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Crashes: Atomicity

• Atomic means:

– Either all data written is on disk (new version)

– Or none is on disk (old version)

• Single disk sector write is atomic

• Multiple disk sector writes are not atomic



How to Implement Atomicity?

• Keep old and new copies (no overwrites)

• Switch atomically by sector write



Two Techniques to Implement Atomicity

• Shadow paging: 

– Use inode sector overwrite

• Intentions log:

– Write data and inodes to log

– Copy data in-place later



Rationale for LFS

• Large memories  large buffer caches

• Most reads served from cache

• Most disk traffic is write traffic

• How to optimize disk I/O?

– By optimizing disk writes

• How to optimize disk writes?

– By writing sequentially to disk



Key Idea in LFS

• “All” writes go to log, including

– data

– inode

• “All” = All except for checkpoints



LFS Data Structures on Disk:
Checkpoint and Log

Checkpoint region: at fixed location on disk
Log: uses the remainder of the disk
Segment: large (MBs) contiguous regions on disk

checkpoint

log

free free free



LFS Data Structures on Disk
In-Use Segments

Data: modified user data sector (includes uid and block no)
inode: modified inode sector

…

Segment

data data inode data inodeimap



LFS Data Structures in Memory:
Cache, Segment Buffer

• Cache: regular write-behind buffer cache

• Segment buffer: segment being written



LFS Data Structures in Memory:
inode Map

• Array

• Indexed by uid

• Point to last-written inode for uid

uid
disk address

inode in log



LFS Data Structures in Memory

• Also the usual

– Active file table

– Open file tables



Write() in LFS - 1

• Writes go into (write-behind) cache

– Both inode and data sectors

• Writes go into (in-memory) segment buffer

• Both inode and data sectors

• When segment buffer full

– Write to  free segment in disk log

• (Almost) no seeks on writes!



Write() in LFS - 2

• If inode is written to log

• imap[uid] = disk address of inode



Open()

• Get inode address from inode map

• Read inode from disk into Active File Table



Read()

• Get from cache

• If not in cache

– Get from disk 

– Using disk address in inode

• As before



What if the Disk is Full?

• No sector is ever overwritten

– Always written to end of log

• No sector is ever put on free list

• So disk will get full (quickly)

• Need to “clean” the disk



Disk Cleaning

• Reclaim “old” data

• “Old” here means

– Logically overwritten

• Later write to (uid, blockno)

– But not physically overwritten

• Older version of (uid, blockno) somewhere in the log



Disk Cleaning

• Done one segment at a time

• Determine which blocks are new

• Write them into (in-memory) buffer

• If buffer is full, write new segment to log

• Cleaned segment is marked free



Determining a Block is Old

• For a data block

• Take its disk address

• Take its uid and block number

• Look in inode map and then in inode

• If inode has different disk address old



Determining if a Block is Old

data inode data inode

inode_map

log

uid, bno uid, bno

Segment A Segment B



Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment A

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

not the same – old block

imap



Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

imap



Cleaning Segment B

data inode data inode

log

uid, bno uid, bno

Segment A Segment B

same – new block

imap



Summary: LFS

• Reads mostly from cache

• Writes to disk heavily optimized: few seeks

• Reads from disk: bit more expensive but few

• Cost of cleaning



Summary: LFS

• Is more complicated than what was presented

• Has not become mainstream

– Cost of cleaning is considerable

– Note similarity with garbage collection

– Unpredictable performance dips



What Has Become Mainstream

• Journaling file system

• Uses log (called a “journal”) for reliability

• In Linux, the ext file systems (currently ext4)

• Not covered in this course
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Disk Evolution

1970s Now



Disk Evolution

1970s Now

Physical size Very large Tiny

Cost Very expensive Cheap

Capacity Small (MBs) Large (TB)

Bandwidth 10 Mbps 100s Mbps

Latency (seek) 50-100msec 5-10msec
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Disk Evolution

1970s Now

Size Very large Tiny

Cost Very expensive Cheap

Capacity Small (MBs) Large (TB)

Bandwidth 10 Mbps 100s Mbps

Latency (seek) 50-100msec 5-10msec

A factor of 10 when CPU have 
improved by a factor of thousands



Disk Issues

• Bandwidth:

– Servers

– “Big data” computations

• Response time:

– Desktops and laptops

– Transaction systems



Storage Developments

• RAID – bandwidth

• SSD – response time (and bandwidth)

