
Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 10

Policy Gradient Methods

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Actor-Critic in the Brain

6. Application: Rat navigation

7. Model-based versus Model-free

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 12

Reinforcement Learning and the Brain

Objectives for today:

- Actor-critic

- three-factor learning rules can be implemented by the brain

- eligibility traces as ‘candidate parameter updates’

- the dopamine signal has signature of the TD error

- model-based versus model-free

Today we finish at around 12:45

Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Chapter: 15

(1) Fremaux, Sprekeler, Gerstner (2013) Reinforcement learning

using a continuous-time actor-critic framework with spiking neurons

PLOS Computational Biol. doi:10.1371/journal.pcbi.1003024

(2) Fremaux, Gerstner (2016) Neuromodulated spike-timing-dependent plasticity,

and theory of three-factor learning rules Frontiers in neural circuits 9, 85

(3) J Gläscher, N Daw, P Dayan, JP O'Doherty (2010) States versus rewards:

dissociable neural prediction error signals underlying model-based and model-free

reinforcement learning, Neuron 66 (4), 585-595

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

1. Review Policy Gradient

Aim:

update the parameters q

of the policy p(a|s,q)

1. Review Policy Gradient

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]D𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

(previous slide)

We consider a single episode that started in state 𝑠𝑡 with action 𝑎𝑡 and ends after

several steps in the terminal state 𝑠𝑒𝑛𝑑
The result of the calculation gives an update rule for each of the parameters.

The update of the parameter 𝜃𝑗 contains several terms.

(i) the first term is proportional to the total accumulated (discounted) reward, also

called return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡

(ii) the second term is proportional to gamma times the total accumulated

(discounted) reward but starting in state 𝑠𝑡+1
(iii) the third term is proportional to gamma-squared times the total accumulated

(discounted) reward but starting in state 𝑠𝑡+2
(iv)

We can think of this update as one update step for one episode. Analogous to the

terminology last week, Sutton and Barto call this the Monte-Carlo update for one

episode.

The log-likelihood trick was explained last week. Since this is a sampling based

approach (1 episode=1 sample) each of the terms is proportional to ln p,

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 10

Policy Gradient Methods

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

(previous slide)

As discussed last week and in the exercise session, subtracting the mean of a

variable helps to stabilize the algorithm.

There are two different ways to do this.

(i) Subtract the mean return (=value V) in a multistep-horizon algorithm (or the

mean reward in a one step-horizon algorithm).

This is what we consider here in this section

(ii) Subtract mean expected reward PER TIME STEP (related to the delta-error) in

a multi-step horizon algorithm.

This is what we will consider in section 3 under the term Actor-Critic.

2. Subtract a baseline

we derived this online gradient rule for multi-step horizon

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]D𝜃𝑗 ∝

But then this rule is also an online gradient rule

with the same expectation

(because a baseline shift drops out if we take the gradient)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝒃(𝒔𝒕)]

𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]D𝜃𝑗 ∝

(previous slide)

Please remember that the full update rule for the parameter 𝜃𝑗
in a multi-step episode contains several terms of this form; here only the first of

these terms is shown.

Similar to the case of the one-step horizon, we can subtract a bias b from the

return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 without changing the location of the maximum of the total expected

return.

Moreover, this bias 𝑏(𝑠𝑡) can itself depend on the state 𝑠𝑡.
Thus the update rule now has terms

D𝜃𝑗 ∝ [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]

+g[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1 −𝑏(𝑠𝑡+1)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃]

+g2[𝑅𝑠𝑡+2→𝑠𝑒𝑛𝑑
𝑎𝑡+2 − 𝑏(𝑠𝑡+2)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+2 𝑠𝑡+2, 𝜃]

+ …

2. subtract a reward baseline

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]+…D𝜃𝑗 ∝

- The bias b can depend on state s

- Good choice is b =‘mean of [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡]’

 take 𝑏 𝑠𝑡 = 𝑉 𝑠𝑡
 learn value function V(s)

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

(previous slide

Is there a choice of the bias 𝑏 𝑠𝑡 that is particularly good?

One attractive choice is to take the bias equal to the expectation (or empirical

mean). The logic is that if you take an action that gives more accumulated

discounted reward than your empirical mean in the past, then this action was good

and should be reinforced.

