
CS323

Week 12
Virtual Machines

Laurent BINDSCHAEDLER
Calin IORGULESCU

May 22, 2019

Outline

Virtualization

Virtual Machines

Virtual Machine Monitor (VMM)

VMM Construction
Direct execution

Feasibility (Popek-Goldberg, x86)

Address translation

Summary

Virtualization

Principle of Indirection

"Any problem in computer science can be solved with another layer of
indirection. But that usually will create another problem."

- David Wheeler

Virtualization is an instance of indirection, specifically layering.

Caution:
• Virtual != imaginary
• Virtual is an overloaded term

Virtualization

A layer that exports the same abstraction as the layer it relies upon
• Provides isolation by hiding the physical names of underlying resources
• Enforces modularity

Physical X

Virtual X

Q: Can you give examples of Virtualization?

Virtualization Examples

Threads as Virtual CPUs

● Abstraction (x86 instruction set)
● Physical resource: core or hyper thread
● OS scheduler allows

○ Physical core used by a thread to change
○ More threads than physical cores

Virtualization Examples

Virtual Memory

● Abstraction: byte-addressable content
● Physical resource: random access semiconductor memory
● Hiding actual memory location allows

○ Memory location to not be present at all (see paging)
○ Memory location to change transparently (see COW)

More Virtualization Examples

In operating systems:
● Sockets, pipes = Virtual links
● RAID volumes = Virtual disks

Elsewhere:
● Data / database virtualization
● Virtual Private Networks (VPN), VLANs
● ...

Virtualization Mechanisms

Multiplexing
Expose one resource

as multiple virtual
entities

Aggregation
Make multiple

resources appear as
one virtual resource

Emulation
Make a resource

appear as a different
type of resource

Virtualization by Multiplexing

Expose one resource as multiple virtual entities

● Each entity appears to have the full resource
● Applies in space and/or time

Indirection hides physical names

Often relies on hardware-based mechanism, e.g.,
● Virtual memory uses the MMU
● Registers saved/restored on trap

Virtualization by Multiplexing – Virtual Memory

Virtualization by Aggregation

Aggregate multiple resources into one single virtual resource

● Virtual resource typically has enhanced properties
○ More capacity
○ Better availability
○ Redundancy

Virtualization by Aggregation – RAID

Expose multiple disks as one virtual disk with more capacity and/or
availability

Virtualization by emulation

Use software to emulate a virtual resource which is different from the
underlying physical resource

● Very useful in some cases, e.g., backwards compatibility

Physical resource Virtual resource

Memory Disk

Disk Tape drive

x86 core Java bytecode
processor

RAM disk

Virtual tape

Java Virtual
Machine

Virtualization by emulation – Android Emulator

Facilitate development of Android apps by running them on your dev machine

Virtual
Machines

Virtual Machines

Virtualization applied to an entire computer.

Reminder – Operating System

Hardware

Operating System

App1 App2 AppN...

Virtual Machines

Virtual Machine

Virtual Machines

Virtual Machine

OS

Virtual Machines

Virtual Machine

OS

Virtual Machines

Virtual Machine

OS

Virtual Machines

Virtual Machine

OS

...
Virtual Machine

OS

Virtual Machines

Virtual Machine

OS

Hardware

...
Virtual Machine

OS

Virtual Machines

Virtual Machine

OS

Hardware

Virtual Machine Monitor (VMM)

...
Virtual Machine

OS

Virtual Machines

Virtualization applied to an entire computer.

A Virtual Machine (VM) is an abstraction that is sufficiently equivalent to the
underlying hardware that it can run an operating system.

● In particular, the OS within the VM can itself run multiple applications

i.e., a VM is an efficient, isolated duplicate of the real machine.

VM abstractions are materialized using a piece of software called a Virtual
Machine Monitor (VMM), sometimes also known as Hypervisor.

Virtual
Machine
Monitor

Virtual Machine Monitor (VMM)

Resource manager for VMs

Provides
• Creation, destruction, and scheduling of VMs
• Memory management for VMs
• Disk management for VMs
• I/O management for VMs

Similar to what an OS does, with VMs instead of processes

Current VMM Tools

Type I architecture – VMM is the host operating system (a.k.a. hypervisor)
● Xen (open-source)
● VMware vSphere / ESXi
● Microsoft Hyper-V

Type II architecture – VMM separate from host OS
● KVM (Linux host) (open-source)
● VMware Workstation (Windows host) and Fusion (OS X host)
● Parallels (Windows and OS X hosts)

