
Week 9 - Recap

Pamela Delgado

May 1, 2019

File System Implementation

• The main task of the file system is to translate

• From user interface methods

• Read(uid, buffer, bytes)

• To disk interface methods

• ReadSector(logical_sector_number, buffer)

Disk Data Structures

• Boot block

• Device directory

• User data

• Free space

Indexed Allocation with Indirect and
Double-Indirect Blocks

directory

Exemplifies Good System Design

• Optimizes the common case (small files)

• Accommodates the uncommon case (large files)

In-Memory Data Structures

• Cache

• Cache directory

• Queue of pending disk requests

• Queue of pending user requests

• Active file table

• Open file tables

Picture of Open File Tables

fp

fp

fp

…

inode refcount

inode refcount

inode refcount

inode refcount

…Process 1 OFT

fp

fp

fp

…

Process 2 OFT

…

Active File Table

Exemplifies good system design

• Allows open file data to be shared

• But with separate file pointer per open

Alternative File Access Method:
Memory Mapping

• mmap()

– Map the contents of a file in memory

• munmap()

– Remove the mapping

Remember this Picture?
Typical Virtual Address Space

code

data

heap

stack

unused

0

2^31-1

Remember this Picture?
Typical Virtual Address Space

code

data

heap

stack

mmap region

0

2^31-1

Remember this Picture?
Typical Virtual Address Space

code

data

heap

stack

mmap region

0

2^31-1

mmapped file

Access to mmap()-ed Files

• Access to memory region mmap()-ed

• Causes page fault

• Causes page/block of file to be brought in

mmap() implementation

• On mmap()
– Allocate page table entries
– Set valid bit to “invalid”

• On access,
– Page fault
– File = backing store for mapped region of memory
– Just like in demand paging
– Except paged from mapped file

• After page fault handling
– Set valid bit to true

How to get data to disk for mmap?

• Through normal page replacement

• Or through an explicit call msync()

What is mmap() good for?

• Random access to large file

mmap vs read()/lseek()

• read

– Entire file read into memory

• lseek

– Not easy to write-reuse (lseek+read every time)

• mmap

– Only load needed portions

– Easy to write-reuse
Huge advantage

for large files
sparsely accessed

Issues with mmap()

• Alignment on page boundary  unused space

• Not easy to extend a file

• For small files

– Read() more efficient than mmap() + page fault

Week 10
Dealing with Crashes

Pamela Delgado

May 8, 2018

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book

Consider this Piece of Code

• fd = Open(file)

• Write(fd, 0)

• Write(fd, 1)

• Write(fd, 2)

• Write(fd, 3)

• Close(fd)

Machine Crash 1

• fd = Open(file)

• Write(fd, 0)

• Write(fd, 1)

• Write(fd, 2)

• Write(fd, 3)

• Close(fd)

• Not really a problem (old file is there)

crash

Machine Crash 2

• fd = Open(file)

• Write(fd, 0)

• Write(fd, 1)

• Write(fd, 2)

• Write(fd, 3)

• Close(fd)

• Not really a problem (new file is there)

crash

Machine Crash 3

• fd = Open(file)

• Write(fd, 0)

• Write(fd, 1)

• Write(fd, 2)

• Write(fd, 3)

• Close(fd)

• It is a problem: half of old, half of new file

crash

With Write-Behind

• fd = Open(file)

• Write(fd, 0)

• Write(fd, 1)

• Write(fd, 2)

• Write(fd, 3)

• Close(fd)

• It could be a problem (new file perhaps not there)

crash

The Notion of Atomicity

• Atomicity means “all or nothing”

• Atomicity in a file system means

– All updates are on disk

– No updates are on disk

– Nothing in-between!

It can be Important

• Read(balance_checking)

• Balance_savings -= 100

• Write(balance_checking)

• Read(balance_savings)

• Balance_checking += 100

• Write(balance_savings)

checking

savings

It can be Important

• Read(balance_savings)

• Balance_savings -= 100

• Write(balance_savings)

• Read(balance_checking)

• Balance_checking += 100

• Write(balance_checking)

• Your 100CHFs are gone!

crash

How to Implement Atomicity

• In other words:

• How to make sure that all or no updates to an
open file get to disk?

Assumption

• A single sector disk write is atomic

Assumption

• Before WriteSector

• After WriteSector returns successfully

• If failure

old

new

old newor

never: oldnew

Assumption True?

• With very high probability (99.999+%): yes

• Disk vendors work very hard at this

• We will assume it is true

How to Implement Atomicity?