If you take an action that gives less accumulated discounted reward than your

empirical mean in the past, then this action was not good and should be

weakened.

But what is the expected discounted accumulated reward? This is, by definition,

exactly the value of the state. Hence a good choice is to subtract the V-value.

And here is where finally the idea of Bellman equation and TD learning comes in

through the backdoor: we can learn the V-value, and then use it as a bias in policy

gradient.

2. Review: Deep reinforcement learning: alpha-zero

Network for choosing action

2e output for value of state:

input

output

action:
Advance king

learning:

 change connections

aims:

- learn value V(s) of position

- learn action policy to win

Learning signal:

- h[actual Return - V(s)]

𝑉 𝑠

(previous slide)

Very schematically is this one of the ideas of deep reinforcement learning.

1) We construct a deep network with multiple layers. We use the output units for

action choice and optimize the parameters via policy gradient.

2) We have a further output unit to estimate the V-value, and use it as a bias.

3) Update with

The model of the V-value can share some units with the model of the actions …

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]+…

Actions:

-Learned by

Policy gradient

- Uses V(𝒙) as baseline

Value function:

- Estimated by Monte-Carlo

-provides baseline b=V(𝒙)
for action learning

V(𝒙)

𝒙 𝒙

2. Review: Learning two Neural Networks: actor and value

𝒙 = states from

episode:

𝑠𝑡, 𝑠𝑡+1, 𝑠𝑡+2,

(previous slide)

In the latter case we have two networks:

The actor network learns a first set of parameters, called 𝜃 in the algorithm of

Sutton and Barto.

The value network learns a second set of parameters, with the label w .

The value b(𝑥 = 𝑠𝑡+𝑛) =V(𝒙) is the estimated total accumulated discounted

reward of an episode starting at 𝑥 = 𝑠𝑡+𝑛

The weights of the network implementing V(x) can be learned by Monte-Carlo

sampling the return: you go from state s until the end, accumulate rewards, and

calculate the average over all episodes that have started from (or transited

through) the same state s. (See Backup-diagrams and Monte-Carlo of week 9).

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 11

Policy Gradient Methods

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

3. Actor-Critic

(previous slide)

We continue with the idea of two different type of outputs:

A set of actions ak , and a value V.

However, for the estimation of the V-value we now use the ‘bootstrapping’

provided by TD algorithm (see last week) rather than the simple Monte-Carlo

estimation of the (discounted) accumulated rewards in a single episode.

The networks structure remains the same as before:

An actor (action network) and a critic (value function).

Sutton and Barto reserve the term ‘actor-critic’ to the network where V-values are

learned with a TD algorithm.

However, other people would also call the network that we saw in section 6 as an

actor-critic network and the one that we study now is then called ‘advantage actor

critic’.

3. Actor-Critic = ‘REINFORCE’ with TD bootstrapping

advance push

left

actions

value

TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 −𝑉 𝑠𝑡]d = h

𝑉 𝑠

- Estimate V(s)
- learn via TD error

(previous slide)

Bottom right: Recall from the TD algorithms that the updates of the weights are

proportional to the TD error d

In the actor-critic algorithm the TD error is now also used as the learning signal

for the policy gradient:

TD error: The current reward 𝑟𝑡 at time step t
is compared with the expected reward for this time step [𝑉 𝑠𝑡 − 𝛾𝑉 𝑠𝑡]

[Note the difference to the algorithm in section 6:

There the total accumulated discounted reward 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡

was compared with V(𝑠𝑡)]

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

3. ACTOR-CRITIC (versus REINFORCE with baseline]

Aim of actor:

update the parameters q

of the policy p(a|s,q)

𝑉 𝑠𝑡

𝑉 𝑠𝑡+1

𝑟𝑡

update proportional toTD-error

d = h

𝑉 𝑠

[𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡]

Aim of critic: estimate V using TD learning

(previous slide)

For a comparison with start with actor-critic:

In both algorithms (actor critic and REINFORCE with baseline), the actor learns

actions via policy gradient.

In the actor-critic algorithm the critic learns the V-value via bootstrap TD-learning

(see week 9).

In the actor-critic algorithm the TD error is used as the learning signal for the

policy gradient.

