Week 9 - Recap

Pamela Delgado
May 1, 2019

File System Implementation

The main task of the file system is to translate

From user interface methods 2
Read(uid, buffer, bytes) ,!

To disk interface methods
ReadSector(logical sector number, buffer) *®

Disk Data Structures

Boot block
Device directory
User data

Free space

Indexed Allocation with Indirect and
Double-Indirect Blocks

-

directory

Exemplifies Good System Design

* Optimizes the common case (small files)
 Accommodates the uncommon case (large files)

In-Memory Data Structures

Cache

Cache directory

Queue of pending disk requests
Queue of pending user requests
Active file table

Open file tables

Picture of Open File Tables

inode refcount

inode refcount

inode refcount

inode refcount

Active File Table

Process 2 OFT

Exemplifies good system design

* Allows open file data to be shared
* But with separate file pointer per open

Alternative File Access Method:
Memory Mapping

* mmap(}

— Map the contents of a file in memory

* munmap()

— Remove the mapping

Remember this Picture?
Typical Virtual Address Space

2731-1

%

— unused

Remember this Picture?
Typical Virtual Address Space

2731-1

%

— mmap region

Remember this Picture?
Typical Virtual Address Space

2731-1

mmapped file

— mmap region

Access to mmap()-ed Files

e Access to memory region mmap()-ed
e Causes page fault
* Causes page/block of file to be brought in

mmap() implementation

e On mmap()

— Allocate page table entries
— Set valid bit to “invalid”

* On access,
— Page fault
— File = backing store for mapped region of memory
— Just like in demand paging
— Except paged from mapped file

* After page fault handling
— Set valid bit to true

How to get data to disk for mmap?

* Through normal page replacement
* Or through an explicit call msync()

What is mmap() good for?

 Random access to large file

mmap vs read()/Iseek()

* read

HEntire file read into memory

e |seek

XNot easy to write-reuse (lIseek+read every time)
* mmap

\/Only load needed portions

/ Easy to write-reuse

Huge advantage
for large files
sparsely accessed

Issues with mmap()

* Alighment on page boundary = unused space
* Not easy to extend a file
* For small files

— Read() more efficient than mmap() + page fault

Week 10
Dealing with Crashes

Pamela Delgado
May 8, 2018

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book

Consider this Piece of Code

e fd = Open(file)
 Write(fd, 0)
 Write(fd, 1)
 Write(fd, 2)
 Write(fd, 3)
* Close(fd)

Machine Crash 1

fd = Open(file)
Write(fd,0) < crash
Write(fd, 1)

Write(fd, 2)

Write(fd, 3)

Close(fd)

Not really a problem (old file is there)

Machine Crash 2

fd = Open(file)
Write(fd, 0)
Write(fd, 1)
Write(fd, 2)
Write(fd, 3)
Close(fd)

Not really a problem (new file is there)

Machine Crash 3

fd = Open(file)

Write(fd, 0)

Write(fd, 1)

Write(fd,2) < crash
Write(fd, 3)

Close(fd)

It is a problem: half of old, half of new file

With Write-Behind

* fd = Open(file)

 Write(fd, 0)

 Write(fd, 1)
 Write(fd, 2)

<Q{erte(fd, 3)
&«— crash
e Close(fd)

* |t could be a problem (new file perhaps not there)

The Notion of Atomicity

e Atomicity means “all or nothing”

e Atomicity in a file system means
— All updates are on disk
— No updates are on disk
— Nothing in-between!

It can be Important

Read(balance checking)
Balance savings -= 100
Write(balance checking)
Read(balance_savings)
Balance_checking += 100
Write(balance savings)

\

checking

#

savings

It can be Important

Read(balance savings)
Balance savings -= 100
Write(balance savings)
Read(balance_checking)
Balance_checking += 100
Write(balance_checking)

€—— cCrash

Your 100CHFs are gone! 8‘:\

How to Implement Atomicity

 |n other words:

* How to make sure that all or no updates to an
open file get to disk?

Assumption

* Asingle sector disk write is atomic

Assumption

e Before WriteSector

e After WriteSector returns successfully

new

e |f failure

or

never.

new old

Assumption True?

* With very high probability (99.999+%): yes
* Disk vendors work very hard at this
 We will assume it is true

How to Implement Atomicity?

* Make sure you have old copy on disk
* Make sure you have new copy on disk

e Switch atomically between the two

How to Switch Atomically?

* By doing a WriteSector()
 What to write in WriteSector()?

How to Switch Atomically?

* By doing a WriteSector()
 What to write in WriteSector()?