• Make sure you have old copy on disk

• Make sure you have new copy on disk

• Switch atomically between the two

How to Switch Atomically?

• By doing a WriteSector()

• What to write in WriteSector()?

How to Switch Atomically?

• By doing a WriteSector()

• What to write in WriteSector()?

– Device directory entry!

– Because it is smaller than sector

How It Works (with Write-Through)

• Open()

– Read DDE into AFT

• Write()s

– Allocate new blocks on disk for data

– Fill in address of new blocks to memory DDE

– Write to cache and disk

• Close()

– Write memory DDE to disk DDE

Initial State

disk memory

DDE

Open()

disk memory

DDE DDE

Write(block0)

disk memory

DDE DDE

Write(block1)

disk memory

DDE DDE

Close()

disk memory

DDE DDE

How it Works (with Write-Behind)

• Open()
– Read DDE from disk into AFT

• Write()s
– Allocate new blocks for new data

– Fill in address of new blocks to memory DDE

– Write to cache

• Close()
– Write all cached blocks to new disk blocks

– Write memory DDE to disk DDE

What happens to old blocks?

What happens to old blocks?

• De-allocate them

• If crash before de-allocate, file system check

An Alternative Method: Intentions Log

• Reserve an area of disk for (intentions) log

During Normal Operation

• On write:

– Write to cache

– Write to log

– Make in-memory inode point to update in log

Initial State

disk

memory

DDE

Open()

disk

memory

DDE DDE

Write(block 0)

disk

memory

DDE DDE

Write(block 1)

disk

memory

DDE DDE

During Normal Operation

• On close:

– Write old and new inode to log in one disk write

– Copy updates from log to original disk locations

– When all updates done, overwrite inode with new
value

– Remove updates and old and new inode from log

Close()

disk

memory

DDE DDE

DDE

old DDE new DDE

Later: Step 1

disk

memory

DDE DDE

DDE

old DDE new DDE

Later: Step 2

disk

memory

DDE DDE

DDE

old DDE new DDE

Later: Step 3

disk memory

DDE

Crash Recovery

• Search forward through log

• For each new inode found

– Find and copy updates to their original location

– If/when all updates are done, write new inode

– Remove updates and old and new inode from log

Invariant

• If new inode in the log and crash: new copy

• If new inode not in the log and crash: old copy

• Even if you crash during crash recovery

– You may copy an update multiple times

Which One Works Better?

How to Compare File System Methods?

How to Compare File System Methods?

• Count the number of disk I/Os

• Count the number of random disk I/Os

Which Works Better? - DDE

• Write() 

• Close() 

Which Works Better? - DDE

• Write()  one disk write (new block)

• Close()  one disk write (update DDE)

Which Works Better? - Log

• Write() 

• Close() 

Which Works Better? - Log

• Write()  one disk write (block in log)

• Close()  two disk writes (inodes in log, block
in data)

Surprisingly, Log works Better

• Write()’s to log are sequential (no seeks)

• Data blocks stay in place

• Good disk allocation stays!

• Write from cache or log to data – when disk is
idle or cache replacement

Surprisingly, DDE Works Less Well

• Disk allocation gets messed up

• Fragmentation

Week 10
Log-Structured File System (LFS)

Pamela Delgado

May 8, 2019

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book

Log-Structured File System (LFS)

• Alternative way of structuring file system

• Takes idea of log writes to extreme

Rationale for LFS

• Large memories  large buffer caches

• Most reads served from cache

• Most disk traffic is write traffic

• How to optimize disk I/O?

– By optimizing disk writes

• How to optimize disk writes?

– By writing sequentially to disk

Key Idea in LFS

• Log = append-only data structure (on disk)

• All writes are to a log, including

– Data

– inode modifications

Key Idea in LFS

data …

log

data inode data inode

Write() in LFS

• Writes first go into cache (write-behind)

– Both inodes and data

• Writes also go into (in-memory) buffer

• When buffer full, append to log

• Called segment of log

• No seeks on writes!

LFS Log

log

segment segment …segment

LFS Segments

…

Segment

data data inode data inode

But how to Read?

The inode Map

• (In-memory) table of inode disk addresses

– Maps uid to disk address of last inode for that uid

• Updated every time inode is written to disk

uid
disk address

inode in log

Using the inode Map

• Open() :

– Get inode address from inode map

– Read inode from disk into Active File Table

• Read() : as before

– Get from cache

– Or get from disk address in inode

Using inode Map

• Reading seems more complicated

• Because indirection through inode map

• But performance is determined by disk reads

• So little difference

Get the inode Map to Disk

• inode map (imap) needs to be persisted!