• But both more costly than disk



RAID rationale

• Disks are cheaper and smaller

…

I/O request I/O request



RAID

• Redundant Array of Independent Disks

• Essential idea

– Optimize I/O bandwidth through parallel I/O

– Parallel I/O = I/O to multiple disks at once



Striping

• Rather than put file on one disk

• Stripe it across a number of disks

– File = Stripe0 Stripe1 Stripe2 …

– Stripe0 on disk0

– Stripe1 on disk1

– …

• Read and write in parallel



Striping

Stripe 0

Stripe 4

Stripe 3Stripe 1 Stripe 2

Stripe 8 Stripe 10 Stripe 11

Stripe 7Stripe 6Stripe 5

Stripe 9



Striping Read/Write

Stripe 0

Stripe 4

Stripe 3Stripe 1 Stripe 2

Stripe 8 Stripe 10 Stripe 11

Stripe 7Stripe 6Stripe 5

Stripe 9

Read



In the Best of Worlds

• Since disk is the bottleneck

• Bandwidth of RAID with n disks =

n * bandwidth of individual disks

• At some point other factors

– Bandwidth of I/O bus, controller, etc.

• But still, bandwidth of RAID >> bandwidth disk



• Disks now cheap and small

• Many can go into a RAID box

• To OS: RAID box looks like disk

• Also possible: RAID in software
– Disks directly attached to buses

RAID Format

Standalone unit
• Disks
• Memory
• processor(s)



Problem with (Naïve) RAID?



Problem with (Naïve) RAID

• One disk fails  all data unavailable



Problem with (Naïve) RAID

• One disk fails  all data unavailable

• MTBF: Mean Time Between Failures

• MTBF (RAID) = MTBF (disk) / n

• MTBF (disk) ~ 50,000 hours ~ 5 years

• MTBF (RAID with 10 disk) ~ 0.5 year

• Not acceptable



Solution: Redundancy

• Store redundant data on different disks

• One disk fails  data still available



RAID Levels

• Are redundancy levels

• What we have seen so far

– RAID-0: No redundancy

• In reality:

– RAID-1: Mirroring

– RAID-2/3: No longer used, not covered in this class

– RAID-4: Parity disk

– RAID-5: Distributed parity



RAID-0

• Non-redundant disk array

• Best possible read and write bandwidth

• Failure results in data loss

data disks

Stripe 3

Stripe 11

Stripe 7

Stripe 2

Stripe 10

Stripe 6

Stripe 1

Stripe 9

Stripe 5

Stripe 0

Stripe 8

Stripe 4



RAID-1

• Mirrored disks

• Write: to data and to mirror disk

• Read: from either data or mirror

• After crash: from surviving disk

data disks mirror copies

Stripe 3

Stripe 11

Stripe 7

Stripe 2

Stripe 10

Stripe 6

Stripe 1

Stripe 9

Stripe 5

Stripe 0

Stripe 8

Stripe 4

Stripe 3

Stripe 11

Stripe 7

Stripe 2

Stripe 10

Stripe 6

Stripe 1

Stripe 9

Stripe 5

Stripe 0

Stripe 8

Stripe 4



RAID-1

• For the same number of disks as RAID-0

• Storage capacity is half

• Survives disk failure of data or mirror



RAID-1

• For the same number of disks as RAID-0

• Storage capacity is half

• Survives disk failure of data or mirror



How to do better?



