
 405

Chapter 16

µC/OS-II Reference Manual
This chapter provides a reference to µC/OS-II services. Each of the user-accessible kernel services is presented
in alphabetical order. The following information is provided for each of the services:

• A brief description

• The function prototype

• The filename of the source code

• The #define constant needed to enable the code for the service

• A description of the arguments passed to the function

• A description of the returned value(s)

• Specific notes and warnings on using the service

• One or two examples of how to use the function

 406

OS_ENTER_CRITICAL()
OS_EXIT_CRITICAL()

Chapter File Called from Code enabled by
3 OS_CPU.H Task or ISR N/A

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are macros used to disable and enable, respectively, the
processor’s interrupts.

Arguments
none

Returned Values
none

Notes/Warnings
1. These macros must be used in pairs.

2. If OS_CRITICAL_METHOD is set to 3, your code is assumed to have allocated local storage for a variable of
type OS_CPU_SR, which is called cpu_sr, as follows

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status reg. */

 OS_CPU_SR cpu_sr;

#endif

Example

void TaskX(void *p_arg)

{

#if OS_CRITICAL_METHOD == 3

 OS_CPU_SR cpu_sr = 0;

 #endif

 for (;;) {

 .

 .

 OS_ENTER_CRITICAL(); /* Disable interrupts */

 . /* Access critical code */

 OS_EXIT_CRITICAL(); /* Enable interrupts */

 .

 .

 }

}

 407

OSEventNameGet()
INT8U OSEventNameGet(OS_EVENT *pevent,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_CORE.C Task OS_EVENT_NAME_SIZE

OSEventNameGet() allows you to obtain the name that you assigned to a semaphore, a mutex, a mailbox or a
message queue. The name is an ASCII string and the size of the name can contain up to
OS_EVENT_NAME_SIZE characters (including the NUL termination). This function is typically used by a
debugger to allow associating a name to a resource.

Arguments
pevent is a pointer to the event control block. pevent can point either to a semaphore, a mutex, a

mailbox or a queue. Where this function is concerned, the actual type is irrelevant. This
pointer is returned to your application when the semaphore, mutex, mailbox or queue is created
(see OSSemCreate(), OSMutexCreate(), OSMboxCreate() and OSQCreate()).

pname is a pointer to an ASCII string that will receive the name of the semaphore, mutex, mailbox or
queue. The string must be able to hold at least OS_EVENT_NAME_SIZE characters (including
the NUL character).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.

OS_ERR_EVENT_TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.

OS_ERR_PEVENT_NULL You passed a NULL pointer for pevent.

OS_ERR_NAME_GET_ISR You tried calling this function from an ISR.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

 408

Notes/Warnings
1. The semaphore, mutex, mailbox or message queue must be created before you can use this function and

obtain the name of the resource.

Example

INT8U PrinterSemName[30];

OS_EVENT *PrinterSem;

void Task (void *p_arg)

{

 INT8U err;

 INT8U size;

 (void)p_arg;

 for (;;) {

 size = OSEventNameGet(PrinterSem, &PrinterSemName[0], &err);

 .

 .

 }

}

 409

OSEventNameSet()
void OSEventNameSet(OS_EVENT *pevent,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_CORE.C Task OS_EVENT_NAME_SIZE

OSEventNameSet() allows you to assign a name to a semaphore, a mutex, a mailbox or a message queue.
The name is an ASCII string and the size of the name can contain up to OS_EVENT_NAME_SIZE characters
(including the NUL termination). This function is typically used by a debugger to allow associating a name to a
resource.

Arguments
pevent is a pointer to the event control block that you want to name. pevent can point either to a

semaphore, a mutex, a mailbox or a queue. Where this function is concerned, the actual type is
irrelevant. This pointer is returned to your application when the semaphore, mutex, mailbox or
queue is created (see OSSemCreate(), OSMutexCreate(), OSMboxCreate() and
OSQCreate()).

pname is a pointer to an ASCII string that contains the name for the resource. The size of the string
must be smaller than or equal to OS_EVENT_NAME_SIZE characters (including the NUL
character).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.

OS_ERR_EVENT_TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.

OS_ERR_PEVENT_NULL You passed a NULL pointer for pevent.

OS_ERR_NAME_SET_ISR You called this function from an ISR.

Returned Values
none

Notes/Warnings
1. The semaphore, mutex, mailbox or message queue must be created before you can use this function and set

the name of the resource.

 410

Example

OS_EVENT *PrinterSem;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSEventNameSet(PrinterSem, “Printer #1”, &err);

 .

 .

 }

}

 411

OSEventPendMulti()
INT16U OSEventPendMulti(OS_EVENT **pevents_pend,
 OS_EVENT **pevents_rdy,
 void **pmsgs_rdy,
 INT16U timeout,
 INT8U *perr);

Chapter File Called from Code enabled by
 OS_CORE.C Task only OS_EVENT_MULTI_EN

OSEventPendMulti() is used when a task expects to wait on multiple events. If multiple events are ready
when OSEventPendMulti() is called, then all available events and messages, if any, are returned as ready to
the caller. If no events are ready, OSEventPendMulti() suspends the current task until either an event is
ready or a user-specified timeout expires. If an event becomes ready and multiple tasks are waiting for the
event, µC/OS-II resumes the highest priority task waiting to run.

A pended task that has been suspended with OSTaskSuspend() can still receive a message from a multi-
pended mailbox or message queue or obtain a multi-pended semaphore. However, the task remains suspended
until it is resumed by calling OSTaskResume().

Arguments
pevents_pend is a pointer to a null-terminated array of OS_EVENT pointers. These event pointers are

returned to your application when the mailboxes, message queues, and semaphores are
created [see OSMboxCreate(), OSQCreate(), and OSSemCreate()].

pevents_rdy is a pointer to an array to return the available OS_EVENT pointers. The size of the array must

be greater than or equal to the size of the pevents_pend array, including the terminating
NULL.

pmsgs_rdy is a pointer to an array to return messages from any multi-pended mailbox or message queue

events. The size of the array must be greater than or equal to the size of the pevents_pend
array, excluding the terminating NULL. Since NULL messages are valid messages, this array
cannot be NULL-terminated. Instead, every available message is returned in the pmsgs_rdy
array at the same index as the ready mailbox or message queue event is returned in the
pevents_rdy array. All other pmsgs_rdy array indices are filled with NULL messages.

timeout allows the task to resume execution if no multi-pended event is ready within the specified

number of clock ticks. A timeout value of 0 indicates that the task wants to wait forever for
any of the multi-pended events. The maximum timeout is 65,535 clock ticks. The timeout
value is not synchronized with the clock tick. The timeout count begins decrementing on the
next clock tick, which could potentially occur immediately.

 412

perr is a pointer to a variable that holds an error code. OSEventPendMulti() sets *perr to one
of the following:

OS_ERR_NONE if any of the multi-pended events are ready; check the
pevents_rdy array for which events are available.

OS_ERR_TIMEOUT if no multi-pended event is ready within the specified timeout.

OS_ERR_PEND_ABORT indicates that a multi-pended event was aborted; check the
pevents_rdy array for which events were aborted.

OS_ERR_EVENT_TYPE if pevents_pend is not pointing to an array of valid mailbox,
message queue, or semaphore events.

OS_ERR_PEND_LOCKED if you called this function when the scheduler is locked.

OS_ERR_PEND_ISR if you call this function from an ISR and µC/OS-II suspends it. In
general, you should not call OSEventPendMulti() from an ISR,
but µC/OS-II checks for this situation anyway.

OS_ERR_PEVENT_NULL if pevents_pend, pevents_rdy, or pmsgs_rdy is a NULL pointer.

Returned Value
OSEventPendMulti() returns the number of multi-pended events that are ready or have been aborted, and
*perr is set to OS_ERR_NONE or OS_ERR_PEND_ABORT, respectively. If no multi-pended event is ready within
the specified timeout period or because of any error, then the pevents_rdy and pmsgs_rdy array are returned
as NULL pointers, and *perr is set to OS_ERR_TIMEOUT or to the respective error.

Notes/Warnings
1. Mailbox, message queue, or semaphore events must be created before they are used.

2. You should not call OSEventPendMulti() from an ISR.

3. You cannot multi-pend on event flags and mutexes.

 413

Example

OSEventPendMulti(&events[0],

&events_rdy[0],

&event_msgs[0],

ti t

events array size =
 (Number event pointers + 1)
 * sizeof(OS_EVENT *)

SomeMBoxEventPt

SomeQEventPtr

SomeSemEventPtr

(OS_EVENT *)0

OS_EVENT *events[4]

SomeQEventPtr

(OS_EVENT *)0

-

-

OS_EVENT *events_rdy[4]

SomeQMsg

-

-

-

void *event_msgs[4]

Return all available events
followed by a terminating

OS_EVENT pointer NULL

Return event message(s)
at same index into
′pmsgs_rdy′ array as
corresponding event

returned event returned
in ′pevents_rdy′ array

 414

Example

void EventTask(void *p_arg)

{

 OS_EVENT *events[4];

 OS_EVENT *events_rdy[4];

 void *event_msgs[4];

 INT16U timeout;

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 events[0] = (OS_EVENT *)SomeMBoxEventPtr;

 events[1] = (OS_EVENT *)SomeQEventPtr;

 events[2] = (OS_EVENT *)SomeSemEventPtr;

 events[3] = (OS_EVENT *)0;

 events_nbr_rdy = OSEventsPendMulti(&events[0]

 &events_rdy[0],

 &event_msgs[0],

 timeout,

 &err);

 if (err == OS_ERR_NONE) {

 .

 . /* Code for ready or aborted event(s) */

 .

 } else {

 .

 . /* Code for events not ready within timeout */

 .

 }

 .

 .

 }

}

 415

OSFlagAccept()
OS_FLAGS OSFlagAccept(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U wait_type,
 INT8U *perr);

Chapter File Called from Code enabled by
9 OS_FLAG.C Task and ISR OS_FLAG_EN && OS_FLAG_ACCEPT_EN

OSFlagAccept() allows you to check the status of a combination of bits to be either set or cleared in an event
flag group. Your application can check for any bit to be set/cleared or all bits to be set/cleared. This function
behaves exactly as OSFlagPend() does, except that the caller does NOT block if the desired event flags are
not present.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when the event

flag group is created [see OSFlagCreate()].
flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are

specified by setting the corresponding bits in flags.
wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared. You

can specify the following arguments:

OS_FLAG_WAIT_CLR_ALL You check all bits in flags to be clear (0)

OS_FLAG_WAIT_CLR_ANY You check any bit in flags to be clear (0)

OS_FLAG_WAIT_SET_ALL You check all bits in flags to be set (1)

OS_FLAG_WAIT_SET_ANY You check any bit in flags to be set (1)

 You can add OS_FLAG_CONSUME if you want the event flag(s) to be consumed
by the call. For example, to wait for any flag in a group and then clear the flags
that are present, set wait_type to

 OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE No error

OS_ERR_EVENT_TYPE You are not pointing to an event flag group

OS_ERR_FLAG_WAIT_TYPE You didn’t specify a proper wait_type argument.

OS_ERR_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag
handle.

OS_ERR_FLAG_NOT_RDY The desired flags for which you are waiting are not
available.

Returned Values
The flag(s) that cause the task to be ready or, 0 if either none of the flags are ready or an error occurred.

 416

Notes/Warnings
1. The event flag group must be created before it is used.

2. This function does not block if the desired flags are not present.

IMPORTANT

The return value of OSFlagAccept() is different as of V2.70. In previous versions, OSFlagAccept()
returned the current state of the flags and now, it returns the flag(s) that are ready, if any.

Example

#define ENGINE_OIL_PRES_OK 0x01

#define ENGINE_OIL_TEMP_OK 0x02

#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{

 INT8U err;

 OS_FLAGS value;

 (void)p_arg;

 for (;;) {

 value = OSFlagAccept(EngineStatus,

 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,

 OS_FLAG_WAIT_SET_ALL,

 &err);

 switch (err) {

 case OS_ERR_NONE:

 /* Desired flags are available */

 break;

 case OS_ERR_FLAG_NOT_RDY:

 /* The desired flags are NOT available */

 break;

 }

 .

 .

 }

}

 417

OSFlagCreate()
OS_FLAG_GRP *OSFlagCreate(OS_FLAGS flags,
 INT8U *perr);

Chapter File Called from Code enabled by
9 OS_FLAG.C Task or startup code OS_FLAG_EN

OSFlagCreate() is used to create and initialize an event flag group.

Arguments
flags contains the initial value to store in the event flag group.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the

following:

OS_ERR_NONE if the call is successful and the event flag group has been
created.

OS_ERR_CREATE_ISR if you attempt to create an event flag group from an ISR.

OS_ERR_FLAG_GRP_DEPLETED if no more event flag groups are available. You need to
increase the value of OS_MAX_FLAGS in OS_CFG.H.

Returned Values
A pointer to the event flag group if a free event flag group is available. If no event flag group is available,
OSFlagCreate() returns a NULL pointer.

Notes/Warnings
1. Event flag groups must be created by this function before they can be used by the other services.

Example

OS_FLAG_GRP *EngineStatus;

void main (void)

{

 INT8U err;

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 /* Create a flag group containing the engine’s status */

 EngineStatus = OSFlagCreate(0x00, &err);

 .

 .

 OSStart(); /* Start Multitasking */

}

 418

OSFlagDel()
OS_FLAG_GRP *OSFlagDel(OS_FLAG_GRP *pgrp,
 INT8U opt,
 INT8U *perr);

Chapter File Called from Code enabled by
9 OS_FLAG.

