Even if you crash during crash recovery

– You may copy an update multiple times



Which One Works Better?



How to Compare File System Methods?



How to Compare File System Methods?

• Count the number of disk I/Os

• Count the number of random disk I/Os



Which Works Better? - DDE

• Write() 

• Close() 



Which Works Better? - DDE

• Write()  one disk write (new block)

• Close()  one disk write (update DDE)



Which Works Better? - Log

• Write() 

• Close() 



Which Works Better? - Log

• Write()  one disk write (block in log)

• Close()  two disk writes (inodes in log, block 
in data)



Surprisingly, Log works Better

• Write()’s to log are sequential (no seeks)

• Data blocks stay in place

• Good disk allocation stays!

• Write from cache or log to data – when disk is 
idle or cache replacement



Surprisingly, DDE Works Less Well

• Disk allocation gets messed up

• Fragmentation
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Log-Structured File System (LFS)

• Alternative way of structuring file system

• Takes idea of log writes to extreme



Rationale for LFS

• Large memories  large buffer caches

• Most reads served from cache

• Most disk traffic is write traffic

• How to optimize disk I/O?

– By optimizing disk writes

• How to optimize disk writes?

– By writing sequentially to disk



Key Idea in LFS

• Log = append-only data structure (on disk)

• All writes are to a log, including

– Data

– inode modifications



Key Idea in LFS

data …

log

data inode data inode



Write() in LFS

• Writes first go into cache (write-behind)

– Both inodes and data

• Writes also go into (in-memory) buffer

• When buffer full, append to log

• Called segment of log

• No seeks on writes!



LFS Log

log

segment segment …segment



LFS Segments

…

Segment

data data inode data inode



But how to Read?



The inode Map

• (In-memory) table of inode disk addresses

– Maps uid to disk address of last inode for that uid

• Updated every time inode is written to disk

uid
disk address

inode in log



Using the inode Map

• Open() : 

– Get inode address from inode map

– Read inode from disk into Active File Table

• Read() : as before

– Get from cache

– Or get from disk address in inode



Using inode Map

• Reading seems more complicated

• Because indirection through inode map

• But performance is determined by disk reads

• So little difference



Get the inode Map to Disk

• inode map (imap) needs to be persisted!

• Where to put it? 
– Mixed with data and inodes: to avoid seeks

• How to find iMap?

• Checkpoint region:
– Fixed location in disk

– Contains addresses of imap

– Contains current log head position

– Updated periodically



LFS Log + Checkpoint

checkpoint

log

segment segment …segment

imap

marker



Crash?

• Start from inode map in checkpoint

– Contains addresses of all inodes written before
last checkpoint

• How to find inodes?

– That were in in-memory inode map before crash

– But not written in the checkpoint



Roll Forward

• Remember: checkpoint put marker in log

• From marker forward

– Scan for inodes in the log

– Add their addresses to inode map

• Result: All inode addresses not in inode map 
before crash are in inode map afterwards



LFS Roll forward

checkpoint

log

segment segment… segment

imap
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…

• Search for inodes
• Incorporate them into imap



Time Interval between Checkpoints

• Too short: lots of disk I/O to write checkpoints

• Too long: long recovery time (forward scan)

• Compromise

– Crashes are rare

– So recovery seldom happens

– Can tolerate longer recovery time



An Aside: A General Rule

• Tradeoff between

– Failure-free performance

– Recovery time



What if the Disk is Full?

• No sector is ever overwritten

– Always written to end of log

• No sector is ever put on free list

• So disk will get full (quickly)

• Need to “clean” the disk



Disk Cleaning

• Reclaim “old” data

• “Old” here means

– Logically overwritten

• Later write to (uid, blockno)

– But not physically overwritten

• Older version of (uid, blockno) somewhere in the log



Disk Cleaning

• Done one segment at a time

• Determine which blocks are new

• Write them into buffer

• If buffer is full, write new segment

• Cleaned segment is marked free



How Cleaning is Done - Log

• Log is more complicated than simple linear log

• Log = sequence of segments

– Some in use

– Some free



LFS Log

log

free free free



Write()

• Rather than append to log

• Write to free segment in log

• Segments are large (Mbs)

• Still get benefits from sequential access



How to?

• Determine that a block is old or new?



Change Write() a Bit

• Instead of just writing to buffer (and to log)

– Data

• Write the following

– Data + uid + blockno



Determining a Block is Old

• For a data block

• Take its disk address

• Take its uid and block no

• Look in inode map and then in inode

• If inode has different disk address  old



Determining if a Block is Old

data inode data inode

imap

log

uid, bno uid, bno

Segment A Segment B



Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment A
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Cleaning Segment A
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Cleaning Segment A
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Cleaning Segment A

data inode data inode
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Cleaning Segment B

data inode data inode
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Cleaning Segment B

data inode data inode
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Cleaning Segment B

data inode data inode
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Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

same – new block

imap



Determining a Block is Old

• For a data block

• Take its disk address

• Take its uid and block no

• Look in inode map and then in inode

• If inode has different disk address  old



Putting it all Together



Key Idea in LFS

• “All” writes go to log, including

– Data

– inode

• “All” = All except for checkpoints



LFS Data Structures on Disk:
Checkpoint and Log

Checkpoint region: at fixed location on disk
Log: uses the remainder of the disk
Segment: large (MBs) contiguous regions on disk

checkpoint

log

free free free



LFS Data Structures on Disk
In-Use Segments

data: modified user data sector (includes uid and block no)
inode: modified inode sector

…

Segment

data data inode data inodeimap



LFS Data Structures in Memory:
Cache, Segment Buffer

• Cache: regular write-behind buffer cache

• Segment buffer: segment being written



LFS Data Structures in Memory:
inode Map

• Array

• Indexed by uid

• Point to last-written inode for uid

uid
disk address

inode in log



LFS Data Structures in Memory

• Also the usual

– Active file table

– Open file tables



Write() in LFS - 1

• Writes go into (write-behind) cache

– Both inode and data sectors

• Writes go into (in-memory) segment buffer

• Both inode and data sectors

• When segment buffer full

– Write to  free segment in disk log

• (Almost) no seeks on writes!



Write() in LFS - 2

• If inode is written to log

• inode_map[uid] = disk address of inode



Open()

• Get inode address from inode map

• Read inode from disk into Active File Table



Read()

• Get from cache

• If not in cache

– Get from disk 

– Using disk address in inode

• As before



Summary: LFS

• Reads mostly from cache

• Writes to disk heavily optimized: few seeks

• Reads from disk: bit more expensive but few

• Cost of cleaning



Summary: LFS

• Is more complicated than what was presented

• Has not become mainstream

– Cost of cleaning is considerable

– Note similarity with garbage collection

– Unpredictable performance dips

• Similar ideas in some commercial systems