Terminology

VM = Virtual Machine
Guest OS = operating system running in the VM
Host OS = operating system running on the "metal" (i.e. not in the VM)
VMM = Virtual Machine Monitor
Hypervisor = VMM that is also a host OS (a.k.a. type I VMM)
Hosted VMM = VMM that runs on a separate host OS (a.k.a. type II VMM)

Virtual Machine Monitor – Requirements

Equivalence: the virtual hardware needs to be sufficiently equivalent to the
underlying hardware that you can run the same software in the virtual
machine that you would normally run on the computer

• In particular, you can run the same (unmodified) operating system

Safety: VM must be completely isolated from other VMs and from the VMM
• i.e., you can think of the VM as running on its own dedicated hardware

Performance: the overhead of virtualization must be sufficiently low that a
VM can be used in the same way as if it was running on the hardware

• i.e. virtualization slowdown must not have a significant impact on execution

Q: Is it always possible to build a VMM?

Intuition – Guest OS must be protected

3 fundamental requirements for a protected OS:

• User / kernel mode bit

• Virtual memory

• Trap architecture

OS Requirement 1: User/Kernel Mode

Hardware

Operating System

App1 App2 AppN...
User Mode

Kernel Mode

OS Requirement 2: Virtual Memory

Level of indirection between

• Address space used by the CPU (virtual memory addresses)

• Underlying physical memory (physical memory addresses)

Protects OS memory from applications

OS Requirement 3: Trap Architecture

OS must be able to take traps and return from them

Hardware

Operating System

App1 App2 AppN...
User Mode

Kernel Mode

VMM
Construction

VMM: goals

● Hardware multiplexing
○ multiple VMs can access underlying hardware

● Isolation
○ VMs cannot interfere with one another, or hog resources

● Low overhead
○ most of the resources must go to the VMs

Reminder: Virtual Machines

VMM / Operating System

VMM types:
● Type 1: VMM == OS

○ e.g., Xen, Microsoft HyperV

● Type 2: VMM runs on top of OS
○ e.g., KVM, VMware Fusion, etc.

Reminder: Virtual Machines

VMM / Operating System

VMM types:
● Type 1: VMM == OS

○ e.g., Xen, Microsoft HyperV

● Type 2: VMM runs on top of OS
○ e.g., KVM, VMware Fusion, etc.

Each OS thinks it runs directly on the hardware!
● the VMM must make sure the OS cannot

deduce it runs in a VM

Virtual Hardware
Virtual Machine must behave as if they are running on “real hardware”

● CPU
○ each VM has its own Virtual CPU

● Physical Memory
○ each VM has its own Virtual “Physical Memory”

● I/O
○ each VM has its own Virtual Disk and other peripherals

● Network
○ VMs can communicate with real and virtual machines through the Virtual Network

Virtual Hardware
Virtual Machine must behave as if they are running on “real hardware”

● CPU
○ each VM has its own Virtual CPU

● Physical Memory
○ each VM has its own Virtual “Physical Memory”

● I/O
○ each VM has its own Virtual Disk and other peripherals

● Network
○ VMs can communicate with real and virtual machines through the Virtual Network

Virtual CPU

Virtual CPU

● What architecture can the Virtual CPUs have?

Different than the Physical CPUs Same as Physical CPUs

Example
scenario

e.g., develop code for other
devices: ARM, PlayStation, etc.

e.g., run different OSes on same
machine without needing to restart

Mechanism
used Dynamic Binary Translation Limited Direct Execution

Virtual CPU

● What architecture can the Virtual CPUs have?

Different than the Physical CPUs Same as Physical CPUs

Example
scenario

e.g., develop code for other
devices: ARM, PlayStation, etc.

e.g., run different OSes on same
machine without needing to restart

Mechanism
used Dynamic Binary Translation Limited Direct Execution

Dynamic Binary Translation

● Change one type of instructions to another
● Example: for a = 5 and b = 6, compute c = a + b

mov r3, #5
str r3, [fp, #-8]
mov r3, #6
str r3, [fp, #-12]
ldr r2, [fp, #-8]
ldr r3, [fp, #-12]
add r3, r2, r3
str r3, [fp, #-16]

movl $0, -4(%ebp)
movl $5, -8(%ebp)
movl $6, -12(%ebp)
movl -8(%ebp), %ecx
movl -12(%ebp), %edx
addl %edx, %ecx
movl %ecx, -16(%ebp)

