Design Technologies for Integrated Systems - EPFL Homework 1 Assigned: 27/09/2018 Due: 4/10/2018

Problem 1

Given the graph $G(V, E)$ in Fig. 1:

Figure 1: An undirected graph
(a) Show a minimum clique cover.
(b) Color the graph G with the smallest number of colors.
(c) Is the graph in Fig. 1 a perfect graph? Explain your answer.

Problem 2

We change the graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ in Problem 1 to the Directed Acyclic Graph (DAG) $\mathrm{G}(\mathrm{V}, \mathrm{E}, \mathrm{W})$ in Fig. 2.
Consider vertex V_{0} as the source and vertex V_{8} as the sink. Find the shortest path from V_{0} to V_{8} by applying the following algorithms:
(a) Dijkstra algorithm.
(b) Bellman-Ford algorithm.

Figure 2: A directed acyclic graph

Problem 3

Write the Control-Flow Expression that executes the three programs in parallel. Make sure that you write unambiguous expressions! Use parentheses if you are unsure.

Code 1

Code 2
always
while a do
if i then
P_{1};
else
wait j
P_{2};
end if
end while
end always
if \bar{c} then
P_{2};
always
wait \bar{a}
P_{3};
end always
else
P_{4};
end if

Code 3
while \bar{c} do
P_{5};
wait a
P_{6};
if b then
P_{2};
else
P_{1};
end if
end while

Problem 4

Given the following state transition table:

current_state	$X 1$	$X 2$	next_state	output
S0	0	0	S0	0
S0	0	1	S1	0
S0	1	-	S 2	0
S1	0	0	S 1	1
S1	0	1	S 0	1
S1	1	0	S 2	0
S1	1	1	S 3	1
S2	1	-	S 1	1
S2	0	-	S 3	1
S3	0	1	S 0	0
S3	1	1	S 1	1
S3	-	0	S 2	0

(a) Draw the FSM with one graphic formalism seen during the lecture (for example, state charts).
(b) Eliminate the edge connecting state S2 to S3. Comment on the resulting FSM.

Problem 5

Given the following equations:

$$
\begin{aligned}
& x=(a \times b \times c+d) \times e+f \\
& y=k+g \times h+g \times j \times h \times i \\
& z=x+y
\end{aligned}
$$

(a) Draw the data-flow graph using the operations as they appear in the expression, without any optimization. Assume additions and multiplications have 2 inputs.
(b) Apply tree height reduction to the data-flow graph drawn in (a).
(c) Discuss on the different resources usage between graph in (a) and graph in (b).
(d) Assume that $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=2, \mathrm{~d}=2, \mathrm{~h}=3, \mathrm{j}=4$ and $\mathrm{i}=8$ are constant. Apply constant propagation and operator strength reduction to the graph obtained in (b). Draw the resulting data-flow graph.