C
Task OS_FLAG_EN and OS_FLAG_DEL_EN

OSFlagDel() is used to delete an event flag group. This function is dangerous to use because multiple tasks
could be relying on the presence of the event flag group. You should always use this function with great care.
Generally speaking, before you delete an event flag group, you must first delete all the tasks that access the
event flag group.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when the event

flag group is created [see OSFlagCreate()].
opt specifies whether you want to delete the event flag group only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the event flag group regardless of
whether tasks are pending or not (OS_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

OS_ERR_NONE if the call is successful and the event flag group has been
deleted.

OS_ERR_DEL_ISR if you attempt to delete an event flag group from an ISR.

OS_ERR_FLAG_INVALID_PGRP if you pass a NULL pointer in pgrp.

OS_ERR_EVENT_TYPE if pgrp is not pointing to an event flag group.

OS_ERR_INVALID_OPT if you do not specify one of the two options mentioned in
the opt argument.

OS_ERR_TASK_WAITING if one or more task are waiting on the event flag group
and you specify OS_DEL_NO_PEND.

Returned Values

A NULL pointer if the event flag group is deleted or pgrp if the event flag group is not deleted. In the latter
case, you need to examine the error code to determine the reason for the error.

 419

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the event flag group.

2. This call can potentially disable interrupts for a long time. The interrupt-disable time is directly
proportional to the number of tasks waiting on the event flag group.

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *p_arg)

{

 INT8U err;

 OS_FLAG_GRP *pgrp;

 (void)p_arg;

 while (1) {

 .

 .

 pgrp = OSFlagDel(EngineStatusFlags, OS_DEL_ALWAYS, &err);

 if (pgrp == (OS_FLAG_GRP *)0) {

 /* The event flag group was deleted */

 }

 .

 .

 }

}

 420

OSFlagNameGet()
INT8U OSFlagNameGet(OS_FLAG_GRP *pgrp,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_FLAG.C Task or ISR OS_FLAG_NAME_SIZE

OSFlagNameGet() allows you to obtain the name that you assigned to an event flag group. The name is an
ASCII string and the size of the name can contain up to OS_FLAG_NAME_SIZE characters (including the NUL
termination). This function is typically used by a debugger to allow associating a name to a resource.

Arguments
pgrp is a pointer to the event flag group.
pname is a pointer to an ASCII string that will receive the name of the event flag group. The string

must be able to hold at least OS_FLAG_NAME_SIZE characters (including the NUL character).
perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.

OS_ERR_EVENT_TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.

OS_ERR_PNAME_NULL You passed a NULL pointer for pname.

OS_ERR_INVALID_PGRP You passed a NULL pointer for pgrp.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

 421

Notes/Warnings
1. The event flag group must be created before you can use this function and obtain the name of the resource.

Example

INT8U EngineStatusName[30];

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *p_arg)

{

 INT8U err;

 INT8U size;

 (void)p_arg;

 for (;;) {

 size = OSFlagNameGet(EngineStatusFlags,

 &EngineStatusName[0],

 &err);

 .

 .

 }

}

 422

OSFlagNameSet()
void OSFlagNameSet(OS_FLAG_GRP *pgrp,
 char *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_FLAG.C Task OS_EVENT_NAME_SIZE

OSFlagNameSet() allows you to assign a name to an event flag group. The name is an ASCII string and the
size of the name can contain up to OS_FLAG_NAME_SIZE characters (including the NUL termination). This
function is typically used by a debugger to allow associating a name to a resource.

Arguments
pgrp is a pointer to the event flag group that you want to name. This pointer is returned to your

application when the event flag group is created (see OSFlagCreate()).
pname is a pointer to an ASCII string that contains the name for the resource. The size of the string

must be smaller than or equal to OS_EVENT_NAME_SIZE characters (including the NUL
character).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the event flag group was copied to the array
pointed to by pname.

OS_ERR_EVENT_TYPE You are not pointing to an event flag group.

OS_ERR_PNAME_NULL You passed a NULL pointer for pname.

OS_ERR_INVALID_PGRP You passed a NULL pointer for pgrp.

OS_ERR_NAME_SET_ISR You called this function from an ISR.

Returned Values
none

Notes/Warnings
1. The event flag group must be created before you can use this function to set the name of the resource.

 423

Example

OS_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSFlagNameSet(EngineStatus, “Engine Status Flags”, &err);

 .

 .

 }

}

 424

OSFlagPend()
OS_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U wait_type,
 INT16U timeout,
 INT8U *perr);

Chapter File Called from Code enabled by
9 OS_FLAG.C Task only OS_FLAG_EN

OSFlagPend() is used to have a task wait for a combination of conditions (i.e., events or bits) to be set (or
cleared) in an event flag group. You application can wait for any condition to be set or cleared or for all
conditions to be set or cleared. If the events that the calling task desires are not available, then the calling task
is blocked until the desired conditions are satisfied or the specified timeout expires.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when the event

flag group is created [see OSFlagCreate()].
flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are

specified by setting the corresponding bits in flags.
wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared. You

can specify the following arguments:

OS_FLAG_WAIT_CLR_ALL You check all bits in flags to be clear (0)

OS_FLAG_WAIT_CLR_ANY You check any bit in flags to be clear (0)

OS_FLAG_WAIT_SET_ALL You check all bits in flags to be set (1)

OS_FLAG_WAIT_SET_ANY You check any bit in flags to be set (1)

 You can also specify whether the flags are consumed by adding OS_FLAG_CONSUME to the
wait_type. For example, to wait for any flag in a group and then clear the flags that satisfy
the condition, set wait_type to

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

timeout allows the task to resume execution if the desired flag(s) is(are) not received from the event
flag group within the specified number of clock ticks. A timeout value of 0 indicates that the
task wants to wait forever for the flag(s). The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count begins decrementing
on the next clock tick, which could potentially occur immediately.

perr is a pointer to an error code and can be:

OS_ERR_NONE No error.

OS_ERR_PEND_ISR You try to call OSFlagPend from an ISR, which is not
allowed.

OS_ERR_FLAG_INVALID_PGRP You pass a NULL pointer instead of the event flag handle.

OS_ERR_EVENT_TYPE You are not pointing to an event flag group.

OS_ERR_TIMEOUT The flags are not available within the specified amount of
time.

OS_ERR_FLAG_WAIT_TYPE You don’t specify a proper wait_type argument.

 425

Returned Values
The flag(s) that cause the task to be ready or, 0 if either none of the flags are ready or an error occurred.

Notes/Warnings
1. The event flag group must be created before it’s used.

IMPORTANT

The return value of OSFlagPend() is different as of V2.70. In previous versions, OSFlagPend() returned
the current state of the flags and now, it returns the flag(s) that are ready, if any.

 426

Example

#define ENGINE_OIL_PRES_OK 0x01

#define ENGINE_OIL_TEMP_OK 0x02

#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{

 INT8U err;

 OS_FLAGS value;

 (void)p_arg;

 for (;;) {

 value = OSFlagPend(EngineStatus,

 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,

 OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,

 10,

 &err);

 switch (err) {

 case OS_ERR_NONE:

 /* Desired flags are available */

 break;

 case OS_ERR_TIMEOUT:

 /* The desired flags were NOT available before .. */

 /* .. 10 ticks occurred */

 break;

 }

 .

 .

 }

}

 427

OSFlagPendGetFlagsRdy()
OS_FLAGS OSFlagPendGetFlagsRdy(void)

Chapter File Called from Code enabled by
Added in V2.60 OS_FLAG.C Task only OS_FLAG_EN

OSFlagPendGetFlagsRdy() is used to obtain the flags that caused the current task to become ready to run.
In other words, this function allows you to know "Who done It!"

Arguments

None

Returned Value

The value of the flags that caused the current task to become ready to run.

Notes/Warnings
1. The event flag group must be created before it’s used.

 428

Example

#define ENGINE_OIL_PRES_OK 0x01

#define ENGINE_OIL_TEMP_OK 0x02

#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{

 INT8U err;

 OS_FLAGS value;

 (void)p_arg;

 for (;;) {

 value = OSFlagPend(EngineStatus,

 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,

 OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,

 10,

 &err);

 switch (err) {

 case OS_ERR_NONE:

 /* Find out who made task ready */

 flags = OSFlagPendGetFlagsRdy();

 break;

 case OS_ERR_TIMEOUT:

 /* The desired flags were NOT available before .. */

 /* .. 10 ticks occurred */

 break;

 }

 .

 .

 }

}

 429

OSFlagPost()
OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U opt,
 INT8U *perr);

Chapter File Called from Code enabled by
9 OS_FLAG.C Task or ISR OS_FLAG_EN

You set or clear event flag bits by calling OSFlagPost(). The bits set or cleared are specified in a bit mask.
OSFlagPost() readies each task that has its desired bits satisfied by this call. You can set or clear bits that are
already set or cleared.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when the event

flag group is created [see OSFlagCreate()].
flags specifies which bits you want set or cleared. If opt is OS_FLAG_SET, each bit that is set in

flags sets the corresponding bit in the event flag group. For example to set bits 0, 4, and 5,
you set flags to 0x31 (note, bit 0 is the least significant bit). If opt is OS_FLAG_CLR, each
bit that is set in flags will clears the corresponding bit in the event flag group. For example to
clear bits 0, 4, and 5, you specify flags as 0x31 (note, bit 0 is the least significant bit).

opt indicates whether the flags are set (OS_FLAG_SET) or cleared (OS_FLAG_CLR).
perr is a pointer to an error code and can be:

 OS_ERR_NONE The call is successful.

 OS_ERR_FLAG_INVALID_PGRP You pass a NULL pointer.

 OS_ERR_EVENT_TYPE You are not pointing to an event flag group.

 OS_ERR_FLAG_INVALID_OPT You specify an invalid option.

Returned Value
The new value of the event flags.

Notes/Warnings
1. Event flag groups must be created before they are used.

2. The execution time of this function depends on the number of tasks waiting on the event flag group.
However, the execution time is deterministic.

3. The amount of time interrupts are disabled also depends on the number of tasks waiting on the event flag
group.

 430

Example

#define ENGINE_OIL_PRES_OK 0x01

#define ENGINE_OIL_TEMP_OK 0x02

#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatusFlags;

void TaskX (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSFlagPost(EngineStatusFlags,

 ENGINE_START,

 OS_FLAG_SET,

 &err);

 .

 .

 }

}

 431

OSFlagQuery()
OS_FLAGS OSFlagQuery(OS_FLAG_GRP *pgrp,
 INT8U *perr);

Chapter File Called from Code enabled by
9 OS_FLAG.C Task or ISR OS_FLAG_EN && OS_FLAG_QUERY_EN

OSFlagQuery() is used to obtain the current value of the event flags in a group. At this time, this function
does not return the list of tasks waiting for the event flag group.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when the event

flag group is created [see OSFlagCreate()].
perr is a pointer to an error code and can be:

OS_ERR_NONE The call is successful.

OS_ERR_FLAG_INVALID_PGRP You pass a NULL pointer.

OS_ERR_EVENT_TYPE You are not pointing to an event flag groups.

Returned Value
The state of the flags in the event flag group.

Notes/Warnings
1. The event flag group to query must be created.

2. You can call this function from an ISR.

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *p_arg)

{

 OS_FLAGS flags;

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 flags = OSFlagQuery(EngineStatusFlags, &err);

 .

 .

 }

}

 432

OSInit()
void OSInit(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

OSInit() initializes µC/OS-II and must be called prior to calling OSStart(), which actually starts
multitasking.

Arguments
none

Returned Values
none

Notes/Warnings
1. OSInit() must be called before OSStart().

Example

void main (void)

{

 .

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 OSStart(); /* Start Multitasking */

}

 433

OSIntEnter()
void OSIntEnter(void);

Chapter File Called from Code enabled by
3 OS_CORE.C ISR only N/A

OSIntEnter() notifies _C/OS-II that an ISR is being processed, which allows µC/OS-II to keep track of
interrupt nesting. OSIntEnter() is used in conjunction with OSIntExit().

Arguments
none

Returned Values
none

Notes/Warnings
1. This function must not be called by task-level code.

2. You can increment the interrupt-nesting counter (OSIntNesting) directly in your ISR to avoid the
overhead of the function call/return. It’s safe to increment OSIntNesting in your ISR because interrupts
are assumed to be disabled when OSIntNesting needs to be incremented.

3. You are allowed to nest interrupts up to 255 levels deep.

Example 1
(Intel 80x86, real mode, large model)

Use OSIntEnter() for backward compatibility with µC/OS.

 ISRx PROC FAR

 PUSHA ; Save interrupted task's context

 PUSH ES

 PUSH DS

;

 CALL FAR PTR _OSIntEnter ; Notify µC/OS-II of start of ISR

 .

 .

 POP DS ; Restore processor registers

 POP ES

 POPA

 IRET ; Return from interrupt

 ISRx ENDP

 434

Example 2
(Intel 80x86, real mode, large model)

 ISRx PROC FAR

 PUSHA ; Save interrupted task's context

 PUSH ES

 PUSH DS

;

 MOV AX, SEG(_OSIntNesting) ; Reload DS

 MOV DS, AX

;

 INC BYTE PTR _OSIntNesting ; Notify µC/OS-II of start of ISR

 .

 .

 .

 POP DS ; Restore processor registers

 POP ES

 POPA

 IRET ; Return from interrupt

 ISRx ENDP

 435

OSIntExit()
void OSIntExit(void);

Chapter File Called from Code enabled by
3 OS_CORE.C ISR only N/A

OSIntExit() notifies µC/OS-II that an ISR is complete, which allows µC/OS-II to keep track of interrupt
nesting. OSIntExit() is used in conjunction with OSIntEnter(). When the last nested interrupt completes,
OSIntExit() determines if a higher priority task is ready to run, in which case, the interrupt returns to the
higher priority task instead of the interrupted task.