— Device directory entry!
— Because it is smaller than sector

How It Works (with Write-Through)

* Open(}
— Read DDE into AFT
e Write()s
— Allocate new blocks on disk for data

— Fill in address of new blocks to memory DDE
— Write to cache and disk

* Close()
— Write memory DDE to disk DDE

Initial State

DDE

disk | memory

Open()

DDE DDE

disk | memory

Write(blockO)

DDE

—

memory

Write(block1)

DDE DDE

il

memory

memory

How it Works (with Write-Behind)

* Open()
— Read DDE from disk into AFT
e Write()s
— Allocate new blocks for new data

— Fill in address of new blocks to memory DDE
— Write to cache

* Close()

— Write all cached blocks to new disk blocks
— Write memory DDE to disk DDE

What happens to old blocks?

What happens to old blocks?

* De-allocate them
 |f crash before de-allocate, file system check

An Alternative Method: Intentions Log

* Reserve an area of disk for (intentions) log

During Normal Operation

* On write:
— Write to cache
— Write to log
— Make in-memory inode point to update in log

Initial State

DDE

memory

disk

memory

disk

Write(block O)

DDE DDE

A |

| disk

memory

Write(block 1)

DDE DDE

- —

—

memory

disk

During Normal Operation

* On close:
— Write old and new inode to log in one disk write
— Copy updates from log to original disk locations

— When all updates done, overwrite inode with new
value

— Remove updates and old and new inode from log

Close()

DDE DDE

memory

Later: Step 1

Illﬂ =
—
—

memory

old DDE new DDE disk

—

Later: Step 2

DDE
old DDE new DDE disk

—

DDE

memory

Later: Step 3

DDE

disk | memory

Crash Recovery

e Search forward through log
* For each new inode found

— Find and copy updates to their original location
— If/when all updates are done, write new inode
— Remove updates and old and new inode from log

Invariant

* |f new inode in the log and crash: new copy
* |f new inode not in the log and crash: old copy

* Even if you crash during crash recovery

— You may copy an update multiple times

Which One Works Better?

How to Compare File System Methods?

How to Compare File System Methods?

 Count the number of disk I/Os
* Count the number of random disk I/Os

Which Works Better? - DDE

* Write() 2
* Close() 2

Which Works Better? - DDE

* Write() 2 one disk write (new block)
* Close() = one disk write (update DDE)

Which Works Better? - Log

* Write() 2
* Close() 2

Which Works Better? - Log

* Write() =2 one disk write (block in log)

* Close() = two disk writes (inodes in log, block
in data)

Surprisingly, Log works Better

Write()’s to log are sequential (no seeks)
Data blocks stay in place
Good disk allocation stays!

Write from cache or log to data — when disk is
idle or cache replacement

Surprisingly, DDE Works Less Well

* Disk allocation gets messed up
* Fragmentation

Week 10
Log-Structured File System (LFS)

Pamela Delgado
May 8, 2019

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book

Log-Structured File System (LFS)

* Alternative way of structuring file system
* Takes idea of log writes to extreme

Rationale for LFS

Large memories = large buffer caches
Most reads served from cache

Most disk traffic is write traffic

How to optimize disk I/0?

— By optimizing disk writes

How to optimize disk writes?

— By writing sequentially to disk

Key Idea in LFS

* Log = append-only data structure (on disk)

e All writes are to a log, including
— Data
— inode modifications

Key Idea in LFS

log

data data inode data inode

Write() in LFS

Writes first go into cache (write-behind)

— Both inodes and data

Writes also go into (in-memory) buffer
When buffer full, append to log

Called segment of log

No seeks on writes!

LFS Log

segment segment segment

LFS Segments

Segment

data data inode data inode

But how to Read?

The inode Map

* (In-memory) table of inode disk addresses

— Maps uid to disk address of last inode for that uid

* Updated every time inode is written to disk

uid

inode in log

Using the inode Map

* Open():

— Get inode address from inode map

— Read inode from disk into Active File Table
* Read() : as before

— Get from cache
— Or get from disk address in inode

Using inode Map

Reading seems more complicated

Because indirection through inode map

But performance is determined by disk reads
So little difference

Get the inode Map to Disk

inode map (imap) needs to be persisted! <\\§

Where to put it?
— Mixed with data and inodes: to avoid seeks

How to find iMap?

Checkpoint region:

— Fixed location in disk

— Contains addresses of imap

— Contains current log head position
— Updated periodically

LFS Log + Checkpoint

checkpoint

— marker

segment segment segment

Crash?

e Start from inode map in checkpoint

— Contains addresses of all inodes written before
last checkpoint

e How to find inodes?

— That were in in-memory inode map before crash
— But not written in the checkpoint

Roll Forward

* Remember: checkpoint put marker in log
* From marker forward

— Scan for inodes in the log

— Add their addresses to inode map

e Result: All inode addresses not in inode map
before crash are in inode map afterwards

LFS Roll forward

checkpoint |

marker

segment | segment

|

e Search for inodes

'map * Incorporate them into imap

Time Interval between Checkpoints

* Too short: lots of disk I/O to write checkpoints
e Too long: long recovery time (forward scan)

* Compromise
— Crashes are rare
— So recovery seldom happens
— Can tolerate longer recovery time

An Aside: A General Rule

* Tradeoff between
— Failure-free performance
— Recovery time

What if the Disk is Full?

