Fundamentals of Traffic Operations and Control

Nikolas Geroliminis

Exercise solutions
 Macroscopic fundamental diagram

Author: Işık İlber Sirmatel

a) We can visualize the dynamics of the city center as a single tank with water level representing the accumulation n, together with entering flows q_{1} and q_{2}, and exiting flow $G(n)$ (representing the network outflow as modelled by the macroscopic fundamental diagram (MFD)), as depicted in fig. 1. We can write the corresponding mass conservation equation as:

$$
\begin{equation*}
\frac{d n}{d t}=q_{1}+q_{2}-G(n) \tag{1}
\end{equation*}
$$

b) The given MFD is a piecewise affine function with three pieces (we call them $G_{1}(n), G_{2}(n), G_{3}(n)$, as in fig. 2) as follows:

$$
\begin{aligned}
& G_{1}(n)=\frac{q_{\max }}{n_{c r 1}} \cdot n=\frac{100 \mathrm{veh} / \mathrm{min}}{1000 \mathrm{veh}} \cdot n=0.1 \mathrm{~min}^{-1} \cdot n \\
& G_{2}(n)=q_{\max }=100 \mathrm{veh} / \mathrm{min} \\
& G_{3}(n)=\frac{q_{\max } \cdot\left(n_{\mathrm{jam}}-n\right)}{n_{\mathrm{jam}}-n_{c r 2}}=0.04 \mathrm{~min}^{-1} \cdot(4000 \mathrm{veh}-n) .
\end{aligned}
$$

Figure 1: Water tank representing city center dynamics.

Figure 2: Macroscopic fundamental diagram.

From 7am until n reaches $n_{c r 1}$, the piece $G_{1}(n)$ is active, that is:

$$
\frac{d n}{d t}=q_{1}+q_{2}-G_{1}(n)=150 \mathrm{veh} / \mathrm{min}-0.1 \mathrm{~min}^{-1} \cdot n
$$

We call the time n reaches $n_{c r 1}$ as t_{1} and calculate it as follows:

$$
\begin{aligned}
& \frac{d n}{d t}=150-0.1 \cdot n \\
& \frac{d n}{150-0.1 \cdot n}=d t \\
& \int_{n(0)}^{n_{c r 1}} \frac{d n}{150-0.1 \cdot n}=\int_{0}^{t_{1}} d t \\
& -\left.10 \cdot \ln (1500-n)\right|_{500} ^{1000}=\left.t\right|_{0} ^{t_{1}} \\
& -10 \cdot \ln (500)+10 \cdot \ln (1000)=t_{1} \\
& \Longrightarrow t_{1}=6.9315 \mathrm{~min} \approx 7 \mathrm{~min}
\end{aligned}
$$

From 7:07am until n reaches $n_{c r 2}$, the piece $G_{2}(n)$ is active, that is:

$$
\frac{d n}{d t}=q_{1}+q_{2}-G_{2}(n)=50 \mathrm{veh} / \mathrm{min}
$$

We call the time n reaches $n_{c r 2}$ as t_{2} and calculate it as follows:

$$
\begin{aligned}
& \frac{d n}{d t}=50 \\
& \frac{d n}{50}=d t \\
& \int_{n_{c r 1}}^{n_{c r 2}} \frac{d n}{50}=\int_{t_{1}}^{t_{2}} d t \\
& \left.\frac{1}{50} \cdot n\right|_{1000} ^{1500}=\left.t\right|_{7} ^{t_{2}} \\
& \frac{1}{50} \cdot(1500-1000)=t_{2}-7 \\
& \Longrightarrow t_{2}=17 \mathrm{~min} .
\end{aligned}
$$

From 7:17am on, the piece $G_{3}(n)$ is active, that is:

$$
\frac{d n}{d t}=q_{1}+q_{2}-G_{3}(n)=150 \mathrm{veh} / \mathrm{min}-0.04 \mathrm{~min}^{-1} \cdot(4000 \mathrm{veh}-n) .
$$