Arguments
none

Returned Value
none

Notes/Warnings
1. This function must not be called by task-level code. Also, if you decided to increment OSIntNesting, you

still need to call OSIntExit().

Example
(Intel 80x86, real mode, large model)

 ISRx PROC FAR

 PUSHA ; Save processor registers

 PUSH ES

 PUSH DS

 .

 .

 CALL FAR PTR _OSIntExit ; Notify µC/OS-II of end of ISR

 POP DS ; Restore processor registers

 POP ES

 POPA

 IRET ; Return to interrupted task

 ISRx ENDP

 436

OSMboxAccept()
void *OSMboxAccept(OS_EVENT *pevent);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN && OS_MBOX_ACCEPT_EN

OSMboxAccept() allows you to see if a message is available from the desired mailbox. Unlike
OSMboxPend(), OSMboxAccept() does not suspend the calling task if a message is not available. In other
words, OSMboxAccept() is non-blocking. If a message is available, the message is returned to your
application, and the content of the mailbox is cleared. This call is typically used by ISRs because an ISR is not
allowed to wait for a message at a mailbox.

Arguments
pevent is a pointer to the mailbox from which the message is received. This pointer is returned to your

application when the mailbox is created [see OSMboxCreate()].

Returned Value
A pointer to the message if one is available; NULL if the mailbox does not contain a message.

Notes/Warnings
1. Mailboxes must be created before they are used.

Example

OS_EVENT *CommMbox;

void Task (void *p_arg)

{

 void *pmsg;

 (void)p_arg;

 for (;;) {

 pmsg = OSMboxAccept(CommMbox); /* Check mailbox for a message */

 if (pmsg != (void *)0) {

 . /* Message received, process */

 .

 } else {

 . /* Message not received, do .. */

 . /* .. something else */

 }

 .

 .

 }

}

 437

OSMboxCreate()
OS_EVENT *OSMboxCreate(void *pmsg);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or startup code OS_MBOX_EN

OSMboxCreate() creates and initializes a mailbox. A mailbox allows tasks or ISRs to send a pointer-sized
variable (message) to one or more tasks.

Arguments
pmsg is used to initialize the contents of the mailbox. The mailbox is empty when pmsg is a NULL

pointer. The mailbox initially contains a message when pmsg is non-NULL.

Returned Value
A pointer to the event control block allocated to the mailbox. If no event control block is available,
OSMboxCreate() returns a NULL pointer.

Notes/Warnings
1. Mailboxes must be created before they are used.

Example

OS_EVENT *CommMbox;

void main (void)

{

 .

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 CommMbox = OSMboxCreate((void *)0); /* Create COMM mailbox */

 OSStart(); /* Start Multitasking */

}

 438

OSMboxDel()
OS_EVENT *OSMboxDel(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task OS_MBOX_EN and

OS_MBOX_DEL_EN

OSMboxDel() is used to delete a message mailbox. This function is dangerous to use because multiple tasks
could attempt to access a deleted mailbox. You should always use this function with great care. Generally
speaking, before you delete a mailbox, you must first delete all the tasks that can access the mailbox.

Arguments
pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is

created [see OSMboxCreate()].
opt specifies whether you want to delete the mailbox only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the mailbox regardless of whether
tasks are pending or not (OS_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

OS_ERR_NONE if the call is successful and the mailbox has been deleted.

OS_ERR_DEL_ISR if you attempt to delete the mailbox from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the
opt argument.

OS_ERR_TASK_WAITING One or more tasks is waiting on the mailbox.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value
A NULL pointer if the mailbox is deleted or pevent if the mailbox is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the mailbox.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the mailbox.

3. OSMboxAccept() callers do not know that the mailbox has been deleted.

 439

Example

OS_EVENT *DispMbox;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 while (1) {

 .

 .

 DispMbox = OSMboxDel(DispMbox, OS_DEL_ALWAYS, &err);

 if (DispMbox == (OS_EVENT *)0) {

 /* Mailbox has been deleted */

 }

 .

 .

 }

}

 440

OSMboxPend()
void *OSMboxPend(OS_EVENT *pevent,
 INT16U timeout,
 INT8U *perr);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task only OS_MBOX_EN

OSMboxPend() is used when a task expects to receive a message. The message is sent to the task either by an
ISR or by another task. The message received is a pointer-sized variable, and its use is application specific. If a
message is present in the mailbox when OSMboxPend() is called, the message is retrieved, the mailbox is
emptied, and the retrieved message is returned to the caller. If no message is present in the mailbox,
OSMboxPend() suspends the current task until either a message is received or a user-specified timeout expires.
If a message is sent to the mailbox and multiple tasks are waiting for the message, µC/OS-II resumes the
highest priority task waiting to run. A pended task that has been suspended with OSTaskSuspend() can
receive a message. However, the task remains suspended until it is resumed by calling OSTaskResume().

Arguments
pevent is a pointer to the mailbox from which the message is received. This pointer is returned to your

application when the mailbox is created [see OSMboxCreate()].
timeout allows the task to resume execution if a message is not received from the mailbox within the

specified number of clock ticks. A timeout value of 0 indicates that the task wants to wait
forever for the message. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count begins decrementing on the next clock
tick, which could potentially occur immediately.

perr is a pointer to a variable that holds an error code. OSMboxPend() sets *perr to one of the
following:

OS_ERR_NONE if a message is received.

OS_ERR_TIMEOUT if a message is not received within the specified timeout
period.

OS_ERR_PEND_ABORT indicates that the pend was aborted by another task or ISR by
calling OSMboxPendAbort().

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEND_LOCKED if you called this function when the scheduler is locked.

OS_ERR_PEND_ISR if you call this function from an ISR and µC/OS-II suspends it.
In general, you should not call OSMboxPend() from an ISR,
but µC/OS-II checks for this situation anyway.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
OSMboxPend() returns the message sent by either a task or an ISR, and *perr is set to OS_ERR_NONE. If a
message is not received within the specified timeout period, the returned message is a NULL pointer, and *perr
is set to OS_ERR_TIMEOUT.

Notes/Warnings
1. Mailboxes must be created before they are used.

2. You should not call OSMboxPend() from an ISR.

 441

Example

OS_EVENT *CommMbox;

void CommTask(void *p_arg)

{

 INT8U err;

 void *pmsg;

 (void)p_arg;

 for (;;) {

 .

 .

 pmsg = OSMboxPend(CommMbox, 10, &err);

 if (err == OS_ERR_NONE) {

 .

 . /* Code for received message */

 .

 } else {

 .

 . /* Code for message not received within timeout */

 .

 }

 .

 .

 }

}

 442

OSMboxPendAbort()
void *OSMboxPendAbort(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

New Function File Called from Code enabled by
V2.84 OS_MBOX.C Task only OS_MBOX_EN

&&
OS_MBOX_PEND_ABORT_EN

OSMboxPendAbort() aborts & readies any tasks currently waiting on a mailbox. This function should be
used to fault-abort the wait on the mailbox, rather than to normally signal the mailbox via OSMboxPost() or
OSMboxPostOpt().

Arguments
pevent is a pointer to the mailbox for which pend(s) need to be aborted. This pointer is returned to

your application when the mailbox is created [see OSMboxCreate()].
opt determines what type of abort is performed.

OS_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the
mailbox.

OS_PEND_OPT_BROADCAST Aborts the pend of all the tasks waiting on the mailbox.

perr is a pointer to a variable that holds an error code. OSMboxPendAbort() sets *perr to one of
the following:

OS_ERR_NONE if no tasks were waiting on the mailbox. In this case, the return
value is also 0.

OS_ERR_PEND_ABORT at least one task waiting on the mailbox was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the mailbox was aborted.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
OSMboxPendAbort() returns the number of tasks made ready to run by this function. Zero indicates that no
tasks were pending on the mailbox and thus this function had no effect.

Notes/Warnings
1. Mailboxes must be created before they are used.

 443

Example

OS_EVENT *CommMbox;

void CommTask(void *p_arg)

{

 INT8U err;

 INT8U nbr_tasks;

 (void)p_arg;

 for (;;) {

 .

 .

 nbr_tasks = OSMboxPendAbort(CommMbox, OS_PEND_OPT_BROADCAST, &err);

 if (err == OS_ERR_NONE) {

 .

 . /* No tasks were waiting on the mailbox */

 .

 } else {

 .

 . /* All pends of tasks waiting on mailbox were aborted … */

 . /* … ‘nbr_tasks’ indicates how many were made ready. */

 .

 }

 .

 .

 }

}

 444

OSMboxPost()
INT8U OSMboxPost(OS_EVENT *pevent,
 void *pmsg);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN &&

OS_MBOX_POST_EN

OSMboxPost() sends a message to a task through a mailbox. A message is a pointer-sized variable and, its use
is application specific. If a message is already in the mailbox, an error code is returned indicating that the
mailbox is full. OSMboxPost() then immediately returns to its caller, and the message is not placed in the
mailbox. If any task is waiting for a message at the mailbox, the highest priority task waiting receives the
message. If the task waiting for the message has a higher priority than the task sending the message, the higher
priority task is resumed, and the task sending the message is suspended. In other words, a context switch
occurs.

Arguments
pevent is a pointer to the mailbox into which the message is deposited. This pointer is returned to your

application when the mailbox is created [see OSMboxCreate()].
pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application

specific. You must never post a NULL pointer because this pointer indicates that the mailbox is
empty.

Returned Value
OSMboxPost() returns one of these error codes:

OS_ERR_NONE if the message is deposited in the mailbox.

OS_ERR_MBOX_FULL if the mailbox already contains a message.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a pointer to NULL.

OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer. By convention a
NULL pointer is not supposed to point to anything.

Notes/Warnings
1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer because this pointer indicates that the mailbox is empty.

 445

Example
OS_EVENT *CommMbox;

INT8U CommRxBuf[100];

void CommTaskRx (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSMboxPost(CommMbox, (void *)&CommRxBuf[0]);

 .

 .

 }

}

 446

OSMboxPostOpt()
INT8U OSMboxPostOpt(OS_EVENT *pevent,
 void *pmsg,
 INT8U opt);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN and

OS_MBOX_POST_OPT_EN

OSMboxPostOpt() works just like OSMboxPost() except that it allows you to post a message to multiple
tasks. In other words, OSMboxPostOpt() allows the message posted to be broadcast to all tasks waiting on the
mailbox. OSMboxPostOpt() can actually replace OSMboxPost() because it can emulate OSMboxPost().

OSMboxPostOpt() is used to send a message to a task through a mailbox. A message is a pointer-sized
variable, and its use is application specific. If a message is already in the mailbox, an error code is returned
indicating that the mailbox is full. OSMboxPostOpt() then immediately returns to its caller, and the message is
not placed in the mailbox. If any task is waiting for a message at the mailbox, OSMboxPostOpt() allows you
either to post the message to the highest priority task waiting at the mailbox (opt set to OS_POST_OPT_NONE)
or to all tasks waiting at the mailbox (opt is set to OS_POST_OPT_BROADCAST). In either case, scheduling
occurs and, if any of the tasks that receives the message have a higher priority than the task that is posting the
message, then the higher priority task is resumed, and the sending task is suspended. In other words, a context
switch occurs.

Arguments
pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is

created [see OSMboxCreate()].
pmsg is the actual message sent to the task(s). pmsg is a pointer-sized variable and is application

specific. You must never post a NULL pointer because this pointer indicates that the mailbox is
empty.

opt specifies whether you want to send the message to the highest priority task waiting at the
mailbox (when opt is set to OS_POST_OPT_NONE) or to all tasks waiting at the mailbox (when
opt is set to OS_POST_OPT_BROADCAST).

 When set to OS_POST_OPT_NO_SCHED, the scheduler will not be called to see if a higher
priority task has been made ready to run.

 Note that options are additive and thus, you can specify:
 OS_POST_OPT_BROADCAST | OS_POST_OPT_NO_SCHED

Returned Value
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the

following:

OS_ERR_NONE if the call is successful and the message has been sent.

OS_ERR_MBOX_FULL if the mailbox already contains a message. You can only send
one message at a time to a mailbox, and thus the message must
be consumed before you are allowed to send another one.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer. By convention, a
NULL pointer is not supposed to point to anything.

 447

Notes/Warnings
1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer to a mailbox because this pointer indicates that the mailbox is empty.

3. If you need to use this function and want to reduce code space, you can disable code generation of
OSMboxPost() because OSMboxPostOpt() can emulate OSMboxPost().

4. The execution time of OSMboxPostOpt() depends on the number of tasks waiting on the mailbox if you
set opt to OS_POST_OPT_BROADCAST.

Example

OS_EVENT *CommMbox;

INT8U CommRxBuf[100];

void CommRxTask (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSMboxPostOpt(CommMbox,

 (void *)&CommRxBuf[0],

 OS_POST_OPT_BROADCAST);

 .

 .

 }

}

 448

OSMboxQuery()
INT8U OSMboxQuery(OS_EVENT *pevent,
 OS_MBOX_DATA *p_mbox_data);

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN && OS_MBOX_QUERY_EN

OSMboxQuery() obtains information about a message mailbox. Your application must allocate an
OS_MBOX_DATA data structure, which is used to receive data from the event control block of the message
mailbox. OSMboxQuery() allows you to determine whether any tasks are waiting for a message at the mailbox
and how many tasks are waiting (by counting the number of 1s in the .OSEventTbl[] field). You can also
examine the current contents of the mailbox. Note that the size of .OSEventTbl[] is established by the
#define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is

created [see OSMboxCreate()].
P_mbox_data is a pointer to a data structure of type OS_MBOX_DATA, which contains the following fields:

void *OSMsg; /* Copy of the message stored in the mailbox */

#if OS_LOWEST_PRIO <= 63

INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Copy of the mailbox wait list */

INT8U OSEventGrp;

#else

INT16U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Copy of the mailbox wait list */

INT16U OSEventGrp;

#endif

Returned Value
OSMboxQuery() returns one of these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a message mailbox.