• Where to put it?
– Mixed with data and inodes: to avoid seeks

• How to find iMap?

• Checkpoint region:
– Fixed location in disk

– Contains addresses of imap

– Contains current log head position

– Updated periodically

LFS Log + Checkpoint

checkpoint

log

segment segment …segment

imap

marker

Crash?

• Start from inode map in checkpoint

– Contains addresses of all inodes written before
last checkpoint

• How to find inodes?

– That were in in-memory inode map before crash

– But not written in the checkpoint

Roll Forward

• Remember: checkpoint put marker in log

• From marker forward

– Scan for inodes in the log

– Add their addresses to inode map

• Result: All inode addresses not in inode map
before crash are in inode map afterwards

LFS Roll forward

checkpoint

log

segment segment… segment

imap

marker

…

• Search for inodes
• Incorporate them into imap

Time Interval between Checkpoints

• Too short: lots of disk I/O to write checkpoints

• Too long: long recovery time (forward scan)

• Compromise

– Crashes are rare

– So recovery seldom happens

– Can tolerate longer recovery time

An Aside: A General Rule

• Tradeoff between

– Failure-free performance

– Recovery time

What if the Disk is Full?

• No sector is ever overwritten

– Always written to end of log

• No sector is ever put on free list

• So disk will get full (quickly)

• Need to “clean” the disk

Disk Cleaning

• Reclaim “old” data

• “Old” here means

– Logically overwritten

• Later write to (uid, blockno)

– But not physically overwritten

• Older version of (uid, blockno) somewhere in the log

Disk Cleaning

• Done one segment at a time

• Determine which blocks are new

• Write them into buffer

• If buffer is full, write new segment

• Cleaned segment is marked free

How Cleaning is Done - Log

• Log is more complicated than simple linear log

• Log = sequence of segments

– Some in use

– Some free

LFS Log

log

free free free

Write()

• Rather than append to log

• Write to free segment in log

• Segments are large (Mbs)

• Still get benefits from sequential access

How to?

• Determine that a block is old or new?

Change Write() a Bit

• Instead of just writing to buffer (and to log)

– Data

• Write the following

– Data + uid + blockno

Determining a Block is Old

• For a data block

• Take its disk address

• Take its uid and block no

• Look in inode map and then in inode

• If inode has different disk address  old

Determining if a Block is Old

data inode data inode

imap

log

uid, bno uid, bno

Segment A Segment B

Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

not the same – old block

imap

Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap

Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

same – new block

imap

Determining a Block is Old

• For a data block

• Take its disk address

• Take its uid and block no

• Look in inode map and then in inode

• If inode has different disk address  old

Putting it all Together

Key Idea in LFS

• “All” writes go to log, including

– Data

– inode

• “All” = All except for checkpoints

LFS Data Structures on Disk:
Checkpoint and Log

Checkpoint region: at fixed location on disk
Log: uses the remainder of the disk
Segment: large (MBs) contiguous regions on disk

checkpoint

log

free free free

LFS Data Structures on Disk
In-Use Segments

data: modified user data sector (includes uid and block no)
inode: modified inode sector

…

Segment

data data inode data inodeimap

LFS Data Structures in Memory:
Cache, Segment Buffer

• Cache: regular write-behind buffer cache

• Segment buffer: segment being written

LFS Data Structures in Memory:
inode Map

• Array

• Indexed by uid

• Point to last-written inode for uid

uid
disk address

inode in log

LFS Data Structures in Memory

• Also the usual

– Active file table

– Open file tables

Write() in LFS - 1

• Writes go into (write-behind) cache

– Both inode and data sectors

• Writes go into (in-memory) segment buffer

• Both inode and data sectors

• When segment buffer full

– Write to free segment in disk log

• (Almost) no seeks on writes!

Write() in LFS - 2

• If inode is written to log

• inode_map[uid] = disk address of inode

Open()

• Get inode address from inode map

• Read inode from disk into Active File Table

Read()

• Get from cache

• If not in cache

– Get from disk

– Using disk address in inode

• As before

Summary: LFS

• Reads mostly from cache

• Writes to disk heavily optimized: few seeks

• Reads from disk: bit more expensive but few

• Cost of cleaning

Summary: LFS

• Is more complicated than what was presented

• Has not become mainstream

– Cost of cleaning is considerable

– Note similarity with garbage collection

– Unpredictable performance dips

• Similar ideas in some commercial systems

