Fundamentals of Traffic Operations and Control

Nikolas Geroliminis

Exercise solutions

Shockwave theory

Author: Işık İlber Sirmatel

a) We make use of the following formulas for the average cycle link flow and density:

$$
\begin{aligned}
\text { average flow: } Q & =\frac{V K T}{S_{\text {total }}}=\frac{\sum_{i} S_{i} \cdot q_{i}}{L \cdot T_{\Sigma}} \\
\text { average density: } K & =\frac{V H T}{S_{\text {total }}}=\frac{\sum_{i} S_{i} \cdot k_{i}}{L \cdot T_{\Sigma}},
\end{aligned}
$$

where i is the state of traffic vehicles experience when traveling through the road and traffic signal, S_{i} is the area of state i in the time-space diagram, q_{i} and k_{i} are the flow and density corresponding to state $i, S_{\text {total }}$ is the total area of the cycle on the time-space diagram, whereas T_{Σ} is the cycle duration (i.e., sum of green time T_{G} and red time T_{R}), with $T_{\Sigma}=T_{G}+T_{R}=30 \mathrm{~s}+30 \mathrm{~s}=60 \mathrm{~s}$. The traffic states for the system in question are: A (vehicles approaching the traffic signal), J (vehicles stopping at the red light), C (vehicles discharging from the queue).

We can draw the fundamental diagram (FD) (using the values given in the question) as shown in fig. 1 , with points A, J, and C corresponding to the three traffic states, while v_{f} is the free flow speed that can be calculated from the FD as follows:

$$
v_{f}=\frac{\left|q_{C}\right|}{\left|k_{C}\right|}=\frac{1800 \mathrm{veh} / \mathrm{h}}{30 \mathrm{veh} / \mathrm{km}}=60 \mathrm{~km} / \mathrm{h}
$$

whereas w is the discharge wave speed that can again be calculated from the FD as follows:

$$
w=\frac{\left|q_{C}-q_{J}\right|}{\left|k_{C}-k_{J}\right|}=\frac{\mid 1800 \text { veh } / \mathrm{h}-0 \text { veh } / \mathrm{h} \mid}{\mid 30 \text { veh } / \mathrm{km}-150 \text { veh } / \mathrm{km} \mid}=15 \mathrm{~km} / \mathrm{h} .
$$

As the approaching vehicles join the queue at the traffic light, the traffic state will transition from point A to point J, with shockwave speed $v_{A J}$, which is the slope of the line joining points A and J :

$$
v_{A J}=\frac{\left|q_{A}-q_{J}\right|}{\left|k_{A}-k_{J}\right|}=\frac{|600 \mathrm{veh} / \mathrm{h}-0 \mathrm{veh} / \mathrm{h}|}{|10 \mathrm{veh} / \mathrm{km}-150 \mathrm{veh} / \mathrm{km}|} \approx 4.286 \mathrm{~km} / \mathrm{h}
$$

To calculate the areas corresponding to the traffic states, we draw the time-space diagram as given in fig. 2 (note that only part of the figure with the queue is shown here, as the blue area extends downwards since $L=300 \mathrm{~m}$).

Figure 1: Fundamental diagram.

Figure 2: Time-space diagram.

The area of state J is the area of the red triangle in fig. 2:

$$
S_{J}=\frac{1}{2} \cdot T_{R} \cdot L_{q}
$$

where L_{q} is the maximum queue length that can be obtained from the time-space diagram as follows:

$$
L_{q}=\frac{w \cdot v_{A J}}{w-v_{A J}} \cdot T_{R}=\frac{15 \mathrm{~km} / \mathrm{h} \cdot 4.286 \mathrm{~km} / \mathrm{h}}{15 \mathrm{~km} / \mathrm{h}-4.286 \mathrm{~km} / \mathrm{h}} \cdot 30 \mathrm{~s}=50 \mathrm{~m}
$$

thus we obtain S_{J} as follows:

$$
S_{J}=\frac{1}{2} \cdot 30 \mathrm{~s} \cdot 50 \mathrm{~m}=750 \mathrm{~m} . \mathrm{s} .
$$