RAID-4

• N data disks + 1 parity disk

data disks parity disk

P0-P3

P8-P11

P4-P7

Stripe 3

Stripe 11

Stripe 7

Stripe 2

Stripe 10

Stripe 6

Stripe 1

Stripe 9

Stripe 5

Stripe 0

Stripe 8

Stripe 4



Parity

• A simple form of error detection and repair

• Not specific to RAID

• Also used in communications



Parity

• 4 bits: x0, x1, x2, x3

• Parity p = x0 XOR x1 XOR x2 XOR x3

• If you lose one bit, say x2

• Reconstruct as x2 = x0 XOR x1 XOR x3 XOR p

XOR reminder
Even # of 1s 0

Uneven # of 1s  1



Parity Example

• 4 bits: x0x1x2x3 = 0101

• Parity p = x0 XOR x1 XOR x2 XOR x3 = 0

• If you lose one bit, say x2

• Reconstruct as x2 = x0 XOR x1 XOR x3 XOR p

0 XOR 1 XOR 1 XOR 0

0

XOR reminder
Even # of 1s 0

Uneven # of 1s  1



RAID Parity Block

• Same idea at the disk block level

• Block on parity disk =

XOR of bits of data blocks at same position



RAID-4

• Read: read data disks

• Write: write data disks and parity disk

• Crash: recover from data and parity disk

P0-P3

P8-P11

P4-P7

Stripe 3

Stripe 11

Stripe 7

Stripe 2

Stripe 10

Stripe 6

Stripe 1

Stripe 9

Stripe 5

Stripe 0

Stripe 8

Stripe 4

data disks parity disk



Issue with RAID-4?



Issue with RAID-4

• Every write has to access parity disk

• Becomes bottleneck for write-heavy workload



How to do better?



RAID-5

• Block interleaved distributed parity

• As RAID-4, but parity distributed over all disks

• Balances parity write load over disks

data and parity disks

Stripe 3

Stripe 10

P4-P7

Stripe 2

P8-P11

Stripe 6

Stripe 1

Stripe 9

Stripe 5

Stripe 0

Stripe 8

Stripe 4

P0-P3

Stripe 11

Stripe 7



Additional Levels

• RAID-6: double parity
– Like RAID-5 but double parity

• RAID-1+0 = RAID-0 of RAID-1 configurations

– Good performance + reliability

– Expensive

Stripe 0

Stripe 4

Stripe 2

Stripe 0

Stripe 4

Stripe 2

Stripe 1

Stripe 5

Stripe 3

Stripe 1

Stripe 5

Stripe 3



Summary: RAID

• Disk bandwidth not improving very fast

• Disk size and cost improving fast

• RAID provides higher

1. Performance  parallel I/O, better bandwidth

2. Reliability data spread, redundancy

3. Capacity

4. Transparency easy to deploy



SSD: Solid State Disk

* DRAM + battery
• Flash memory 

technologies
• …



SSD: Solid State Disk

• Is not a disk!

• Purely electronic (NAND Flash)

• Has no moving parts

• Made to look like disk

– To the hardware (same form factor)

– To the software (same sector interface)



Basics about NAND Flash

• Basic unit: page – 4k

• Block = set of pages – e.g., 64 pages



NAND Flash Operations

• Read( page ) 10s microseconds

• Write/Program( page ) 100s microseconds

– Cannot rewrite a page

• Erase( block ) few milliseconds

– Necessary before page in block can be rewritten

– Set all block bits to 1

– Limited number of erase cycles (100,000s)



NAND Flash Operations

• Since block must be completely erased before 
any single page in a block is written

• Typically pages written sequentially in a block



SSD Interface

• Very much like a disk

• ReadSector( logical_sector_no, buffer )

• WriteSector( logical_sector_no, buffer )

• Logical sector map maintained on device



SSD Characteristics

• Bandwidth higher than disk

• Latency: much lower than disk

– 10 usec for read, 100usec for write

• Several outstanding commands

Flash based SSD: logical diagram



SSD Uses

• Mobile consumer electronics

• Laptop disk replacement

• High end acceleration for short reads/writes

• Often in addition to disk



Building a File System for SSD

• Need to write sequentially

• Cannot overwrite

• Need to erase block before writing again

• What does this remind you of?



File System for SSD ~= LFS

• Clean block before erasing 

• Move live data to new block

• Erase block



The TRIM Command

• TRIM( range of logical_sector_no’s )

• Indicate which data  blocks no longer in use

• No need to do cleaning, just erase



How to Pick Which Block to Clean?



Wear Leveling

• How to pick block to clean?

• Try to even out number of erase cycles



Evolution of SSDs

• Older SSDs:

– Need to build LFS-like file system in software

• Newer SSDs:

– Done inside firmware of device



Latest Evolution

• NVM = Non-Volatile Memory

• Allows byte-level access to NV storage

– Just like memory

– Somewhat slower

– But not as slow as conventional NV



A Note: NVMe

• Confusingly called NVMe

• High-speed SSD on PCIe I/O bus

• Not memory!

• But supports many parallel I/Os

• Lower latency, higher bandwidth 



Summary: SSD

• Solid State Disk

• Good for

– Response time

– Bandwidth

– Robustness

• Not so good for

– Price

– Capacity