Guest: ARM 7 Host: Intel x86

Dynamic Binary Translation

● Change one type of instructions to another
● Example: for a = 5 and b = 6, compute c = a + b

mov r3, #5
str r3, [fp, #-8]
mov r3, #6
str r3, [fp, #-12]
ldr r2, [fp, #-8]
ldr r3, [fp, #-12]
add r3, r2, r3
str r3, [fp, #-16]

movl $0, -4(%ebp)
movl $5, -8(%ebp)
movl $6, -12(%ebp)
movl -8(%ebp), %ecx
movl -12(%ebp), %edx
addl %edx, %ecx
movl %ecx, -16(%ebp)

Guest: ARM 7 Host: Intel x86

Pros Cons

● Applicable for most architectures
● No special hardware support needed

● Typically very high overhead

Dynamic Binary Translation

● Change one type of instructions to another
● Example: for a = 5 and b = 6, compute c = a + b

mov r3, #5
str r3, [fp, #-8]
mov r3, #6
str r3, [fp, #-12]
ldr r2, [fp, #-8]
ldr r3, [fp, #-12]
add r3, r2, r3
str r3, [fp, #-16]

movl $0, -4(%ebp)
movl $5, -8(%ebp)
movl $6, -12(%ebp)
movl -8(%ebp), %ecx
movl -12(%ebp), %edx
addl %edx, %ecx
movl %ecx, -16(%ebp)

Guest: ARM 7 Host: Intel x86

Pros Cons

● Applicable for most architectures
● No special hardware support needed

● Typically very high overhead

Can also translate same-architecture instructions into different ones!

Example: JSLinux -- a VM in your browser!

Chrome on OS X...

… running Windows 2000 ...

… running Firefox!

Virtual CPU

● What architecture can the Virtual CPUs have?

Different than the Physical CPUs Same as Physical CPUs

Example
scenario

e.g., develop code for other
devices: ARM, PlayStation, etc.

e.g., run different OSes on same
machine without needing to restart

Mechanism
used Dynamic Binary Translation Limited Direct Execution

Reminder: OS / Application layering

● Unprivileged instructions → run in user-mode (e.g., add, sub, div, etc.)
● Privileged instructions → run in kernel-mode (e.g., lidt - change interrupt behavior)

Reminder: OS / Application layering

Application executes unprivileged instructions directly on the CPU

VMM as another layer of indirection

VMM as another layer of indirection

VMM provides same HW/SW interface (in this case x86 instruction set)
→ it still just works™

VMM → multiplexing of the CPU

Direct Execution

Direct Execution Unprivileged
instructions →

direct execution
(fast)

Direct Execution Unprivileged
instructions →

direct execution
(fast)

What about the
privileged

instructions?

Limited Direct Execution Unprivileged
instructions →

direct execution
(fast)

Privileged
instructions →

treated separately

Handling Privileged Instructions

● Solution 1: Dynamic Binary Translation
○ Insight: translate privileged instruction to an unprivileged one

● VM thinks you are executing its instruction …
○ … in fact you are executing something else

● No hardware support needed!

● High overhead → very slow

Trap-and-Emulate

● Run kernel code in user-mode → privileged instructions fault → TRAP
● VMM installs a new fault handler:

TRAP

Code running
is from a VM? Let host handler deal with itVMM emulates outcome of

privileged instructions for VM
NOYES

Trap-and-Emulate

● Run kernel code in user-mode → privileged instructions fault → TRAP
● VMM installs a new fault handler:

TRAP

Code running
is from a VM? Let host handler deal with itVMM emulates outcome of

privileged instructions for VM
NOYES

Everything
still works™!

Trap-and-Emulate

● Run kernel code in user-mode → privileged instructions fault → TRAP
● VMM installs a new fault handler:

TRAP

Code running
is from a VM? Let host handler deal with itVMM emulates outcome of

privileged instructions for VM
NOYES

Everything
still works™!

… but what if some
privileged instructions

don’t TRAP?

Popek/Goldberg Theorem (1974)

● Privileged instruction → runs only in kernel-mode
● Sensitive instruction → behaves differently in kernel-mode vs. user-mode

○ aka... doesn’t trap!

● VMM exists for an architecture iff {sensitive} ⊆ {privileged}.

● Rephrased: trap-and-emulate works only if all sensitive instructions are privileged.

Is x86 a virtualizable architecture?