We call the accumulation at 7:30am as n^{*} and calculate it as follows:

$$
\begin{aligned}
& \frac{d n}{d t}=150-0.04 \cdot(4000-n) \\
& \frac{d n}{d t}=-10+0.04 \cdot n \\
& \frac{d n}{-10+0.04 \cdot n}=d t \\
& \int_{n_{c r 2}}^{n^{*}} \frac{d n}{-10+0.04 \cdot n}=\int_{t_{2}}^{30} d t \\
& \left.25 \cdot \ln (n-250)\right|_{n_{c r 2}} ^{n^{*}}=\left.t\right|_{t_{2}} ^{30} \\
& 25 \cdot\left(\ln \left(n^{*}-250\right)-\ln (1250)\right)=13 \\
& \Longrightarrow n^{*}=n(t=30 \min)=2352.5 \mathrm{veh} .
\end{aligned}
$$

c) With perimeter control, the dynamics contains a restriction term u, as depicted in fig. 3. The dynamical equation becomes:

$$
\frac{d n}{d t}=u \cdot q_{1}+q_{2}-G(n) .
$$

Figure 3: Water tank representation with perimeter control.

We call the constant perimeter control value that would result in an accumulation of 2500 vehicles at $8: 00 a m$ as u^{*} and calculate it as follows (noting that the piece $G_{3}(n)$ will be active since $n>n_{c r 2}$ from 7:30am to 8:00am):

```
\(\frac{d n}{d t}=u^{*} \cdot q_{1}+q_{2}-G_{3}(n)\)
\(\frac{d n}{d t}=u^{*} \cdot 90-100+0.04 \cdot n\)
\(\frac{d n}{u^{*} \cdot 90-100+0.04 \cdot n}=d t\)
\(\int_{2352.5}^{2500} \frac{d n}{u^{*} \cdot 90-100+0.04 \cdot n}=\int_{30}^{60} d t\)
\(\left.25 \cdot \ln \left(u^{*} \cdot 90-100+0.04 \cdot n\right)\right|_{2352.5} ^{2500}=\left.t\right|_{30} ^{60}\)
\(25 \cdot\left(\ln \left(u^{*} \cdot 90-100+0.04 \cdot 2500\right)-\ln \left(u^{*} \cdot 90-100+0.04 \cdot 2352.5\right)\right)=30\)
\(\Longrightarrow u^{*} \approx 0.094\).
```

d) We can model the queue outside the city center as an accumulation m, with entering flow q_{1} and exiting flow $u \cdot q_{1}$, and write its dynamics as follows:

$$
\frac{d m}{d t}=q_{1}-u^{*} \cdot q_{1}=90-0.094 \cdot 90 \approx 81.5 \mathrm{veh} / \mathrm{min} .
$$

We call the queue accumulation at 8:ooam as m^{*} and calculate it as follows (noting that the queue will be empty at 7:30am and will grow once the perimeter control is activated at 7:30am):

$$
\begin{aligned}
& \frac{d m}{d t}=81.5 \\
& \frac{d m}{81.5}=d t \\
& \int_{0}^{m^{*}} \frac{d m}{81.5}=\int_{30}^{60} d t \\
& \left.\frac{1}{81.5} \cdot m\right|_{0} ^{m^{*}}=\left.t\right|_{30} ^{60} \\
& \frac{1}{81.5} \cdot m^{*}=30 \\
& \Longrightarrow m^{*}=2445 \text { veh. }
\end{aligned}
$$

e) We can get numerical solutions (see fig. 4) by discretizing eq. (1) in time via, for example, the forward Euler method, and then using it inside a for loop:

```
n(1) = 500; % initialize accumulation
T = 0.1; % time step (min)
tmax = 30; % final time (min)
kmax = tmax/deltaT; % number of iterations
for k = 1:kmax
    % discrete-time version of equation 1
    n(k+1) = n(k) + T*(150 - G(n(k)));
end
```

where G is a function expressing the MFD.

Figure 4: Trajectory of accumulation n from 7:00am to 7:30am.