The backup diagram is short:

action

state

state

𝑠

𝑠′

a1 a2 a3

𝑠"

a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

3. REINFORCE with baseline (vs actor-critic)

1. Aim of actor in REINFORCE

update the parameters q

of the policy p(a|s,q)

𝑉 𝑠𝑡

𝑉 𝑠𝑡+1

𝑟𝑡

2. update proportional to

RETURN-error:

𝑉 𝑠

3. Aim of critic: estimate V using TD learning

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

(previous slide)

We continue the comparison with REINFORCE with baseline.

In both algorithms (actor critic and REINFORCE with baseline), the actor learns

actions via policy gradient.

In the REINFORCE algorithm the baseline estimator learns the

V-value via Monte-Carlo sampling of full episodes (see week 9).

In the REINFOCE algorithm the mismatch between actual return

and estimated V-value (‘RETURN error’) is used as

the learning signal for the policy gradient.

The Backup diagram is long:

action

state

state

action

action

end of trial

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 11

Deep Reinforcement Learning

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

3. Actor-Critic

4. Eligibility traces for policy gradient

(previous slide)

Two weeks ago we discussed eligibility traces.

It turns out that policy gradient algorithm have an intimate link with eligibility

traces. In fact, eligibility traces arise naturally for policy gradient algorithms.

In standard policy gradient (e.g., REINFORCE with baseline) we need to run each

time until the end of the episode before we have the information necessary to

update the weights.

The advantage of eligibility traces is that updates can be done truly online (similar

to the actor critic with bootstrapping).

4. Actor-critic with eligibility traces

- Online algorithm

- Actor learns by policy gradient

- Critic learns by TD-learning

- Update eligibility traces while moving

- For each parameter, one eligibility trace

- Update weights proportional to TD-delta

(previous slide)

The idea of policy gradient is combined with the notion of eligibility traces that we

had seen two weeks ago.

The result is an algorithm that is truly online: you do not have to wait until the end

of an episode to start with the updates.

4. Review: Eligibility Traces

Idea:

- keep memory of previous state-action pairs

- memory decays over time

- Update an eligibility trace for state-action pair

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 + 1 if action a chosen in state s

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎l decay of all traces

- update all Q-values:

DQ(s,a)=h [r-(Q(s,a)-Q(s’,a’))] e(s,a)

Here: SARSA with eligibility trace

TD-delta

(previous slide)

This the SARSA algorithm with eligibility traces that we had seen two weeks ago.

We had derived this algo for a tabular Q-learning model as well as for a network

with basis functions and linear read-out units for the Q-values Q(s,a).

In the latter case it was not the Q value itself that had an eligibility trace, but the

weights (parameters) that contributed to that Q-value.

We now use the same idea.

4. Eligibility Traces

Idea:

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

- update all parameters of ‘actor’ network:

D𝑤𝑘=h [r-(V(𝑠𝑡)-g V(𝑠𝑡+1))] 𝑧𝑘

Here: policy gradient with eligibility trace

TD-delta

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑘)]

(previous slide)

Eligibility traces can be generalized to deep networks.

Here we focus on the actor network.

For each parameter 𝑤𝑘 of the network we have a shadow parameter 𝑧𝑘 : the

eligibility trace.

Eligibility traces decay at each time step (l <1) and are updated proportional to the

derivative of the log-policy. Interpretation:

The update of the eligibility trace can be seen as a ‘candidate parameter update’ –

but it is not yet the ‘real’ update of the actual parameters.

The update of the actual parameters 𝑤𝑘 of the actor network are proportional to

the eligibility trace 𝑧𝑘 and the TD-error

Parameters are updated at each time step of the episode (as opposed to Monte-

Carlo where one has to wait for the end of the episode). Hence ‘true online’.

𝛿 = [𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 −𝑉 𝑠𝑡]

= [𝑟𝑡 − [𝑉 𝑠𝑡 − 𝛾𝑉 𝑠𝑡+1]]

(previous slide) NETWORK for Algorithm in Pseudo-code by Sutton and

Barto.

The actor network has parameters q

Eligibility traces of actor have parameters z.

The critic network has parameters w.
Eligibility traces of critic have parameters z.

Actor chooses actions with policy p

V(𝒙)

𝑆 𝑆

actor output

q,

TD

w, z 𝑧
wq

(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters q

While the critic network has parameters w.