● 32-bit x86 architecture
○ 4 protection rings
○ Segments and paging support
○ Ring 1 and 2 are never used

● 17 sensitive, unprivileged instructions ☹

● VMM still possible, but more complicated

Intel VT-x and AMD-v (2005)

● Available on all current 64-bit processors
○ Duplicate the 4 protection rings
○ Meets Popek/Goldberg criteria

● Used by all virtualization solutions today

Virtual “Physical Memory”

Virtualizing physical memory

Virtualizing physical memory

Reminder - TLB (Translation Lookaside Buffer) without VMM
● stores mapping between virtual addresses (VA) and physical addresses (PA)

● TLB can be implemented in software or hardware
○ Software → OS manages TLB explicitly
○ Hardware → OS manages only page tables

Virtualizing physical memory

What is given:

● VA* → gPA (managed by the guest OS)
● gPA → hPA (managed by the VMM)

What is needed:

● VA* → hPA

Challenge:

● How to insert VA → hPA mappings into TLB ?

* Only the VAs in the guest are useful. We
do not consider hVAs (for the host).

Virtualizing physical memory

What is given:

● VA* → gPA (managed by the guest OS)
● gPA → hPA (managed by the VMM)

What is needed:

● VA* → hPA

Challenge:

● How to insert VA → hPA mappings into TLB ?

* Only the VAs in the guest are useful. We
do not consider hVAs (for the host).

N.B.: There is only one physical TLB for the
whole physical machine and for all the VMs!

Solution 1: Shadow Page Tables

PTBR

PTBR

Solution 1: Shadow Page Tables

PTBR

PTBR

Keep 2 copies of the guests’ PTs:
● Real copy: contains VA→ hPA

○ hardware TLB loads this
○ guest doesn’t know about it

● Shadow copy: contains VA→ gPA
○ guest updates this copy

VMM updates real copy from shadow copy

Solution 1: Shadow Page Tables

PTBR

PTBR

Keep 2 copies of the guests’ PTs:
● Real copy: contains VA→ hPA

○ hardware TLB loads this
○ guest doesn’t know about it

● Shadow copy: contains VA→ gPA
○ guest updates this copy

VMM updates real copy from shadow copy

Solution is implemented in software→
no need for additional hardware

support!

Solution 2: Nested Page Tables

● Requires hardware support
● Intel calls it “Extended Page Tables”
● AMD calls it “Rapid Virtualization Indexing”

… so how does it work?

Reminder – Multi-level Page Tables

● Example: two-level PT

● Successive lookup phases:
○ PTBR → 1st PT
○ 1st PT entry → 2nd PT
○ 2nd PT entry → page

PTBR

Reminder – Multi-level Page Tables

● Example: two-level PT

● Successive lookup phases:
○ PTBR → 1st PT
○ 1st PT entry → 2nd PT
○ 2nd PT entry → page

PTBR

We keep 2 PTs:
● VA→ gPA (identified by gPTBR – per-VM)

● gPA → hPA (identified by hPTBR – per-machine)

We can perform PT walks in parallel !
(e.g., no need to wait for VA→ gPA to finish)

Solution 2: Nested Page Tables

TLB filling algorithm:
1. VA → gPA (1st level lookup)
2. gPA → hPA (1st level lookup)
3. VA → gPA (2nd level lookup)
4. gPA → hPA (2nd level lookup)
5. Return hPA to OS
6. Fill TLB with gVA → hPA

Steps 2 & 3 execute in parallel!

Solution 2: Nested Page Tables

TLB filling algorithm:
1. VA → gPA (1st level lookup)
2. gPA → hPA (1st level lookup)
3. VA → gPA (2nd level lookup)
4. gPA → hPA (2nd level lookup)
5. Return hPA to OS
6. Fill TLB with gVA → hPA

Steps 2 & 3 execute in parallel!

More PT levels → Higher parallelization of lookups → Lower overhead

e.g., Intel and AMD processors typically use 4-level PTs

Summary

Summary

Virtualization: “virtual” abstraction layer

VM: virtualizing an entire computer

VMM: how VMs are implemented

Popek-Goldberg: sufficient and necessary conditions to build a VMM

Direct execution and address translation in VMMs

A bit of history…

Very popular in the old days (60’s, 70’s)
• Hardware was expensive
• Operating systems were primitive

Out of favor for two decades (80's, 90's)
• Hardware became cheap
• Operating systems became powerful (UNIX, ...)

Back in favor since 2000
• Because the operating system is special (compatibility)
• Because hardware exceeds the capacity of a user (cloud)
• Because it is easier to provision a virtual machine than a physical machine
• ...

VMs and Virtualization are the future!

• Cloud computing is the new paradigm for IT

• Trend is now going towards serverless computing

• Enterprise IT is moving to desktop virtualization and converged infrastructure

• Docker has changed the way we do software development and delivery

• Many challenges ahead
• Mobile virtualization
• Virtualized blockchains
• …