The area of state C is the area of the green triangle in fig. 2:

$$
S_{C}=\frac{1}{2} \cdot t_{C} \cdot L_{q}
$$

where t_{C} can be obtained from the time-space diagram as follows:

$$
t_{C}=\frac{L_{q}}{w}+\frac{L_{q}}{v_{f}}=\frac{50 \mathrm{~m}}{15 \mathrm{~km} / \mathrm{h}}+\frac{50 \mathrm{~m}}{60 \mathrm{~km} / \mathrm{h}}=15 \mathrm{~s}
$$

thus we obtain S_{C} as follows:

$$
S_{C}=\frac{1}{2} \cdot 15 \mathrm{~s} \cdot 50 \mathrm{~m}=375 \mathrm{~m} . \mathrm{s} .
$$

The total area for the whole cycle $S_{\text {total }}$ is equal to $L \cdot T_{\Sigma}$:

$$
S_{\text {total }}=L \cdot T_{\Sigma}=300 \mathrm{~m} \cdot 60 \mathrm{~s}=18000 \mathrm{~m} . \mathrm{s}
$$

which is also the sum of the areas of the three traffic states:

$$
S_{\text {total }}=S_{A}+S_{J}+S_{C}
$$

thus we can find S_{A} as follows:

$$
S_{A}=S_{\text {total }}-\left(S_{J}+S_{C}\right)=18000 \mathrm{~m} . \mathrm{s}-(750+375) \mathrm{m} . \mathrm{s}=16875 \mathrm{~m} . \mathrm{s} .
$$

Using the formula for Q we obtain:

$$
\begin{aligned}
Q & =\frac{q_{A} \cdot S_{A}+q_{J} \cdot S_{J}+q_{C} \cdot S_{C}}{L \cdot T_{\Sigma}} \\
& =\frac{600 \mathrm{veh} / \mathrm{h} \cdot 16875 \mathrm{~m} . \mathrm{s}+0 \mathrm{veh} / \mathrm{h} \cdot 750 \mathrm{~m} . \mathrm{s}+1800 \mathrm{veh} / \mathrm{h} \cdot 375 \mathrm{~m} . \mathrm{s}}{18000 \mathrm{~m} . \mathrm{s}} \\
& =600 \mathrm{veh} / \mathrm{h}
\end{aligned}
$$

and the formula for K, we obtain:

$$
\begin{aligned}
K & =\frac{k_{A} \cdot S_{A}+k_{J} \cdot S_{J}+k_{C} \cdot S_{C}}{L \cdot T_{\Sigma}} \\
& =\frac{10 \mathrm{veh} / \mathrm{km} \cdot 16875 \mathrm{~m} . \mathrm{s}+150 \mathrm{veh} / \mathrm{km} \cdot 750 \mathrm{~m} . \mathrm{s}+30 \mathrm{veh} / \mathrm{km} \cdot 375 \mathrm{~m} . \mathrm{s}}{18000 \mathrm{~m} . \mathrm{s}} \\
& =16.25 \mathrm{veh} / \mathrm{km} .
\end{aligned}
$$

b) We can consider a time-space diagram describing the situation in the question as shown in fig. 3. Here h is the headway, denoting the time it takes for the overpassing vehicle to pass two consecutive vehicles in the stream, arbitrarily named a and b in the figure, while s is the spacing of the stream.

From the figure, we can see that:

$$
v=\frac{s+x}{h}
$$

and

$$
v^{\prime}=\frac{x}{h}
$$

Combining the two, we get:

$$
s=\left(v-v^{\prime}\right) \cdot h
$$

Remembering that the density k^{\prime} is the inverse of spacing s, that is:

$$
k^{\prime}=\frac{1}{s}
$$

we can write:

$$
s=\frac{1}{k^{\prime}}=\left(v-v^{\prime}\right) \cdot h
$$

which is the same as:

$$
\frac{1}{h}=\left(v-v^{\prime}\right) \cdot k^{\prime}
$$

Remembering that the flow q^{\prime} (i.e., the passing rate) is the inverse of headway h, that is:

$$
q^{\prime}=\frac{1}{h}
$$

we can find the passing rate as follows:

$$
q^{\prime}=\left(v-v^{\prime}\right) \cdot k^{\prime}
$$