OS_ERR_PNAME_NULL You passed a NULL pointer for p_mbox_data.

Notes/Warnings
1. Message mailboxes must be created before they are used.

 449

Example

OS_EVENT *CommMbox;

void Task (void *p_arg)

{

 OS_MBOXDATA mbox_data;

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSMboxQuery(CommMbox, &mbox_data);

 if (err == OS_ERR_NONE) {

 . /* Mailbox contains a message if .. */

 /* .. mbox_data.OSMsg is not NULL */

 }

 .

 .

 }

}

 450

OSMemCreate()
OS_MEM *OSMemCreate(void *addr,
 INT32U nblks,
 INT32U blksize,
 INT8U *perr);

Chapter File Called from Code enabled by
12 OS_MEM.C Task or startup code OS_MEM_EN

OSMemCreate() creates and initializes a memory partition. A memory partition contains a user-specified
number of fixed-size memory blocks. Your application can obtain one of these memory blocks and, when done,
release the block back to the partition.

Arguments
addr is the address of the start of a memory area that is used to create fixed-size memory blocks.

Memory partitions can be created either using static arrays or malloc() during startup. Note
that the partition MUST align on a pointer boundary. Thus, if a pointer is 16 bits wide then the
partition must start on a memory location with an address that ends with 0, 2, 4, 6, 8, etc. If a
pointer is 32 bits wide then the partition must start on a memory location with and address that
ends with 0, 4, 8 of C.

nblks contains the number of memory blocks available from the specified partition. You must specify
at least two memory blocks per partition.

blksize specifies the size (in bytes) of each memory block within a partition. A memory block must be
large enough to hold at least a pointer. Also, the size of a memory block must be a multiple of
the size of a pointer. In other words, if a pointer is 32 bits wide then the block size must be 4,
8, 12, 16, 20, etc. bytes (i.e. a multiple of 4 bytes).

perr is a pointer to a variable that holds an error code. OSMemCreate() sets *perr to:

OS_ERR_NONE if the memory partition is created successfully

OS_ERR_MEM_INVALID_ADDR if you are specifying an invalid address (i.e., addr is a NULL
pointer) or your partition is not properly aligned.

OS_ERR_MEM_INVALID_PART if a free memory partition is not available

OS_ERR_MEM_INVALID_BLKS if you don’t specify at least two memory blocks per partition

OS_ERR_MEM_INVALID_SIZE if you don’t specify a block size that can contain at least a
pointer variable and if it’s not a multiple of a pointer size
variable.

Returned Value
OSMemCreate() returns a pointer to the created memory-partition control block if one is available. If no
memory-partition control block is available, OSMemCreate() returns a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

 451

Example

OS_MEM *CommMem;

INT32U CommBuf[16][32];

void main (void)

{

 INT8U err;

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 CommMem = OSMemCreate(&CommBuf[0][0], 16, 32 * sizeof(INT32U), &err);

 .

 .

 OSStart(); /* Start Multitasking */

}

 452

OSMemGet()
void *OSMemGet(OS_MEM *pmem,
 INT8U *perr);

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN

OSMemGet obtains a memory block from a memory partition. It is assumed that your application knows the size
of each memory block obtained. Also, your application must return the memory block [using OSMemPut()]
when it no longer needs it. You can call OSMemGet() more than once until all memory blocks are allocated.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application from the

OSMemCreate() call.
perr is a pointer to a variable that holds an error code. OSMemGet() sets *perr to one of the

following:

OS_ERR_NONE if a memory block is available and returned to your application.

OS_ERR_MEM_NO_FREE_BLKS if the memory partition doesn’t contain any more memory
blocks to allocate.

OS_ERR_MEM_INVALID_PMEM if pmem is a NULL pointer.

Returned Value
OSMemGet() returns a pointer to the allocated memory block if one is available. If no memory block is
available from the memory partition, OSMemGet() returns a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

 453

Example

OS_MEM *CommMem;

void Task (void *p_arg)

{

 INT8U *pmsg;

 (void)p_arg;

 for (;;) {

 pmsg = OSMemGet(CommMem, &err);

 if (pmsg != (INT8U *)0) {

 . /* Memory block allocated, use it. */

 .

 }

 .

 .

 }

}

 454

OSMemNameGet()
INT8U OSMemNameGet(OS_MEM *pmem,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_MEM.C Task OS_MEM_NAME_SIZE

OSMemNameGet() allows you to obtain the name that you assigned to a memory partition. The name is an
ASCII string and the size of the name can contain up to OS_MEM_NAME_SIZE characters (including the NUL
termination). This function is typically used by a debugger to allow associating a name to a resource.

Arguments
pmem is a pointer to the memory partition.
pname is a pointer to an ASCII string that will receive the name of the memory partition. The string

must be able to hold at least OS_MEM_NAME_SIZE characters (including the NUL character).
perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.

OS_ERR_INVALID_PMEM You passed a NULL pointer for pmem.

OS_ERR_PNAME_NULL You passed a NULL pointer for pname.

OS_ERR_NAME_GET_ISR You called this function from an ISR.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

 455

Notes/Warnings
1. The memory partition must be created before you can use this function and obtain the name of the

resource.

Example

OS_MEM *CommMem;

INT8U CommMemName[OS_MEM_NAME_SIZE];

void Task (void *pdata)

{

 INT8U err;

 INT8U size;

 pdata = pdata;

 for (;;) {

 size = OSMemNameGet(CommMem, & CommMemName [0], &err);

 .

 .

 }

}

 456

OSMemNameSet()
void OSMemNameSet(OS_MEM *pmem,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_MEM.C Task OS_MEM_NAME_SIZE

OSMemNameSet() allows you to assign a name to a memory partition. The name is an ASCII string and the
size of the name can contain up to OS_MEM_NAME_SIZE characters (including the NUL termination). This
function is typically used by a debugger to allow associating a name to a resource.

Arguments
pmem is a pointer to the memory partition that you want to name. This pointer is returned to your

application when the memory partition is created (see OSMemCreate()).
pname is a pointer to an ASCII string that contains the name for the resource. The size of the string

must be smaller than or equal to OS_MEM_NAME_SIZE characters (including the NUL character).
perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the event flag group was copied to the
array pointed to by pname.

OS_ERR_MEM_INVALID_PMEM You passed a NULL pointer for pmem.

OS_ERR_PNAME_NULL You passed a NULL pointer for pname.

OS_ERR_MEM_NAME_TOO_LONG If the name is not able to fit in the specified storage.

OS_ERR_NAME_SET_ISR You called this function from an ISR.

Returned Values
none

Notes/Warnings
1. The memory partition must be created before you can use this function to set the name of the resource.

 457

Example

OS_MEM *CommMem;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSMemNameSet(CommMem, “Comm. Buffer”, &err);

 .

 .

 }

}

 458

OSMemPut()
INT8U OSMemPut(OS_MEM *pmem,
 void *pblk);

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN

OSMemPut() returns a memory block to a memory partition. It is assumed that you return the memory block to
the appropriate memory partition.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application from the

OSMemCreate() call.
pblk is a pointer to the memory block to be returned to the memory partition.

Returned Value
OSMemPut() returns one of the following error codes:

OS_ERR_NONE if a memory block is available and returned to your application.

OS_ERR_MEM_FULL if the memory partition can not accept more memory blocks.
This code is surely an indication that something is wrong
because you are returning more memory blocks than you
obtained using OSMemGet().

OS_ERR_MEM_INVALID_PMEM if pmem is a NULL pointer.

OS_ERR_MEM_INVALID_PBLK if pblk is a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

2. You must return a memory block to the proper memory partition.

 459

Example

OS_MEM *CommMem;

INT8U *CommMsg;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 err = OSMemPut(CommMem, (void *)CommMsg);

 if (err == OS_ERR_NONE) {

 . /* Memory block released */

 .

 }

 .

 .

 }

}

 460

OSMemQuery()
INT8U OSMemQuery(OS_MEM *pmem,
 OS_MEM_DATA *p_mem_data);

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN && OS_MEM_QUERY_EN

OSMemQuery() obtains information about a memory partition. Basically, this function returns the same
information found in the OS_MEM data structure but in a new data structure called OS_MEM_DATA.
OS_MEM_DATA also contains an additional field that indicates the number of memory blocks in use.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application from the

OSMemCreate() call.
P_mem_data is a pointer to a data structure of type OS_MEM_DATA, which contains the following fields

void *OSAddr; /* Points to beginning address of the memory partition */

void *OSFreeList; /* Points to beginning of the free list of memory blocks */

INT32U OSBlkSize; /* Size (in bytes) of each memory block */

INT32U OSNBlks; /* Total number of blocks in the partition */

INT32U OSNFree; /* Number of memory blocks free */

INT32U OSNUsed; /* Number of memory blocks used */

Returned Value
OSMemQuery() returns one of the following error codes:

OS_ERR_NONE if a memory block is available and returned to your
application.

OS_ERR_MEM_INVALID_PMEM if pmem is a NULL pointer.

OS_ERR_MEM_INVALID_PDATA if pdata is a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

 461

Example

OS_MEM *CommMem;

void Task (void *p_arg)

{

 INT8U err;

 OS_MEM_DATA mem_data;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSMemQuery(CommMem, &mem_data);

 .

 .

 }

}

 462

OSMutexAccept()
INT8U OSMutexAccept(OS_EVENT *pevent,
 INT8U *perr);

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN

OSMutexAccept() allows you to check to see if a resource is available. Unlike OSMutexPend(),
OSMutexAccept() does not suspend the calling task if the resource is not available. In other words,
OSMutexAccept() is non-blocking.

Arguments
pevent is a pointer to the mutex that guards the resource. This pointer is returned to your application

when the mutex is created [see OSMutexCreate()].
perr is a pointer to a variable used to hold an error code. OSMutexAccept() sets *perr to one of

the following:

OS_ERR_NONE if the call is successful.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PEND_ISR if you call OSMutexAccept() from an ISR.

OS_ERR_PIP_LOWER If the priority of the task that owns the Mutex is HIGHER (i.e.
a lower number) than the PIP. This error indicates that you did
not set the PIP higher (lower number) than ALL the tasks that
compete for the Mutex. Unfortunately, this is something that
could not be detected when the Mutex is created because we
don't know what tasks will be using the Mutex.

Returned Value
If the mutex is available, OSMutexAccept() returns OS_TRUE. If the mutex is owned by another task,
OSMutexAccept() returns OS_FALSE.

Notes/Warnings
1. Mutexes must be created before they are used.

2. This function must not be called by an ISR.

3. If you acquire the mutex through OSMutexAccept(), you must call OSMutexPost() to release the
mutex when you are done with the resource.

 463

Example

OS_EVENT *DispMutex;

void Task (void *p_arg)

{

 INT8U err;

 BOOLEAN test;

 (void)p_arg;

 for (;;) {

 test = OSMutexAccept(DispMutex, &err);

 if (test == OS_TRUE) {

 . /* Resource available, process */

 .

 } else {

 . /* Resource NOT available */

 .

 }

 .

 .

 }

}

 464

OSMutexCreate()
OS_EVENT *OSMutexCreate(INT8U prio,
 INT8U *perr);

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task or startup code OS_MUTEX_EN

OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive access to a
resource.

Arguments
prio is the priority inheritance priority (PIP) that is used when a high priority task attempts to

acquire the mutex that is owned by a low priority task. In this case, the priority of the low
priority task is raised to the PIP until the resource is released.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

OS_ERR_NONE if the call is successful and the mutex has been created.

OS_ERR_CREATE_ISR if you attempt to create a mutex from an ISR.

OS_ERR_PRIO_EXIST if a task at the specified priority inheritance priority already
exists.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

OS_ERR_PRIO_INVALID if you specify a priority with a higher number than
OS_LOWEST_PRIO.

Returned Value
A pointer to the event control block allocated to the mutex. If no event control block is available,
OSMutexCreate() returns a NULL pointer.

Notes/Warnings
1. Mutexes must be created before they are used.

2. You must make sure that prio has a higher priority than any of the tasks that use the mutex to access the
resource. For example, if three tasks of priority 20, 25, and 30 are going to use the mutex, then prio must
be a number lower than 20. In addition, there must not already be a task created at the specified priority.

 465

Example

OS_EVENT *DispMutex;

void main (void)

{

 INT8U err;

 .

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 DispMutex = OSMutexCreate(20, &err); /* Create Display Mutex */

 .

 .

 OSStart(); /* Start Multitasking */

}

 466

OSMutexDel()
OS_EVENT *OSMutexDel(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN and

OS_MUTEX_DEL_EN

OSMutexDel() is used to delete a mutex. This function is dangerous to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speaking,
before you delete a mutex, you must first delete all the tasks that can access the mutex.

Arguments
pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created

[see OSMutexCreate()].
opt specifies whether you want to delete the mutex only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the mutex regardless of whether
tasks are pending or not (OS_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

OS_ERR_NONE if the call is successful and the mutex has been deleted.

OS_ERR_DEL_ISR if you attempt to delete a mutex from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the
opt argument.

OS_ERR_TASK_WAITING if one or more task are waiting on the mutex and you specify
OS_DEL_NO_PEND.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the mutex.

 467

Example

OS_EVENT *DispMutex;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 while (1) {

 .

 .

 DispMutex = OSMutexDel(DispMutex, OS_DEL_ALWAYS, &err);

 if (DispMutex == (OS_EVENT *)0) {

 /* Mutex has been deleted */

 }

 .

 .