The actor network is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Candidate updates are implemented as eligibility traces z.

4. Actor-Critic with Eligibility traces bootstrapping

(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters q

While the critic network has parameters w

The actor network is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Note that Sutton and Barto include a discount factor g but in the exercises we will see
that the discount factor can (to an excellent approximation) be absorbed into l

V(𝒙)

𝑆 𝑆

actor output

q

TD

w

4. Quiz: Policy Gradient and Reinforcement learning

Your friend has followed over the weekend a tutorial in

reinforcement learning and claims the following. Is he right?

[] Even some policy gradient algorithms use V-values

[] V-values for policy gradient are calculated in a separate

network (but some parameters can be shared with the actor network)

[] The actor-critic network has basically the same

architecture as REINFORCE with baseline

[] While actor-critic uses ideas from TD learning,

REINFORCE with baseline uses Markov estimates of V-values

[] Eligibility traces are ‘shadow’ variables for each parameter

[] Eligibility traces appear naturally in policy gradient algos.

[x]

[x]

[x]

[x]

[x]

[x]

(your comments)

The proof of the last item is what we will sketch now – proof in the exercises.

4. Review from week 10 .Policy Gradient over multiple time steps

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]D𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

Previous slide.

This is a repetition of an earlier slide.

4. Policy Gradient over multiple time steps (Exercis2)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]D𝜃𝑗 ∝

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

Step 1: Rewrite 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 = 𝑟𝑡+𝑛+𝛾𝑟𝑡+1 + 𝛾2 𝑟𝑡+2+𝛾

3 𝑟𝑡+3

Step 2: Use same update formula, but for state 𝑠𝑡+1

Step 3: Reorder terms according to 𝑟𝑡+𝑛

Previous slide.

This is a repetition of the ideas for the exercise.

4. Policy Gradient for eligibility traces (Exercise)

Step 4: Introduce ‘shadow variables’ for eligibility trace

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑘)]

Step 5: Rewrite update rule for parameters with eligibility trace

D𝑤𝑘=h 𝑟𝑡 𝑧𝑘

Previous slide.

This is a repetition of the exercise

4. Eligibility traces from Policy Gradient (Exercise)

1) Update eligibility trace

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑘)]

2) update parameters

D𝑤𝑘=h 𝑟𝑡 𝑧𝑘

Run trial. At each time step, observe state, action, reward

Previous slide.

And these two updates can now be mapped to the algorithm of Sutton and Barto

that we saw a few slides before.

Conclusion: eligibility traces are a compact form for rewriting a policy gradient

algorithm.

[There are minor differences at the ‘bounderies’ that is, the beginning and end of

each episode – but these do not matter].

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 11

Policy Gradient Methods

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Actor-Critic in the Brain

(your comments)

Reinforcement learning algorithms are a class of ‘bio-inspired’ algorithms. But

have they something to do with the brain?

5. Review: Actor-Critic = ‘REINFORCE’ with TD signal

advance push

left

actions

value

TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠]d = h

𝑉 𝑠

- Estimate V(s)
- learn via TD error

Where is the supervisor?

Where is the labeled data?

Review: Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence

Questions for this section:

- does the brain implement reinforcement learning algorithms?

- Can the brain implement an actor-critic structure?

5. Actor-Critic in the brain?

(your comments)

5. Review: Policy Gradient: Comparison with Biology

Stimulusparameter = weight wj

Weight vector turns in direction of input

Three factors: reward post pre

postsynaptic factor is

‘activity – expected activity’

pre

post
ij

reward

𝑅 𝑦, 𝑥 [𝑦𝑖 − 𝑦𝑖]𝑥𝑗D𝑤𝑖𝑗 =h

𝑅 𝑦, 𝑥 [𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

Previous slide.

Reinforcement Learning includes a set of very powerful algorithm – as we

have seen in previous lecture.

For today the big question is:

Is the structure of the brain suited to implement reinforcement learning

algorithms?

If so which one? Q-learning or SARSA? Policy gradient?

Is the brain architecture compatible with an actor-critic structure?

These are the questions we will address in the following.

And to do so, we have to first get a big of background information on brain

anatomy.

5. Review from week8: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to

get out of the cold water)

Time to find platform

10 trials

Morris Water Maze

Previous slide.

