Fundamentals of Traffic Operations and Control
Nikolas Geroliminis

Exercise solutions

Macroscopic fundamental diagram

Author: Isik Ilber Sirmatel

a) We can visualize the dynamics of the city center as a single tank
with water level representing the accumulation 7, together with
entering flows g; and ¢, and exiting flow G(n) (representing the net-
work outflow as modelled by the macroscopic fundamental diagram
(MFD)), as depicted in fig. 1. We can write the corresponding mass
conservation equation as:

dn
It =q1+q92— G(n). (1)

b) The given MFD is a piecewise affine function with three pieces (we
call them G;(n), Ga(n), G3(n), as in fig. 2) as follows:

_ Gmax 100 veh/min
Gr(n) = Nerl "= 77000 veh
G2(n) = gmax = 100 veh/min
_ qmax " (Mjam — 1)

Mjam — Mcr2

n=01min"!-n

Gs(n) = 0.04 min~! - (4000 veh — n).

From 7am until n reaches 1,1, the piece G;(n) is active, that is:

pria fa P Gy (1) = 150 veh/min — 0.1 min~! - .

We call the time n reaches n.,1 as f; and calculate it as follows:

dn
— =150-01-n
dn
B0—o01n
Ney 't
/ [Ty
n0) 150—01-7n  Jo
~10-1n(1500 — 1) [s00 =  |{!

—10-In(500) + 10 - In(1000) = #

= f; = 6.9315 min ~ 7 min.

From 7:07am until n reaches n,,,, the piece G(n) is active, that is:

% = g1+ q2 — Gy(n) = 50 veh/min.
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Figure 1: Water tank representing city
center dynamics.
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Figure 2: Macroscopic fundamental
diagram.
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We call the time n reaches 1., as t; and calculate it as follows:

dn

=2 =50
dt
dn
=t
50
Ner2 t
[%- [
Nerl 50 51
1 1500 ty
50 " 11000~ £ 7

1
— (1500 — 1000) = t, — 7
50 (500 000) 2

— tp = 17 min.

From 7:17am on, the piece G3(n) is active, that is:

Z—T = g1 + g2 — G3(n) = 150 veh/min — 0.04 min~! - (4000 veh — ).

We call the accumulation at 7:30am as n* and calculate it as follows:

IZ—TZ =150 — 0.04 - (4000 — n)
dn
i —10+0.04-n
dn
—104+0.04-n at

n* an 30
/ S —
n, —10+004-1  Jy

cr2

25 In(n —250) |} =t[2

u
25 (In(n* —250) — In(1250)) = 13 q%l ) qu

= n* =n(t =30 min) = 2352.5 veh.

¢) With perimeter control, the dynamics contains a restriction term u,
as depicted in fig. 3. The dynamical equation becomes: G (Tl)

Figure 3: Water tank representation
with perimeter control.

n
dt :”'ql+‘h*G(”)‘

We call the constant perimeter control value that would result in

an accumulation of 2500 vehicles at 8:00am as u* and calculate it as
follows (noting that the piece G3(n) will be active since n > 1, from
7:30am to 8:00am):
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dn
E:u*~q1+q2—G3(n)
Z—?:u*~90—100+0.04-n

dn -
u*-90—100+0.04-n

2500 dn 60
/2352,5 w90 —100+0.04 -1 /30 at
25 In(u* - 90 — 100 +0.04 - 1) |00 .= t |5
25 (In(u* - 90 — 100 + 0.04 - 2500) — In(1* - 90 — 100 + 0.04 - 2352.5)) = 30

= u* ~ 0.094.

d) We can model the queue outside the city center as an accumula-
tion m, with entering flow g1 and exiting flow u - g1, and write its
dynamics as follows:

d

d—’? =g —u* g1 =90 — 0.094 - 90 ~ 81.5 veh/min.
We call the queue accumulation at 8:00am as m™* and calculate it as
follows (noting that the queue will be empty at 7:30am and will grow

once the perimeter control is activated at 7:30am):

dm
i 81.5

dm

m* dm 60d
/0 %7/30 !
1

81.5
1 %

sis " =
= m"* = 2445 veh.

* 60
m|g1 :t|30

2000

h)

e) We can get numerical solutions (see fig. 4) by discretizing eq. (1) in
time via, for example, the forward Euler method, and then using it

1500

n (vel

accumulatiol

1000

inside a for loop:

500

n(l) = 500; % initialize accumulation

T=20.1; % time step (min) % s 10 1w s w®
time (min)

tmax = 30; % final time (min) Figure 4: Trajectory of accumulation n

kmax = tmax/deltaT; % number of iterations from 7:00am to 7:30am.

for k = 1:kmax
% discrete-time version of equation 1
n(k+1l) = n(k) + T*(150 - G(n(k)));
end

where G is a function expressing the MFD.