 }

}

 468

OSMutexPend()
void OSMutexPend(OS_EVENT *pevent,
 INT16U timeout,
 INT8U *perr);

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task only OS_MUTEX_EN

OSMutexPend() is used when a task desires to get exclusive access to a resource. If a task calls
OSMutexPend() and the mutex is available, then OSMutexPend() gives the mutex to the caller and returns to
its caller. Note that nothing is actually given to the caller except for the fact that if perr is set to
OS_ERR_NONE, the caller can assume that it owns the mutex. However, if the mutex is already owned by
another task, OSMutexPend() places the calling task in the wait list for the mutex. The task thus waits until
the task that owns the mutex releases the mutex and thus the resource or until the specified timeout expires. If
the mutex is signaled before the timeout expires, µC/OS-II resumes the highest priority task that is waiting for
the mutex. Note that if the mutex is owned by a lower priority task, then OSMutexPend() raises the priority of
the task that owns the mutex to the PIP, as specified when you created the mutex [see OSMutexCreate()].

Arguments
pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created

[see OSMutexCreate()].
timeout is used to allow the task to resume execution if the mutex is not signaled (i.e., posted to) within

the specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait
forever for the mutex. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count starts being decremented on the next clock
tick, which could potentially occur immediately.

perr is a pointer to a variable that is used to hold an error code. OSMutexPend() sets *perr to one
of the following:

OS_ERR_NONE if the call is successful and the mutex is available.

OS_ERR_TIMEOUT if the mutex is not available within the specified timeout.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to OSMutexPend().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PEND_LOCKED if you called this function when the scheduler is locked

OS_ERR_PEND_ISR if you attempt to acquire the mutex from an ISR.

OS_ERR_PIP_LOWER If the priority of the task that owns the Mutex is HIGHER (i.e.
a lower number) than the PIP. This error indicates that you
did not set the PIP higher (lower number) than ALL the tasks
that compete for the Mutex. Unfortunately, this is something
that could not be detected when the Mutex is created because
we don't know what tasks will be using the Mutex.

Returned Value
none

 469

Notes/Warnings
1. Mutexes must be created before they are used.

2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other µC/OS-II
objects (i.e., semaphore, mailbox, or queue), and delay the task that owns the mutex. In other words, your
code should hurry up and release the resource as quickly as possible.

Example

OS_EVENT *DispMutex;

void DispTask (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 OSMutexPend(DispMutex, 0, &err);

 . /* The only way this task continues is if _ */

 . /* _ the mutex is available or signaled! */

 }

}

 470

OSMutexPost()
INT8U OSMutexPost(OS_EVENT *pevent);

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN

A mutex is signaled (i.e., released) by calling OSMutexPost(). You call this function only if you acquire the
mutex by first calling either OSMutexAccept() or OSMutexPend(). If the priority of the task that owns the
mutex has been raised when a higher priority task attempts to acquire the mutex, the original task priority of the
task is restored. If one or more tasks are waiting for the mutex, the mutex is given to the highest priority task
waiting on the mutex. The scheduler is then called to determine if the awakened task is now the highest priority
task ready to run, and if so, a context switch is done to run the readied task. If no task is waiting for the mutex,
the mutex value is simply set to available (0xFF).

Arguments
pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created

[see OSMutexCreate()].

Returned Value
OSMutexPost() returns one of these error codes:

OS_ERR_NONE if the call is successful and the mutex is released.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to OSMutexPost().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_ISR if you attempt to call OSMutexPost() from an ISR.

OS_ERR_NOT_MUTEX_OWNER if the task posting (i.e., signaling the mutex) doesn’t actually
own the mutex.

OS_ERR_PIP_LOWER If the priority of the new task that owns the Mutex is HIGHER
(i.e. a lower number) than the PIP. This error indicates that
you did not set the PIP higher (lower number) than ALL the
tasks that compete for the Mutex. Unfortunately, this is
something that could not be detected when the Mutex is
created because we don't know what tasks will be using the
Mutex.

Notes/Warnings
1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

 471

Example

OS_EVENT *DispMutex;

void TaskX (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSMutexPost(DispMutex);

 switch (err) {

 case OS_ERR_NONE: /* Mutex signaled */

 .

 .

 break;

 case OS_ERR_EVENT_TYPE:

 .

 .

 break;

 case OS_ERR_PEVENT_NULL:

 .

 .

 break;

 case OS_ERR_POST_ISR:

 .

 .

 break;

 }

 .

 .

 }

}

 472

OSMutexQuery()
INT8U OSMutexQuery(OS_EVENT *pevent,
 OS_MUTEX_DATA *p_mutex_data);

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN && OS_MUTEX_QUERY_EN

OSMutexQuery() is used to obtain run-time information about a mutex. Your application must allocate an
OS_MUTEX_DATA data structure that is used to receive data from the event control block of the mutex.
OSMutexQuery() allows you to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1s) in the .OSEventTbl[] field, obtain the PIP, and determine whether the
mutex is available (OS_TRUE) or not (OS_FALSE). Note that the size of .OSEventTbl[] is established by the
#define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is

created [see OSMutexCreate()].
p_mutex_data is a pointer to a data structure of type OS_MUTEX_DATA, which contains the following fields

INT8U OSMutexPIP; /* The PIP of the mutex */

INT8U OSOwnerPrio; /* The priority of the mutex owner */

BOOLEAN OSValue; /* The current mutex value */

 /* OS_TRUE means available */
 /* OS_FALSE means unavailable */

#if OS_LOWEST_PRIO <= 63

INT8U OSEventGrp; /* Copy of the mutex wait list */

INT8U OSEventTbl[OS_EVENT_TBL_SIZE];

#else

INT16U OSEventGrp; /* Copy of the mutex wait list */

INT16U OSEventTbl[OS_EVENT_TBL_SIZE];

#endif

Returned Value
OSMutexQuery() returns one of these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to OSMutexQuery().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PDATA_NULL if p_mutex_data is a NULL pointer.

OS_ERR_QUERY_ISR if you attempt to call OSMutexQuery() from an ISR.

Notes/Warnings
1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

 473

Example
In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_EVENT *DispMutex;

void Task (void *p_arg)

{

 OS_MUTEX_DATA mutex_data;

 INT8U err;

 INT8U highest; /* Highest priority task waiting on mutex *

 INT8U x;

 INT8U y;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSMutexQuery(DispMutex, &mutex_data);

 if (err == OS_ERR_NONE) {

 /* Examine Mutex data */

 .

 .

 }

 }

 .

 .

 }

}

 474

OSQAccept()
void *OSQAccept(OS_EVENT *pevent,
 INT8U *perr);

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN

OSQAccept() checks to see if a message is available in the desired message queue. Unlike OSQPend(),
OSQAccept() does not suspend the calling task if a message is not available. In other words, OSQAccept() is
non-blocking. If a message is available, it is extracted from the queue and returned to your application. This
call is typically used by ISRs because an ISR is not allowed to wait for messages at a queue.

Arguments
pevent is a pointer to the message queue from which the message is received. This pointer is returned

to your application when the message queue is created [see OSQCreate()].
perr is a pointer to a variable that is used to hold an error code. OSQAccept() sets *perr to one of

the following:

OS_ERR_NONE if the call is successful and the mutex is available.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a queue to OSQAccept().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_Q_EMPTY if the queue doesn't contain any messages.

Returned Value
A pointer to the message if one is available; NULL if the message queue does not contain a message or the
message received is a NULL pointer. If a message was available in the queue, it will be removed before
OSQAccept() returns.

Notes/Warnings
1. Message queues must be created before they are used.

2. The API (Application Programming Interface) has changed for this function in V2.60 becausee you can
now post NULL pointers to queues. Specifically, the perr argument has been added to the call.

 475

Example

OS_EVENT *CommQ;

void Task (void *p_arg)

{

 void *pmsg;

 (void)p_arg;

 for (;;) {

 pmsg = OSQAccept(CommQ); /* Check queue for a message */

 if (pmsg != (void *)0) {

 . /* Message received, process */

 .

 } else {

 . /* Message not received, do .. */

 . /* .. something else */

 }

 .

 .

 }

}

 476

OSQCreate()
OS_EVENT *OSQCreate(void **start,
 INT8U size);

Chapter File Called from Code enabled by
11 OS_Q.C Task or startup code OS_Q_EN

OSQCreate() creates a message queue. A message queue allows tasks or ISRs to send pointer-sized variables
(messages) to one or more tasks. The meaning of the messages sent are application specific.

Arguments
start is the base address of the message storage area. A message storage area is declared as an array

of pointers to voids.
size is the size (in number of entries) of the message storage area.

Returned Value
OSQCreate() returns a pointer to the event control block allocated to the queue. If no event control block is
available, OSQCreate() returns a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

Example

OS_EVENT *CommQ;

void *CommMsg[10];

void main (void)

{

 OSInit(); /* Initialize µC/OS-II *

 .

 .

 CommQ = OSQCreate(&CommMsg[0], 10); /* Create COMM Q *

 .

 .

 OSStart(); /* Start Multitasking *

}

 477

OSQDel()
OS_EVENT *OSQDel(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

Chapter File Called from Code enabled by
11 OS_Q.C Task OS_Q_EN and OS_Q_DEL_EN

OSQDel() is used to delete a message queue. This function is dangerous to use because multiple tasks could
attempt to access a deleted queue. You should always use this function with great care. Generally speaking,
before you delete a queue, you must first delete all the tasks that can access the queue.

Arguments
pevent is a pointer to the queue. This pointer is returned to your application when the queue is created

[see OSQCreate()].
opt specifies whether you want to delete the queue only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the queue regardless of whether
tasks are pending or not (OS_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

OS_ERR_NONE if the call is successful and the queue has been deleted.

OS_ERR_DEL_ISR if you attempt to delete the queue from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the
opt argument.

OS_ERR_TASK_WAITING if one or more tasks are waiting for messages at the message
queue.

OS_ERR_EVENT_TYPE if pevent is not pointing to a queue.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the queue is deleted or pevent if the queue is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the queue.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the queue.

 478

Example

OS_EVENT *DispQ;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 while (1) {

 .

 .

 DispQ = OSQDel(DispQ, OS_DEL_ALWAYS, &err);

 if (DispQ == (OS_EVENT *)0) {

 /* Queue has been deleted */

 }

 .

 .

 }

}

 479

OSQFlush()
INT8U *OSQFlush(OS_EVENT *pevent);

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_FLUSH_EN

OSQFlush() empties the contents of the message queue and eliminates all the messages sent to the queue. This
function takes the same amount of time to execute regardless of whether tasks are waiting on the queue (and
thus no messages are present) or the queue contains one or more messages.

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the

message queue is created [see OSQCreate()].

Returned Value
OSQFlush() returns one of the following codes:

OS_ERR_NONE if the message queue is flushed.

OS_ERR_EVENT_TYPE if you attempt to flush an object other than a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

2. You should use this function with great care because, when to flush the queue, you LOOSE the references
to what the queue entries are pointing to and thus, you could cause 'memory leaks'. In other words, the
data you are pointing to that's being referenced by the queue entries should, most likely, need to be de-
allocated (i.e. freed). To flush a queue that contains entries, you should instead repeateadly use
OSQAccept().

Example

OS_EVENT *CommQ;

void main (void)

{

 INT8U err;

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 err = OSQFlush(CommQ);

 .

 .

 OSStart(); /* Start Multitasking */

}

 480

OSQPend()
void *OSQPend(OS_EVENT *pevent,
 INT16U timeout,
 INT8U *perr);

Chapter File Called from Code enabled by
11 OS_Q.C Task only OS_Q_EN

OSQPend() is used when a task wants to receive messages from a queue. The messages are sent to the task
either by an ISR or by another task. The messages received are pointer-sized variables, and their use is
application specific. If at least one message is present at the queue when OSQPend() is called, the message is
retrieved and returned to the caller. If no message is present at the queue, OSQPend() suspends the current task
until either a message is received or a user-specified timeout expires. If a message is sent to the queue and
multiple tasks are waiting for such a message, then µC/OS-II resumes the highest priority task that is waiting. A
pended task that has been suspended with OSTaskSuspend() can receive a message. However, the task
remains suspended until it is resumed by calling OSTaskResume().

Arguments
pevent is a pointer to the queue from which the messages are received. This pointer is returned to your

application when the queue is created [see OSQCreate()].
timeout allows the task to resume execution if a message is not received from the mailbox within the

specified number of clock ticks. A timeout value of 0 indicates that the task wants to wait
forever for the message. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count starts decrementing on the next clock tick,
which could potentially occur immediately.

perr is a pointer to a variable used to hold an error code. OSQPend() sets *perr to one of the
following:

OS_ERR_NONE if a message is received.

OS_ERR_TIMEOUT if a message is not received within the specified timeout.

OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PEND_ISR if you call this function from an ISR and µC/OS-II has to
suspend it. In general, you should not call OSQPend() from an
ISR. µC/OS-II checks for this situation anyway.

OS_ERR_PEND_LOCKED if you called this function when the scheduler is locked.

Returned Value
OSQPend() returns a message sent by either a task or an ISR, and *perr is set to OS_ERR_NONE. If a timeout
occurs, OSQPend() returns a NULL pointer and sets *perr to OS_ERR_TIMEOUT.

Notes/Warnings
1. Queues must be created before they are used.

2. You should not call OSQPend() from an ISR.

3. OSQPend() was changed in V2.60 to allow it to receive NULL pointer messages.

 481

Example

OS_EVENT *CommQ;

void CommTask(void *p_arg)

{

 INT8U err;

 void *pmsg;

 (void)p_arg;

 for (;;) {

 .

 .

 pmsg = OSQPend(CommQ, 100, &err);

 if (err == OS_ERR_NONE) {

 .

 . /* Message received within 100 ticks! */

 .

 } else {

 .