Behvioral experiment in the Morris Water Maze.

The water is milky so that the platform is not visible.

After a few trials the rat swims directly to the platform.

Platform is like a reward because the rat gets out of the cold water.

5. Example: Linear activation model with softmax policy

x

𝜋 𝑎𝑗 = 1 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[

𝑘

𝑤𝑗𝑘 𝑦𝑘]

𝑦𝑘 = 𝑓(𝑥 − 𝑥𝑘)

𝑥𝑘𝑥1

f =basis function

parameters

reward

𝑎1 𝑎3

left:

𝑎1=1

right:

𝑎3=1

𝑤11

stay:

𝑎2=1

Previous slide.

I now want to show that reinforcement learning with policy gradient gives rise to

three-factor learning rules.

Suppose the agent moves on a linear track.

There are three possible actions: left, right, or stay.

The policy is given by the softmax function. The total drive of the action neurons

is a linear function of the activity y of the hidden neurons which in turn depends

on the input x. The activity of hidden neuron k is f(x-x_k). The basis function f

could for example be a Gaussian function with center at x_k.

5. Example: Linear activation model with softmax policy

x𝑥𝑘𝑥1

D𝑤𝑙𝑘=h 𝑟𝑡 𝑧𝑙𝑘

2) update weights

1) Update eligibility trace (for each weight)

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 l

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎𝑖|𝑥)]

𝑎1 𝑎3

left: right:

𝑤11

stay:

Exercise 1 now

8 minutes

Previous slide.

Now we apply the update rule resulting from policy gradient with eligibility traces

descent (copy from earlier slide).

This is the in-class exercise (Exercise 1 of this week).

5. Example: Linear activation model with softmax policy

x

𝑎1 𝑎3

left:

𝑎1=1

right:

𝑎3=1

𝑥𝑘𝑥1

D𝑤𝑙𝑘= h 𝑟𝑡 𝑧𝑙𝑘

2) update weights

1) Update eligibility trace

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 l

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 + 𝑦𝑘 𝑥 [𝑎𝑖 −𝜋 𝑎𝑖 𝑥]

stay:

𝑎2=1
𝑎𝑖 ∈ {0,1}0) Choose action

reward

Previous slide.

This is the result of the in-class exercise (Exercise 1 of this week).

Importantly, the update of the eligibility trace is a local learning rule that depends

on a presynaptic factor and a postsynaptic factor.

5. Summary: 3-factor rules from Policy gradient

- Policy gradient with one hidden layer and linear

softmax readout yields a 3-factor rule

- Eligibility trace is set by joint activity of presynaptic

and postsynaptic neuron

- Update happens proportional to reward and

eligibility trace

- The presynaptic neuron represents the state

- The postsynaptic neuron the action

- True online rule

 could be implemented in biology

 can also be implemented in parallel asynchr. hardware

Previous slide.

Summary: A policy gradient algorithm in a network where the output layer has a

linear drive with softmax output leads to a three-factor learning rule for the

connections between neurons in the hidden layer and the output.

These three factor learning rules are important because they are completely

asynchronous, local, and online and could therefore be implemented in biology or

parallel hardware.

3. Recent experiments for Three-factor rules

Neuromodulators for reward, interestingness, surprise;

attention; novelty

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

Step 3: delayed neuro-Modulator:

eligibility trace translated into weight change

Previous slide.

three-factor learning rules are a theoretical concept.

But are there any experiments? Only quite recently, a few experimental results

were published that directly address this question.

Yagishita et al. 2014

5. Three-factor rules in striatum: eligibility trace and delayed Da

-Dopamine can come with a delay of 0 -1s

-Long-Term stability over at least 50 min.

In striatum medial spiny cells, stimulation of

presynaptic glutamatergic fibers (green) followed

by three postsynaptic action potentials (STDP

with pre-post-post-post at +10ms) repeated 10

times at 10Hz yields LTP if dopamine (DA) fibers

are stimulated during the presentation (d < 0) or

shortly afterward (d = 0s or d = 1s) but not if

dopamine is given with a delay d = 4s; redrawn

after Fig. 1 of (Yagishita et al., 2014), with

delay d defined as time since end of STDP

protocol

Yagishita et al. 2014

5. Three-factor rules in striatum: eligibility trace and delayed Da

-Dopamine can come with a delay of 0-1s

-Long-Term stability over at least 50 min.