No sector is ever overwritten

— Always written to end of log

No sector is ever put on free list

So disk will get full (quickly)

Need to “clean” the disk

Disk Cleaning

e Reclaim “old” data

e “Old” here means
— Logically overwritten
e Later write to (uid, blockno)

— But not physically overwritten
e Older version of (uid, blockno) somewhere in the log

Disk Cleaning

Done one segment at a time

Determine which blocks are new
Write them into buffer

If buffer is full, write new segment
Cleaned segment is marked free

How Cleaning is Done - Log

* Log is more complicated than simple linear log
* Log = sequence of segments

— Some in use

— Some free

LFS Log

free free free

Write()

Rather than append to log
Write to free segment in log

Segments are large (Mbs)
Still get benefits from sequential access

How to?

e Determine that a block is old or new?

Change Write() a Bit

* |nstead of just writing to buffer (and to log)
— Data

* Write the following

— Data + uid + blockno

Determining a Block is Old

For a data block
Take its disk address
Take its uid and block no

Look in inode map and then in inode
If inode has different disk address = old

Determining if a Block is Old

imap

[s e

uid, bno

Segment A

o [oo

uid, bno

Segment B

Cleaning Segment A

imap

. s

uid, bno

Segment A

o [oo

uid, bno

Segment B

Cleaning Segment A

imap

>

. s

uid, bno

Segment A

o [oo

uid, bno

Segment B

Cleaning Segment A

imap

>

. s

uid, bno

Segment A

o [oo

uid, bno

Segment B

Cleaning Segment A

imap

g

. s

uid, bno

Segment A

oo [l oce.

uid, bno

Segment B

imap

Cleaning Segment A

uid, bno

I I I B T S T S

Segment B

Segment A

Cleaning Segment B

imap

[s e

uid, bno

Y v

uid, bno

Segment A

Segment B

Cleaning Segment B

imap

[s e

uid, bno

Y v

uid, bno

Segment A

Segment B

Cleaning Segment B

imap

[s e

uid, bno

o [s

uid, bno

Segment A

Segment B

Cleaning Segment B

imap

[s e

uid, bno

o [s

uid, bno

Segment A

Segment B

»
<
»
<
»
<
»
<
by

*
*
*
*

B
<
<
<
<
<
B
<
<

NS
EY
LN
EY
LN
EY
LN
EY
< E
LN
EY
LN
EY
LN
i

ERES
LN
R
LN
R
LN
R
5
»

» -
LN
R
LN
R
L]

<
<
]

B
<
<
<

"
<
»
<
»
<
-

B
<
B
<
»
<
»
<
-

A 4
i3 O
LN
»
LN
-

imap

Cleaning Segment B

log

uid, bno

Segment B

Segment A

Determining a Block is Old

For a data block
Take its disk address
Take its uid and block no

Look in inode map and then in inode
If inode has different disk address = old

Putting it all Together

Key Idea in LFS

« “All” writes go to log, including
— Data
— inode

« “All” = All except for checkpoints

LFS Data Structures on Disk:

Checkpoint and Log
log m

Checkpoint region: at fixed location on disk
Log: uses the remainder of the disk
Segment: large (MBs) contiguous regions on disk

LFS Data Structures on Disk
In-Use Segments

Segment

data data inode imap data inode

data: modified user data sector (includes uid and block no)
inode: modified inode sector

LFS Data Structures in Memory:
Cache, Segment Buffer

* Cache: regular write-behind buffer cache
* Segment buffer: segment being written

LFS Data Structures in Memory:
inode Map

* Array
* Indexed by uid
 Point to last-written inode for uid

uid

-

inode in log

LFS Data Structures in Memory

 Also the usual
— Active file table
— Open file tables

Write() in LFS - 1

Writes go into (write-behind) cache

— Both inode and data sectors

Writes go into (in-memory) segment buffer

e Both inode and data sectors

When segment buffer full

— Write to free segment in disk log

(Almost) no seeks on writes!

Write() in LFS - 2

* |f inode is written to log
* inode_map|uid] = disk address of inode

Open()

* Getinode address from inode map
 Read inode from disk into Active File Table

Read()

e Get from cache

* |f notin cache
— Get from disk
— Using disk address in inode

 As before

Summary: LFS

Reads mostly from cache
Writes to disk heavily optimized: few seeks
Reads from disk: bit more expensive but few

Cost of cleaning

Summary: LFS

* |s more complicated than what was presented

 Has not become mainstream
— Cost of cleaning is considerable
— Note similarity with garbage collection
— Unpredictable performance dips

* Similar ideas in some commercial systems