 . /* Message not received, must have timed out */

 .

 }

 .

 .

 }

}

 482

OSQPendAbort()
void *OSQPendAbort(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

New Function File Called from Code enabled by
V2.84 OS_Q.C Task only OS_Q_EN

&&
OS_Q_PEND_ABORT_EN

OSQPendAbort() aborts & readies any tasks currently waiting on a queue. This function should be used to
fault-abort the wait on the queue, rather than to normally signal the queue via OSQPost(), OSQPostFront()
or OSQPostOpt().

Arguments
pevent is a pointer to the queue for which pend(s) need to be aborted. This pointer is returned to your

application when the queue is created [see OSQCreate()].
opt determines what type of abort is performed.

OS_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the
queue.

OS_PEND_OPT_BROADCAST Aborts the pend of all the tasks waiting on the queue.

perr is a pointer to a variable that holds an error code. OSQPendAbort() sets *perr to one of the
following:

OS_ERR_NONE if no tasks were waiting on the queue. In this case, the return
value is also 0.

OS_ERR_PEND_ABORT at least one task waiting on the queue was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the queue was aborted.

OS_ERR_EVENT_TYPE if pevent is not pointing to a queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
OSQPendAbort() returns the number of tasks made ready to run by this function. Zero indicates that no tasks
were pending on the queue and thus this function had no effect.

Notes/Warnings
1. Queues must be created before they are used.

 483

Example

OS_EVENT *CommQ;

void CommTask(void *p_arg)

{

 INT8U err;

 INT8U nbr_tasks;

 (void)p_arg;

 for (;;) {

 .

 .

 nbr_tasks = OSQPendAbort(CommQ, OS_PEND_OPT_BROADCAST, &err);

 if (err == OS_ERR_NONE) {

 .

 . /* No tasks were waiting on the queue */

 .

 } else {

 .

 . /* All pends of tasks waiting on queue were aborted … */

 . /* … ‘nbr_tasks’ indicates how many were made ready. */

 .

 }

 .

 .

 }

}

 484

OSQPost()
INT8U OSQPost(OS_EVENT *pevent,
 void *pmsg);

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_POST_EN

OSQPost() sends a message to a task through a queue. A message is a pointer-sized variable, and its use is
application specific. If the message queue is full, an error code is returned to the caller. In this case,
OSQPost() immediately returns to its caller, and the message is not placed in the queue. If any task is waiting
for a message at the queue, the highest priority task receives the message. If the task waiting for the message
has a higher priority than the task sending the message, the higher priority task resumes, and the task sending
the message is suspended; that is, a context switch occurs. Message queues are first-in first-out (FIFO), which
means that the first message sent is the first message received.

Arguments
pevent is a pointer to the queue into which the message is deposited. This pointer is returned to your

application when the queue is created [see OSQCreate()].
pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application

specific. As of V2.60, you are allowed to post a NULL pointer.

Returned Value
OSQPost() returns one of these error codes:

OS_ERR_NONE if the message is deposited in the queue.

OS_ERR_Q_FULL if the queue is already full.

OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

2. As of V2.60, you are now allowed to post a NULL pointer. It is up to you’re application to check the perr
variable accordingly.

 485

Example

OS_EVENT *CommQ;

INT8U CommRxBuf[100];

void CommTaskRx (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSQPost(CommQ, (void *)&CommRxBuf[0]);

 switch (err) {
 case OS_ERR_NONE:

 /* Message was deposited into queue */
 break;

 case OS_ERR_Q_FULL:

 /* Queue is full */

 Break;

 .

 }

 .

 .

 }

}

 486

OSQPostFront()
INT8U OSQPostFront(OS_EVENT *pevent,
 void *pmsg);

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_POST_FRONT_EN

OSQPostFront() sends a message to a task through a queue. OSQPostFront() behaves very much like
OSQPost(), except that the message is inserted at the front of the queue. This means that OSQPostFront()
makes the message queue behave like a last-in first-out (LIFO) queue instead of a first-in first-out (FIFO)
queue. The message is a pointer-sized variable, and its use is application specific. If the message queue is full,
an error code is returned to the caller. OSQPostFront() immediately returns to its caller, and the message is
not placed in the queue. If any tasks are waiting for a message at the queue, the highest priority task receives
the message. If the task waiting for the message has a higher priority than the task sending the message, the
higher priority task is resumed, and the task sending the message is suspended; that is, a context switch occurs.

Arguments
pevent is a pointer to the queue into which the message is deposited. This pointer is returned to your

application when the queue is created [see OSQCreate()].
pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application

specific. As of V2.60, you are allowed to post a NULL pointer.

Returned Value
OSQPostFront() returns one of these error codes:

OS_ERR_NONE if the message is deposited in the queue.

OS_ERR_Q_FULL if the queue is already full.

OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

2. As of V2.60, you are now allowed to post a NULL pointer. It is up to you’re application to check the perr
variable accordingly.

 487

Example

OS_EVENT *CommQ;

INT8U CommRxBuf[100];

void CommTaskRx (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSQPostFront(CommQ, (void *)&CommRxBuf[0]);

 switch (err) {
 case OS_ERR_NONE:

 /* Message was deposited into queue */
 break;

 case OS_ERR_Q_FULL:

 /* Queue is full */

 break;

 .

 }

 .

 .

 }

}

 488

OSQPostOpt()
INT8U OSQPostOpt(OS_EVENT *pevent,
 void *pmsg,
 INT8U opt);

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_POST_OPT_EN

OSQPostOpt() is used to send a message to a task through a queue. A message is a pointer-sized variable, and
its use is application specific. If the message queue is full, an error code is returned indicating that the queue is
full. OSQPostOpt() then immediately returns to its caller, and the message is not placed in the queue. If any
task is waiting for a message at the queue, OSQPostOpt() allows you to either post the message to the highest
priority task waiting at the queue (opt set to OS_POST_OPT_NONE) or to all tasks waiting at the queue (opt is
set to OS_POST_OPT_BROADCAST). In either case, scheduling occurs, and, if any of the tasks that receive the
message have a higher priority than the task that is posting the message, then the higher priority task is
resumed, and the sending task is suspended. In other words, a context switch occurs.

OSQPostOpt() emulates both OSQPost() and OSQPostFront() and also allows you to post a message to
multiple tasks. In other words, it allows the message posted to be broadcast to all tasks waiting on the queue.
OSQPostOpt() can actually replace OSQPost() and OSQPostFront() because you specify the mode of
operation via an option argument, opt. Doing this allows you to reduce the amount of code space needed by
µC/OS-II.

Arguments
pevent is a pointer to the queue. This pointer is returned to your application when the queue is created

[see OSQCreate()].
pmsg is the actual message sent to the task(s). pmsg is a pointer-sized variable, and what pmsg points

to is application specific. As of V2.60, you are now allowed to post a NULL pointer.
opt determines the type of POST performed:

OS_POST_OPT_NONE POST to a single waiting task [identical to OSQPost()].

OS_POST_OPT_BROADCAST POST to all tasks waiting on the queue.

OS_POST_OPT_FRONT POST as LIFO [simulates OSQPostFront()].

OS_POST_OPT_NO_SCHED Do not call the scheduler after the post.

 Below is a list of some of the possible combination of these flags:

OS_POST_OPT_NONE is identical to OSQPost()

OS_POST_OPT_FRONT is identical to OSQPostFront()

OS_POST_OPT_BROADCAST is identical to OSQPost() but broadcasts pmsg to all waiting
tasks

OS_POST_OPT_FRONT + OS_POST_OPT_BROADCAST

 is identical to OSQPostFront() except that broadcasts pmsg
to all waiting tasks.

OS_POST_OPT_FRONT + OS_POST_OPT_BROADCAST + OS_POST_OPT_NO_SCHED

 is identical to OSQPostFront() except that broadcasts pmsg
to all waiting tasks and the scheduler will not be called

 489

Returned Value
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the

following:

OS_ERR_NONE if the call is successful and the message has been sent.

OS_ERR_Q_FULL if the queue can no longer accept messages because it is full.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

2. If you need to use this function and want to reduce code space, you can disable code generation of
OSQPost() (set OS_Q_POST_EN to 0 in OS_CFG.H) and OSQPostFront() (set OS_Q_POST_FRONT_EN
to 0 in OS_CFG.H) because OSQPostOpt() can emulate these two functions.

3. The execution time of OSQPostOpt() depends on the number of tasks waiting on the queue if you set opt
to OS_POST_OPT_BROADCAST.

Example

OS_EVENT *CommQ;

INT8U CommRxBuf[100];

void CommRxTask (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSQPostOpt(CommQ,

 (void *)&CommRxBuf[0],

 OS_POST_OPT_BROADCAST);

 .

 .

 }

}

 490

OSQQuery()
INT8U OSQQuery(OS_EVENT *pevent,
 OS_Q_DATA *p_q_data);

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_QUERY_EN

OSQQuery() obtains information about a message queue. Your application must allocate an OS_Q_DATA data
structure used to receive data from the event control block of the message queue. OSQQuery() allows you to
determine whether any tasks are waiting for messages at the queue, how many tasks are waiting (by counting
the number of 1s in the .OSEventTbl[] field), how many messages are in the queue, and what the message
queue size is. OSQQuery() also obtains the next message that is returned if the queue is not empty. Note that
the size of .OSEventTbl[] is established by the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the queue is

created [see OSQCreate()].
pdata is a pointer to a data structure of type OS_Q_DATA, which contains the following fields

void *OSMsg; /* Next message if one available */

INT16U OSNMsgs; /* Number of messages in the queue */

INT16U OSQSize; /* Size of the message queue */

#if OS_LOWEST_PRIO <= 63

INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Message queue wait list */

INT8U OSEventGrp;

#else

INT16U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Message queue wait list */

INT16U OSEventGrp;

#endif

Returned Value
OSQQuery() returns one of these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PDATA_NULL if p_q_data is a NULL pointer.

Notes/Warnings
1. Message queues must be created before they are used.

 491

Example

OS_EVENT *CommQ;

void Task (void *p_arg)

{

 OS_Q_DATA qdata;

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSQQuery(CommQ, &qdata);

 if (err == OS_ERR_NONE) {

 . /* 'qdata' can be examined! */

 }

 .

 .

 }

}

 492

OSSchedLock()
void OSSchedLock(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Task or ISR OS_SCHED_LOCK_EN

OSSchedLock() prevents task rescheduling until its counterpart, OSSchedUnlock(), is called. The task that
calls OSSchedLock() keeps control of the CPU even though other higher priority tasks are ready to run.
However, interrupts are still recognized and serviced (assuming interrupts are enabled). OSSchedLock() and
OSSchedUnlock() must be used in pairs. µC/OS-II allows OSSchedLock() to be nested up to 255 levels
deep. Scheduling is enabled when an equal number of OSSchedUnlock() calls have been made.

Arguments
none

Returned Value
none

Notes/Warnings
1. After calling OSSchedLock(), your application must not make system calls that suspend execution of the

current task; that is, your application cannot call OSTimeDly(), OSTimeDlyHMSM(), OSFlagPend(),
OSSemPend(), OSMutexPend(), OSMboxPend(), or OSQPend(). Because the scheduler is locked out,
no other task is allowed to run, and your system will lock up.

Example

void TaskX (void *p_arg)

{

 (void)p_arg;

 for (;;) {

 .

 OSSchedLock(); /* Prevent other tasks to run */

 .

 . /* Code protected from context switch */

 .

 OSSchedUnlock(); /* Enable other tasks to run */

 .

 }

}

 493

OSSchedUnlock()
void OSSchedUnlock(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Task or ISR OS_SCHED_LOCK_EN

OSSchedUnlock() re-enables task scheduling whenever it is paired with OSSchedLock().

Arguments
none

Returned Value
none

Notes/Warnings
1. After calling OSSchedLock(), your application must not make system calls that suspend execution of the

current task; that is, your application cannot call OSTimeDly(), OSTimeDlyHMSM(), OSFlagPend(),
OSSemPend(), OSMutexPend(), OSMboxPend(), or OSQPend(). Because the scheduler is locked out,
no other task is allowed to run, and your system will lock up.

Example

void TaskX (void *p_arg)

{

 (void)p_arg;

 for (;;) {

 .

 OSSchedLock(); /* Prevent other tasks to run */

 .

 . /* Code protected from context switch */

 .

 OSSchedUnlock(); /* Enable other tasks to run */

 .

 }

}

 494

OSSemAccept()
INT16U OSSemAccept(OS_EVENT *pevent);

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN &&

OS_SEM_ACCEPT_EN

OSSemAccept() checks to see if a resource is available or an event has occurred. Unlike OSSemPend(),
OSSemAccept() does not suspend the calling task if the resource is not available. In other words,
OSSemAccept() is non-blocking. Use OSSemAccept() from an ISR to obtain the semaphore.

Arguments
pevent is a pointer to the semaphore that guards the resource. This pointer is returned to your

application when the semaphore is created [see OSSemCreate()].

Returned Value
When OSSemAccept() is called and the semaphore value is greater than 0, the semaphore value is
decremented, and the value of the semaphore before the decrement is returned to your application. If the
semaphore value is 0 when OSSemAccept() is called, the resource is not available, and 0 is returned to your
application.

Notes/Warnings
1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void Task (void *p_arg)

{

 INT16U value;

 (void)p_arg;

 for (;;) {

 value = OSSemAccept(DispSem); /* Check resource availability */

 if (value > 0) {

 . /* Resource available, process */

 .

 }

 .

 .

 }

}

 495

OSSemCreate()
OS_EVENT *OSSemCreate(INT16U value);

Chapter File Called from Code enabled by
7 OS_SEM.C Task or startup code OS_SEM_EN

OSSemCreate() creates and initializes a semaphore. A semaphore
• allows a task to synchronize with either an ISR or a task (you initialize the semaphore to 0),

• gains exclusive access to a resource (you initialize the semaphore to a value greater than 0), and

• signals the occurrence of an event (you initialize the semaphore to 0).