5. Neuromodulators as Third factor

Three factors are needed for synaptic changes:

- Presynaptic factor = activity of presynaptic neuron

- Postsynaptic factor = activity of postsynaptic neuron

- Third factor = Neuromodulator such as dopamine

Presynaptic and postsynaptic factor ‘select’ the synapse.

 a small subset of synapses becomes ‘eligible’ for change.

The ‘Third factor’ is a nearly global signal

 broadcast signal, potentially received by all synapses.

Synapses need all three factors for change

Previous slide.

The third factor in a three-factor learning rule should be the global factor signaling

success or reward. We said that the third factor could be a neuromodulator such

as dopamine.

Review from week 8: Reward information

Neuromodulator dopamine: - is nearly globally broadcasted

- signals reward minus

expected reward

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’

Previous slide. Dopamine neurons send dopamine signals to many neurons and

synapses in parallel in a broadcast like fashion.

5. Dopamine as Third factor

Conditioning:

red light 1sreward

CS:

Conditioning

Stimulus

Sutton book, reprinted from W. Schultz

5. Dopamine as Third factor
This is now the famous experiment of W. Schultz.

In reality the CS was not a red light, but that does not matter

5. Summary: Dopamine as Third factor

- Dopamine signals ‘reward minus expected reward’

- Dopamine signals an ‘event that predicts a reward’

- Dopamine signals approximately the TD-error

DA(t) = [r(t)-(V(s)-g V(s’))]

TD-delta

Previous slide.

The paper of W. Schultz has related the dopamine signal to some basic aspects

of Temporal difference Learning. The Dopamine signal is similar to the TD error.

6. Eligibility Traces with TD in Actor-Critic

Idea:

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

- update all parameters:

D𝑤𝑘=h [r-(V(s)-g V(s’))] 𝑧𝑘

 policy gradient with eligibility trace and TD error

TD-delta

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑘)]

Previous slide.

Review of algorithm with actor-critic architecture and policy gradient with eligibility

traces and TD.

6. Summary: Eligibility Traces with TD in Actor-Critic

Three-factor rules:

Presynaptic and postsynaptic factor ‘select’ the synapse.

 a small subset of synapses becomes ‘eligible’ for change.

The ‘Third factor’ is a nearly global broadcast signal

 potentially received by all synapses.

Synapses need all three factors for change

The ‘Third factor’ can be the Dopamine-like TD signal

Need actor-critic architecture to calculate 𝛾𝑉 𝑠′ − 𝑉 𝑠
Dopamine signals [𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠]

Previous slide.

The three factor rule, dopamine, TD signals, value functions now all fit together.

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 11

Policy Gradient Methods

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Actor-Critic in the Brain

6. Application: Rat navigation

Previous slide.

We said that the three factor rule, dopamine, TD signals, value functions now all

fit together. Let’s apply this to the problem of navigation.

7. Coarse Brain Anatomy: hippocampus

fig: Wikipedia

Henry Gray (1918) Anatomy of the Human Body

Hippocampus

- Sits below/part of temporal cortex

- Involved in memory

- Involved in spatial memory

Spatial memory:

knowing where you are,

knowing how to navigate in an environment

https://en.wikipedia.org/wiki/Henry_Gray

Previous slide.

the problem of navigation needs the spatical representation of the hippocampus.

rat brain

CA1

CA3

DG

pyramidal cells

soma

axon

dendrites

synapses
electrodePlace fields

7. Place cells in rat hippocampus

Previous slide.

the hippocampus of rodents (rats or mice) looks somewhat different to that of

humans. Importantly, cells in hippocampus of rodents respond only in a small

region of the environment. For this reason they are called place cells. The small

region is called the place field of the cell.

Main property: encoding the animal’s location

place

field

6. Hippocampal place cells

Previous slide.

Left: experimentally measured place field of a single cell in hippocampus.

Right: computer animation of place field

6. Review of Morris Water maze

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to

get out of the cold water)

Time to find platform

10 trials

Morris Water Maze

Previous slide.

Behvioral experiment in the Morris Water Maze.

The water is milky so that the platform is not visible.

After a few trials the rat swims directly to the platform.

