Design Technologies for Integrated Systems – EPFLHomework 1Assigned: 27/09/2018Due: 4/10/2018

Problem 1

Given the graph G(V,E) in Fig. 1:

Figure 1: An undirected graph

- (a) Show a minimum clique cover.
- (b) Color the graph G with the smallest number of colors.
- (c) Is the graph in Fig. 1 a perfect graph? Explain your answer.

Problem 2

We change the graph G(V,E) in Problem 1 to the *Directed Acyclic Graph* (DAG) G(V,E,W) in Fig. 2.

Consider vertex V_0 as the **source** and vertex V_8 as the **sink**. Find the shortest path from V_0 to V_8 by applying the following algorithms:

- (a) Dijkstra algorithm.
- (b) Bellman-Ford algorithm.

Figure 2: A directed acyclic graph

Problem 3

Write the Control-Flow Expression that executes the three programs in parallel. Make sure that you write unambiguous expressions! Use parentheses if you are unsure.

Code 1	Code 2	Code 3	
always while a do if i then P_1 ; else wait j P_2 ; end if end while end always	if \overline{c} then P_2 ; always wait \overline{a} P_3 ; end always else P_4 ; end if	while \overline{c} do P_5 ; wait a P_6 ; if b then P_2 ; else P_1 ; end if end while	

Problem 4

current_state	<i>X</i> 1	X2	$next_state$	output
S0	0	0	S0	0
S0	0	1	S1	0
S0	1	-	S2	0
S1	0	0	S1	1
S1	0	1	S0	1
S1	1	0	S2	0
S1	1	1	S3	1
S2	1	-	S1	1
S2	0	-	S3	1
S3	0	1	S0	0
S3	1	1	S1	1
S3	-	0	S2	0

Given the following state transition table:

- (a) Draw the FSM with one graphic formalism seen during the lecture (for example, state charts).
- (b) Eliminate the edge connecting state S2 to S3. Comment on the resulting FSM.

Problem 5

Given the following equations:

$$x = (a \times b \times c + d) \times e + f$$
$$y = k + g \times h + g \times j \times h \times i$$
$$z = x + y$$

- (a) Draw the data-flow graph using the operations as they appear in the expression, without any optimization. Assume additions and multiplications have 2 inputs.
- (b) Apply **tree height** reduction to the data-flow graph drawn in (a).
- (c) Discuss on the different resources usage between graph in (a) and graph in (b).
- (d) Assume that a=2, b=3, c=2, d=2, h=3, j=4 and i=8 are constant. Apply constant propagation and operator strength reduction to the graph obtained in (b). Draw the resulting data-flow graph.