Arguments
value is the initial value of the semaphore and can be between 0 and 65,535. A value of 0 indicates

that a resource is not available or an event has not occurred.

Returned Value
OSSemCreate() returns a pointer to the event control block allocated to the semaphore. If no event control
block is available, OSSemCreate() returns a NULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void main (void)

{

 .

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 .

 DispSem = OSSemCreate(1); /* Create Display Semaphore */

 .

 .

 OSStart(); /* Start Multitasking */

}

 496

OSSemDel()
OS_EVENT *OSSemDel(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

Chapter File Called from Code enabled by
7 OS_SEM.C Task OS_SEM_EN and OS_SEM_DEL_EN

OSSemDel() is used to delete a semaphore. This function is dangerous to use because multiple tasks could
attempt to access a deleted semaphore. You should always use this function with great care. Generally
speaking, before you delete a semaphore, you must first delete all the tasks that can access the semaphore.

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [see OSSemCreate()].
opt specifies whether you want to delete the semaphore only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the semaphore regardless of whether
tasks are pending or not (OS_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

OS_ERR_NONE if the call is successful and the semaphore has been deleted.

OS_ERR_DEL_ISR if you attempt to delete the semaphore from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the
opt argument.

OS_ERR_TASK_WAITING if one or more tasks are waiting on the semaphore.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the semaphore is deleted or pevent if the semaphore is not deleted. In the latter case, you
need to examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the semaphore.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the semaphore.

 497

Example

OS_EVENT *DispSem;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 DispSem = OSSemDel(DispSem, OS_DEL_ALWAYS, &err);

 if (DispSem == (OS_EVENT *)0) {

 /* Semaphore has been deleted */

 }

 .

 .

 }

}

 498

OSSemPend()
void OSSemPend(OS_EVENT *pevent,
 INT16U timeout,
 INT8U *perr);

Chapter File Called from Code enabled by
7 OS_SEM.C Task only OS_SEM_EN

OSSemPend() is used when a task wants exclusive access to a resource, needs to synchronize its activities with
an ISR or a task, or is waiting until an event occurs. If a task calls OSSemPend() and the value of the
semaphore is greater than 0, OSSemPend() decrements the semaphore and returns to its caller. However, if the
value of the semaphore is 0, OSSemPend() places the calling task in the waiting list for the semaphore. The
task waits until a task or an ISR signals the semaphore or the specified timeout expires. If the semaphore is
signaled before the timeout expires, µC/OS-II resumes the highest priority task waiting for the semaphore. A
pended task that has been suspended with OSTaskSuspend() can obtain the semaphore. However, the task
remains suspended until it is resumed by calling OSTaskResume().

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [see OSSemCreate()].
timeout allows the task to resume execution if a message is not received from the mailbox within the

specified number of clock ticks. A timeout value of 0 indicates that the task waits forever for
the message. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count begins decrementing on the next clock
tick, which could potentially occur immediately.

perr is a pointer to a variable used to hold an error code. OSSemPend() sets *perr to one of the
following:

OS_ERR_NONE if the semaphore is available.

OS_ERR_TIMEOUT if the semaphore is not signaled within the specified timeout.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEND_ISR if you called this function from an ISR and µC/OS-II has to
suspend it. You should not call OSSemPend() from an ISR.
µC/OS-II checks for this situation.

OS_ERR_PEND_LOCKED if you called this function when the scheduler is locked.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
none

Notes/Warnings
1. Semaphores must be created before they are used.

 499

Example

OS_EVENT *DispSem;

void DispTask (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 OSSemPend(DispSem, 0, &err);

 . /* The only way this task continues is if _ */

 . /* _ the semaphore is signaled! */

 }

}

 500

OSSemPendAbort()
void *OSSemPendAbort(OS_EVENT *pevent,
 INT8U opt,
 INT8U *perr);

New Function File Called from Code enabled by
V2.84 OS_SEM.C Task only OS_SEM_EN

&&
OS_SEM_PEND_ABORT_EN

OSSemPendAbort() aborts & readies any tasks currently waiting on a semaphore. This function should be
used to fault-abort the wait on the semaphore, rather than to normally signal the semaphore via OSSemPost().

Arguments
pevent is a pointer to the semaphore for which pend(s) need to be aborted. This pointer is returned to

your application when the semaphore is created [see OSSemCreate()].
opt determines what type of abort is performed.

OS_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the
semaphore.

OS_PEND_OPT_BROADCAST Aborts the pend of all the tasks waiting on the semaphore.

perr is a pointer to a variable that holds an error code. OSSemPendAbort() sets *perr to one of
the following:

OS_ERR_NONE if no tasks were waiting on the semaphore. In this case, the
return value is also 0.

OS_ERR_PEND_ABORT at least one task waiting on the semaphore was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the semaphore was aborted.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
OSSemPendAbort() returns the number of tasks made ready to run by this function. Zero indicates that no
tasks were pending on the semaphore and thus this function had no effect.

Notes/Warnings
1. Semaphores must be created before they are used.

 501

Example

OS_EVENT *CommSem;

void CommTask(void *p_arg)

{

 INT8U err;

 INT8U nbr_tasks;

 (void)p_arg;

 for (;;) {

 .

 .

 nbr_tasks = OSSemPendAbort(CommSem, OS_PEND_OPT_BROADCAST, &err);

 if (err == OS_ERR_NONE) {

 .

 . /* No tasks were waiting on the semaphore */

 .

 } else {

 .

 . /* All pends of tasks waiting on semaphore were aborted … */

 . /* … ‘nbr_tasks’ indicates how many were made ready. */

 .

 }

 .

 .

 }

}

 502

OSSemPost()
INT8U OSSemPost(OS_EVENT *pevent);

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN

A semaphore is signaled by calling OSSemPost(). If the semaphore value is 0 or more, it is incremented, and
OSSemPost() returns to its caller. If tasks are waiting for the semaphore to be signaled, OSSemPost()
removes the highest priority task pending for the semaphore from the waiting list and makes this task ready to
run. The scheduler is then called to determine if the awakened task is now the highest priority task ready to run.

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [see OSSemCreate()].

Returned Value
OSSemPost() returns one of these error codes:

OS_ERR_NONE if the semaphore is signaled successfully.

OS_ERR_SEM_OVF if the semaphore count overflows.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

 503

Example

OS_EVENT *DispSem;

void TaskX (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSSemPost(DispSem);

 switch (err) {
 case OS_ERR_NONE:

 /* Semaphore signaled */
 break;

 case OS_ERR_SEM_OVF:

 /* Semaphore has overflowed */
 break;

 .

 .

 }

 .

 .

 }

}

 504

OSSemQuery()
INT8U OSSemQuery(OS_EVENT *pevent,
 OS_SEM_DATA *p_sem_data);

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN && OS_SEM_QUERY_EN

OSSemQuery() obtains information about a semaphore. Your application must allocate an OS_SEM_DATA data
structure used to receive data from the event control block of the semaphore. OSSemQuery() allows you to
determine whether any tasks are waiting on the semaphore and how many tasks are waiting (by counting the
number of 1s in the .OSEventTbl[] field) and obtains the semaphore count. Note that the size of
.OSEventTbl[] is established by the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [see OSSemCreate()].
P_sem_data is a pointer to a data structure of type OS_SEM_DATA, which contains the following fields

INT16U OSCnt; /* Current semaphore count */

#if OS_LOWEST_PRIO <= 63

INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Semaphore wait list */

INT8U OSEventGrp;

#else

INT16U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Semaphore wait list */

INT16U OSEventGrp;

#endif

Returned Value
OSSemQuery() returns one of these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a semaphore.

OS_ERR_PEVENT_NULL if pevent is is a NULL pointer.

OS_ERR_PDATA_NULL if p_sem_data is is a NULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

 505

Example
In this example, the contents of the semaphore is checked to determine the highest priority task waiting at the
time the function call was made.

OS_EVENT *DispSem;

void Task (void *p_arg)

{

 OS_SEM_DATA sem_data;

 INT8U err;

 INT8U highest; /* Highest priority task waiting on sem. */

 INT8U x;

 INT8U y;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSSemQuery(DispSem, &sem_data);

 if (err == OS_ERR_NONE) {

 /* Examine sem_data */

 .

 .

 }

 }

 .

 .

 }

}

 506

OSSemSet()
void OSSemSet(OS_EVENT *pevent,
 INT16U cnt,
 INT8U *perr);

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN && OS_SEM_SET_EN

OSSemSet() is used to change the current value of the semaphore count. This function would normally be
used when a semaphore is used as a signaling mechanism. OSSemSet() can then be used to reset the count to
any value. If the semaphore count is already 0 then, the count is only changed if there are no tasks waiting on
the semaphore.

Arguments
pevent is a pointer to the semaphore that is used as a signaling mechanism. This pointer is returned to

your application when the semaphore is created [see OSSemCreate()].
cnt is the desired count that you want the semaphore set to.
perr is a pointer to a variable used to hold an error code. OSSemSet() sets *perr to one of the

following:

OS_ERR_NONE if the count was changed or, not changed because there was
one or more tasks waiting on the semaphore.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_TASK_WAITING if tasks are waiting on the semaphore.

Returned Value
None

Notes/Warnings
1. You should NOT use this function if the semaphore is used to protect a shared resource.

 507

Example

OS_EVENT *SignalSem;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSSemSet(SignalSem, 0, &err); /* Reset the semaphore count */

 .

 .

 }

}

 508

OSStart()
void OSStart(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

OSStart() starts multitasking under µC/OS-II. This function is typically called from your startup code but
after you call OSInit().

Arguments
none

Returned Value
none

Notes/Warnings
1. OSInit() must be called prior to calling OSStart(). OSStart() should only be called once by your

application code. If you do call OSStart() more than once, it does not do anything on the second and
subsequent calls.

Example

void main (void)

{

 . /* User Code */

 .

 OSInit(); /* Initialize µC/OS-II */

 . /* User Code */

 .

 OSStart(); /* Start Multitasking */
 /* Any code here should NEVER be executed! */

}

 509

OSStatInit()
void OSStatInit(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only OS_TASK_STAT_EN &&

OS_TASK_CREATE_EXT_EN

OSStatInit() determines the maximum value that a 32-bit counter can reach when no other task is executing.
This function must be called when only one task is created in your application and when multitasking has
started; that is, this function must be called from the first and, only, task created.

Arguments
none

Returned Value
none

Notes/Warnings
none

Example

void FirstAndOnlyTask (void *p_arg)

{

 .

 .

 OSStatInit(); /* Compute CPU capacity with no task running */

 .

 OSTaskCreate(_); /* Create the other tasks */

 OSTaskCreate(_);

 .

 for (;;) {

 .

 .

 }

}

 510

OSTaskChangePrio()
INT8U OSTaskChangePrio(INT8U oldprio,
 INT8U newprio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_CHANGE_PRIO_EN

OSTaskChangePrio() changes the priority of a task.

Arguments
oldprio is the priority number of the task to change.
newprio is the new task’s priority.

Returned Value
OSTaskChangePrio() returns one of the following error codes:

OS_ERR_NONE if the task’s priority is changed.

OS_ERR_PRIO_INVALID if either the old priority or the new priority is equal to or
exceeds OS_LOWEST_PRIO.

OS_ERR_PRIO_EXIST if newprio already exists.

OS_ERR_PRIO if no task with the specified old priority exists (i.e., the task
specified by oldprio does not exist).

OS_ERR_TASK_NOT_EXITS if the task is assigned to a Mutex PIP.

Notes/Warnings
1. The desired priority must not already have been assigned; otherwise, an error code is returned. Also,

OSTaskChangePrio() verifies that the task to change exists.

Example

void TaskX (void *p_arg)

{

 INT8U err;

 for (;;) {

 .

 .

 err = OSTaskChangePrio(10, 15);

 .

 .

 }

}

 511

OSTaskCreate()
INT8U OSTaskCreate(void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code OS_TASK_CREATE_EN

OSTaskCreate() creates a task so it can be managed by µC/OS-II. Tasks can be created either prior to the
start of multitasking or by a running task. A task cannot be created by an ISR. A task must be written as an
infinite loop, as shown below, and must not return.

OSTaskCreate() is used for backward compatibility with µC/OS and when the added features of
OSTaskCreateExt() are not needed.

Depending on how the stack frame is built, your task has interrupts either enabled or disabled. You need to
check with the processor-specific code for details.

void Task (void *p_arg)

{

 . /* Do something with 'pdata' */

 for (;;) { /* Task body, always an infinite loop. */

 .

 .

 /* Must call one of the following services: */

 /* OSMboxPend() */

 /* OSFlagPend() */

 /* OSMutexPend() */

 /* OSQPend() */

 /* OSSemPend() */

 /* OSTimeDly() */

 /* OSTimeDlyHMSM() */

 /* OSTaskSuspend() (Suspend self) */

 /* OSTaskDel() (Delete self) */

 .

 .

 }

}

 512

Arguments
task is a pointer to the task’s code.
pdata is a pointer to an optional data area used to pass parameters to the task when it is created.

Where the task is concerned, it thinks it is invoked and passes the argument pdata. pdata can
be used to pass arguments to the task created. For example, you can create a generic task that
handles an asynchronous serial port. pdata can be used to pass this task information about the
serial port it has to manage: the port address, the baud rate, the number of bits, the parity, and
more.

ptos is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt. The size of the stack is
determined by the task’s requirements and the anticipated interrupt nesting. Determining the
size of the stack involves knowing how many bytes are required for storage of local variables
for the task itself and all nested functions, as well as requirements for interrupts (accounting for
nesting). If the configuration constant OS_STK_GROWTH is set to 1, the stack is assumed to grow
downward (i.e., from high to low memory). ptos thus needs to point to the highest valid
memory location on the stack. If OS_STK_GROWTH is set to 0, the stack is assumed to grow in
the opposite direction (i.e., from low to high memory).

prio is the task priority. A unique priority number must be assigned to each task, and the lower the
number, the higher the priority (i.e., the task importance).