Platform is like a reward because the rat gets out of the cold water.

6. Maze Navigation with TD in Actor-Critic

Fremaux et al. (2013)

6. Critic implements Value

Fremaux et al. (2013)

7. Critic

Fremaux et al. (2013)

The task of the critic (previous slide)

B: Linear track task. The linear track experiment is a simplified version of the

standard maze task. The actor’s choice is forced to

the correct direction with constant velocity (left), while the critic learns to

represent value (right).

C: Value function learning by the critic. Each colored

trace shows the value function represented by the critic neurons activity

against time in the N~20 first simulation trials (from dark blue in trial 1 to

dark red in trial 20), with t~tr corresponding to the time of the reward

delivery. The black line shows an average over trials 30 to 50, after learning

converged. The gray dashed line shows the theoretical value function.

D: TD signal d(t) corresponding to the simulation in C. The gray dashed line

shows the reward time course r(t).

6. Ring of Actor neurons implements policy
Note: no need to formally define a softmax function

Fremaux et al. (2013)

- Local excitation

- Long-range inhibition

- Not a formal softmax

Ring of actor neurons

Fremaux et al. (2013)

Actor neurons (previous slide).

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory,

red: inhibitory) embodies the agent’s policy (top).

B: Lateral connectivity. Each neuron codes for a distinct motion direction.

Neurons form excitatory synapses to similarly tuned neurons and

inhibitory synapses to other neurons.

C: Activity of actor neurons during an example trial. The activity of the

neurons (vertical axis) is shown as a color map against time (horizontal

axis). The lateral connectivity ensures that there is a single bump of activity

at every moment in time. The black line shows the direction of motion (right

axis; arrows in panel B) chosen as a result of the neural activity.

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.

.

6. Maze Navigation with TD in Actor-Critic with spiking neurons

R-max:

Policy gradient without

the critic. The goal was

never found within 50s.

early trial

Late trial

value

map
TD-STDP:

After 25 trials, the goal

was found within 20s.

Maze navigation learning task.

A: The maze consists of a square enclosure, with a circular goal area

(green) in the center. A U-shaped obstacle (red) makes the task harder by

forcing turns on trajectories from three out of the four possible starting

locations (crosses).

B: Color-coded trajectories of an example TD-LTP agent during the first 75

simulated trials. Early trials (blue) are spent exploring the maze and the

obstacles, while later trials (green to red) exploit stereotypical behavior.

C: Value map (color map) and policy (vector field) represented by the

synaptic weights of the agent of panel B after 2000s simulated seconds.

D: Goal reaching latency of agents using different learning rules. Latencies

of N~100 simulated agents per learning rule. The solid lines shows the

median shaded area represents the 25th to 75th percentiles. The R-max

agent were simulated without a critic and enters times-out after 50 seconds.

Fremaux et al. (2013)

7. Maze Navigation with TD in Actor-Critic with spiking neurons

6. TD in Actor-Critic with spiking neurons

- Learns in a few trials (assuming good representation)

- Works in continuous time.

- No artificial ‘events’ or ‘time steps’

- Works with spiking neurons

- Works in continuous space and for continuous actions

- Uses a biologically plausible 3-factor learning rule

- Critic implements value function

- TD signal calculated by critic

- Actor neurons interact via synaptic connections

- No need for algorithmic ‘softmax’

Fremaux et al. (2013)

Previous slide.

Summary of findings

6. Summary

Several aspects of TD learning in an actor-critic framework

can be mapped to the brain:

Sensory representation: Cortex and Hippocampus

Actor : Dorsal Striatum

Critic : Ventral Striatum (nucleus accumbens)

TD-signal: Dopamine

Learning in a few trials (not millions!) possible, if the sensory

presentation is well adapted to the task

Previous slide. Summary

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 10

Policy Gradient Methods

1. Review Policy gradient

2. Review Subtracting the mean via the value

function

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Actor-Critic in the Brain

6. Application: Rat navigation

7. Model-based versus Model-free

Previous slide.

Final point: are we looking at the right type of RL algorithm?

7. Model-based versus Model-free

What happens in RL when

you shift the goal after

learning?

Previous slide.

Final point: are we looking at the right type of RL algorithm?

Imagine that the target location is shifted in the SAME environment.

What happens in RL when

you shift the goal after

learning?

 The value function has to

be re-learned from scratch.

agent learns ‘arrows’, but not

the lay-out of the environment:

Standard RL is ‘model-free’

7. Model-based versus Model-free Reinforcement Learning

Previous slide.

After a shift, the value function has to be relearned from scratch, because the RL

algorithm does not build a model of the world. We just learn ‘arrows’: what is the

next step (optimal next action), given the current state?

7. Model-based versus Model-free Reinforcement Learning

Definition:

Reinforcement learning is model-free, if the agent does

not learn a model of the environment.

Note: of course, the learned actions are always

implemented by some model, e.g., actor-critic.

Nevertheless, the term model-free is standard in the field.

Previous slide.

All standard RL algorithms that we have seen so far are ‘model free’.

7. Model-based versus Model-free Reinforcement Learning

Definition:

Reinforcement learning is model-based, if the agent does

also learn a model of the environment.

Examples: Model of the environment

- state s1 is a neighbor of state s17.

- if I take action a5 in state s7, I will go to s8.

- The distance from s5 to s15 is 10m.

- etc

Previous slide.

Examples of knowledge of the environment, that would be typical for model based

algorithm

7. Model-based versus Model-free Q-learning
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

Model-free:

the agent learns directly and only

the Q-values

Model-based:

the agent learns the Q-values

and also the transition probabilities

𝑃𝑠→𝑠′
𝑎1

Previous slide.

Let us go back to our ‘tree’. If the algorithm knows the transition probabilities, then

this means that it is a model-based algorithm

7. Model-based versus Model-free Reinforcement Learning

Advantages of Model-based RL:

- the agent can readapt if the reward-scheme changes

- the agent can explore potential future paths in its ‘mind’

 agent can plan an action path

- the agent can update Q-values in the background

 dream about action sequences

(run them in the model, not in reality)

Note: Implementations of Chess and Go are ‘model-based’,

because the agent knows the rules of the game and can

therefore plan an action path. It does not even have to learn

the ‘model’.

next slide.

Many modern applications of RL have a model-based component, because you

need to play a smaller number of ‘real’ action sequences …

And computer power for running things in the background is cheap.

Model based:

You know what state to

expect given current

state and action choice.

‘state prediction’

7. Model-based learning

Gläscher et al. 2010

State and Reward Prediction Task (previous slide)

(A) A specific experimental task was a sequential two-choice Markov decision task

in which all decision states are represented by fractal images. The task design

follows that of a binary decision tree. Each trial begins in the same state. Subjects

can choose between a left (L) or right (R) button press. With a certain probability

(0.7/0.3) they reach one of two subsequent states in which they can choose again

between a left or right action. Finally, they reach one of three outcome states

associated with different monetary rewards (0, 10cent, and 25cent).

Gläscher et al. 2010

7. Model-based Reinforcement learning

  







=





'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ pg

𝑠

𝑠′

a3𝑃𝑠→𝑠′
𝑎1

𝑠"
𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Gläscher et al. 2010

Model based RL allows to think about consequences of actions:

Where will I get a reward?

You just need to play the probabilities forward over the model graph: you simulate

an experience before taking the real actions.

Gläscher et al. 2010

Learning outcomes and Conclusions:

- policy gradient algorithms

 updates of parameter propto

- why subtract the mean reward?

 reduces noise of the online stochastic gradient

- actor-critic framework

 combines TD with policy gradient

- eligibility traces as ‘candidate parameter updates’

 true online algorithm, no need to wait for end of episode

- Differences of model-based vs model-free RL

 play out consequences in your mind by running the

state transition model wait

[𝑅] 𝑑
𝑑𝜃𝑗
ln[𝜋]

Learning outcome for Relation to Biology:

- three-factor learning rules can be implemented by the brain
 weight changes need presynaptic factor,

postsynaptic factor and a neuromodulator (3rd factor)

 actor-critic and other policy gradient methods

give rise to very similar three-factor rules

- eligibility traces as ‘candidate parameter updates’

 set by joint activation of pre- and postsynaptic factor

 decays over time

 transformed in weight update if dopamine signal comes

- the dopamine signal has signature of the TD error

 responds to reward minus expected reward

 responds to unexpected events that predict reward