Returned Value
OSTaskCreate() returns one of the following error codes:

OS_ERR_NONE if the function is successful.

OS_ERR_PRIO_EXIST if the requested priority already exists.

OS_ERR_PRIO_INVALID if prio is higher than OS_LOWEST_PRIO.

OS_ERR_NO_MORE_TCB if µC/OS-II doesn’t have any more OS_TCBs to assign.

OS_ERR_TASK_CREATE_ISR if you attempted to create the task from an ISR.

Notes/Warnings
1. The stack for the task must be declared with the OS_STK type.

2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire, suspend the
task, or wait for an event to occur (wait on a mailbox, queue, or semaphore). This allows other tasks to
gain control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1, and OS_LOWEST_PRIO because they are reserved for use by µC/OS-II.

 513

Example 1
This example shows that the argument that Task1() receives is not used, so the pointer pdata is set to NULL.
Note that I assume the stack grows from high to low memory because I pass the address of the highest valid
memory location of the stack Task1Stk[]. If the stack grows in the opposite direction for the processor you
are using, pass &Task1Stk[0] as the task’s top-of-stack.

Assigning pdata to itself is used to prevent compilers from issuing a warning about the fact that pdata is
not being used. In other words, if I had not added this line, some compilers would have complained about
‘WARNING - variable pdata not used.’

OS_STK Task1Stk[1024];

void main (void)

{

 INT8U err;

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 OSTaskCreate(Task1,

 (void *)0,

 &Task1Stk[1023],

 25);

 .

 OSStart(); /* Start Multitasking */

}

void Task1 (void *p_arg)

{

 (void)p_arg; /* Prevent compiler warning */

 for (;;) {

 . /* Task code */

 .

 }

}

 514

Example 2
You can create a generic task that can be instantiated more than once. For example, a task that handles a serial
port could be passed the address of a data structure that characterizes the specific port (i.e., port address and
baud rate). Note that each task has its own stack space and its own (different) priority. In this example, I
arbitrarily decided that COM1 is the most important port of the two.

OS_STK *Comm1Stk[1024];

COMM_DATA Comm1Data; /* Data structure containing COMM port */

 /* Specific data for channel 1 */

OS_STK *Comm2Stk[1024];

COMM_DATA Comm2Data; /* Data structure containing COMM port */

 /* Specific data for channel 2 */

void main (void)

{

 INT8U err;

 .

 OSInit(); /* Initialize µC/OS-II */

 .
 /* Create task to manage COM1 */

 OSTaskCreate(CommTask,

 (void *)&Comm1Data,

 &Comm1Stk[1023],

 25);
 /* Create task to manage COM2 */

 OSTaskCreate(CommTask,

 (void *)&Comm2Data,

 &Comm2Stk[1023],

 26);

 .

 OSStart(); /* Start Multitasking */

}

void CommTask (void *p_arg) /* Generic communication task */

{

 for (;;) {

 . /* Task code */

 .

 }

}

 515

OSTaskCreateExt()
INT8U OSTaskCreateExt(void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt);

Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code N/A

OSTaskCreateExt() creates a task to be managed by µC/OS-II. This function serves the same purpose as
OSTaskCreate(), except that it allows you to specify additional information about your task to µC/OS-II.
Tasks can be created either prior to the start of multitasking or by a running task. A task cannot be created by
an ISR. A task must be written as an infinite loop, as shown below, and must not return. Depending on how the
stack frame is built, your task has interrupts either enabled or disabled. You need to check with the processor-
specific code for details. Note that the first four arguments are exactly the same as the ones for
OSTaskCreate(). This was done to simplify the migration to this new and more powerful function. It is
highly recommended that you use OSTaskCreateExt() instead of the older OSTaskCreate() function
because it’s much more flexible.

void Task (void *p_arg)

{

 . /* Do something with 'pdata' */

 for (;;) { /* Task body, always an infinite loop. */

 .

 .

 /* Must call one of the following services: */

 /* OSMboxPend() */

 /* OSFlagPend() */

 /* OSMutexPend() */

 /* OSQPend() */

 /* OSSemPend() */

 /* OSTimeDly() */

 /* OSTimeDlyHMSM() */

 /* OSTaskSuspend() (Suspend self) */

 /* OSTaskDel() (Delete self) */

 .

 .

 }

}

 516

Arguments
task is a pointer to the task’s code.
pdata is a pointer to an optional data area, which is used to pass parameters to the task when it is

created. Where the task is concerned, it thinks it is invoked and passes the argument pdata.
pdata can be used to pass arguments to the task created. For example, you can create a
generic task that handles an asynchronous serial port. pdata can be used to pass this task
information about the serial port it has to manage: the port address, the baud rate, the number of
bits, the parity, and more.

ptos is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt.

The size of this stack is determined by the task’s requirements and the anticipated interrupt
nesting. Determining the size of the stack involves knowing how many bytes are required for
storage of local variables for the task itself and all nested functions, as well as requirements for
interrupts (accounting for nesting).

If the configuration constant OS_STK_GROWTH is set to 1, the stack is assumed to grow
downward (i.e., from high to low memory). ptos thus needs to point to the highest valid
memory location on the stack. If OS_STK_GROWTH is set to 0, the stack is assumed to grow in
the opposite direction (i.e., from low to high memory).

prio is the task priority. A unique priority number must be assigned to each task: the lower the
number, the higher the priority (i.e., the importance) of the task.

id is the task’s ID number. At this time, the ID is not currently used in any other function and has
simply been added in OSTaskCreateExt() for future expansion. You should set id to the
same value as the task’s priority.

pbos is a pointer to the task’s bottom-of-stack. If the configuration constant OS_STK_GROWTH is set
to 1, the stack is assumed to grow downward (i.e., from high to low memory); thus, pbos must
point to the lowest valid stack location. If OS_STK_GROWTH is set to 0, the stack is assumed to
grow in the opposite direction (i.e., from low to high memory); thus, pbos must point to the
highest valid stack location. pbos is used by the stack-checking function OSTaskStkChk().

stk_size specifies the size of the task’s stack in number of elements. If OS_STK is set to INT8U, then
stk_size corresponds to the number of bytes available on the stack. If OS_STK is set to
INT16U, then stk_size contains the number of 16-bit entries available on the stack. Finally, if
OS_STK is set to INT32U, then stk_size contains the number of 32-bit entries available on the
stack.

pext is a pointer to a user-supplied memory location (typically a data structure) used as a TCB
extension. For example, this user memory can hold the contents of floating-point registers
during a context switch, the time each task takes to execute, the number of times the task is
switched in, and so on.

opt contains task-specific options. The lower 8 bits are reserved by µC/OS-II, but you can use the
upper 8 bits for application-specific options. Each option consists of one or more bits. The
option is selected when the bit(s) is set. The current version of µC/OS-II supports the following
options:

OS_TASK_OPT_NONE specifies that there are no options.

OS_TASK_OPT_STK_CHK specifies whether stack checking is allowed for the task.

OS_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.

OS_TASK_OPT_SAVE_FP specifies whether floating-point registers are saved. This option
is only valid if your processor has floating-point hardware and
the processor-specific code saves the floating-point registers.

 Refer to uCOS_II.H for other options.

 517

Returned Value
OSTaskCreateExt() returns one of the following error codes:

OS_ERR_NONE if the function is successful.

OS_ERR_PRIO_EXIST if the requested priority already exists.

OS_ERR_PRIO_INVALID if prio is higher than OS_LOWEST_PRIO.

OS_ERR_NO_MORE_TCB if µC/OS-II doesn’t have any more OS_TCBs to assign.

OS_ERR_TASK_CREATE_ISR if you attempted to create the task from an ISR.

Notes/Warnings
1. The stack must be declared with the OS_STK type.

2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire, suspend the
task, or wait an event to occur (wait on a mailbox, queue, or semaphore). This allows other tasks to gain
control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1, and OS_LOWEST_PRIO because they are reserved for use by µC/OS-II.

Example 1

E1(1) The task control block is extended using a user-defined data structure called OS_TASK_USER_DATA,
which in this case contains the name of the task as well as other fields.

E1(2) The task name is initialized with the standard library function strcpy().

E1(4) Note that stack checking has been enabled for this task, so you are allowed to call
OSTaskStkChk().

E1(3) Also, assume here that the stack grows downward on the processor used (i.e., OS_STK_GROWTH is set
to 1; TOS stands for top-of-stack and BOS stands for bottom-of-stack).

 518

typedef struct { /* User defined data structure */ (1)

 char OSTaskName[20];

 INT16U OSTaskCtr;

 INT16U OSTaskExecTime;

 INT32U OSTaskTotExecTime;

} OS_TASK_USER_DATA;

OS_STK TaskStk[1024];

TASK_USER_DATA TaskUserData;

void main (void)

{

 INT8U err;

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 strcpy(TaskUserData.TaskName, "MyTaskName"); /* Name of task */ (2)

 err = OSTaskCreateExt(Task,

 (void *)0,

 &TaskStk[1023], /* Stack grows down (TOS) */ (3)

 10,

 &TaskStk[0], /* Stack grows down (BOS) */ (3)

 1024,

 (void *)&TaskUserData, /* TCB Extension */

 OS_TASK_OPT_STK_CHK); /* Stack checking enabled */ (4)

 .

 OSStart(); /* Start Multitasking */

}

void Task(void *p_arg)

{

 (void)p_arg; /* Avoid compiler warning */

 for (;;) {

 . /* Task code */

 .

 }

}

Example 2

E2(1) We now create a task, but this time on a processor for which the stack grows upward. The Intel
MCS-51 is an example of such a processor. In this case, OS_STK_GROWTH is set to 0.

 519

E2(2) Note that stack checking has been enabled for this task so you are allowed to call OSTaskStkChk()
(TOS stands for top-of-stack and BOS stands for bottom-of-stack).

OS_STK *TaskStk[1024];

void main (void)

{

 INT8U err;

 .

 OSInit(); /* Initialize µC/OS-II */

 .

 err = OSTaskCreateExt(Task,

 (void *)0,

 &TaskStk[0], /* Stack grows up (TOS) */ (1)

 10,

 10,

 &TaskStk[1023], /* Stack grows up (BOS) */ (1)

 1024,

 (void *)0,

 OS_TASK_OPT_STK_CHK); /* Stack checking enabled */ (2)

 .

 OSStart(); /* Start Multitasking */

}

void Task (void *p_arg)

{

 (void)p_arg; /* Avoid compiler warning */

 for (;;) {

 . /* Task code */

 .

 }

}

 520

OSTaskDel()
INT8U OSTaskDel(INT8U prio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_DEL_EN

OSTaskDel() deletes a task by specifying the priority number of the task to delete. The calling task can be
deleted by specifying its own priority number or OS_PRIO_SELF (if the task doesn’t know its own priority
number). The deleted task is returned to the dormant state. The deleted task can be re-created by calling either
OSTaskCreate() or OSTaskCreateExt() to make the task active again.

Arguments
prio is the priority number of the task to delete. You can delete the calling task by passing

OS_PRIO_SELF, in which case the next highest priority task is executed.

Returned Value
OSTaskDel() returns one of the following error codes:

OS_ERR_NONE if the task doesn’t delete itself.

OS_ERR_TASK_IDLE if you try to delete the idle task, which is of course is not
allowed.

OS_ERR_TASK_DEL if the task to delete does not exist.
OS_ERR_PRIO_INVALID if you specify a task priority higher than

OS_LOWEST_PRIO.
OS_ERR_TASK_DEL_ISR if you try to delete a task from an ISR.

OS_ERR_TASK_DEL if the task is assigned to a Mutex.

OS_ERR_TASK_NOT_EXIST if the task is assigned to a Mutex PIP.

Notes/Warnings
1. OSTaskDel() verifies that you are not attempting to delete the µC/OS-II idle task.

2. You must be careful when you delete a task that owns resources. Instead, consider using
OSTaskDelReq() as a safer approach.

 521

Example

void TaskX (void *p_arg)

{

 INT8U err;

 for (;;) {

 .

 .

 err = OSTaskDel(10); /* Delete task with priority 10 */

 if (err == OS_ERR_NONE) {

 . /* Task was deleted */

 .

 }

 .

 .

 }

}

 522

OSTaskDelReq()
INT8U OSTaskDelReq(INT8U prio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_DEL_EN

OSTaskDelReq() requests that a task delete itself. Basically, use OSTaskDelReq() when you need to delete a
task that can potentially own resources (e.g., the task might own a semaphore). In this case, you don’t want to
delete the task until the resource is released. The requesting task calls OSTaskDelReq() to indicate that the
task needs to be deleted. Deletion of the task is, however, deferred to the task being deleted. In other words, the
task is actually deleted when it regains control of the CPU. For example, suppose Task 10 needs to be deleted.
The task wanting to delete this task (example Task 5) calls OSTaskDelReq(10). When Task 10 executes, it
calls OSTaskDelReq(OS_PRIO_SELF) and monitors the return value. If the return value is
OS_ERR_TASK_DEL_REQ, then Task 10 is asked to delete itself. At this point, Task 10 calls
OSTaskDel(OS_PRIO_SELF). Task 5 knows whether Task 10 has been deleted by calling
OSTaskDelReq(10) and checking the return code. If the return code is OS_ERR_TASK_NOT_EXIST, then Task
5 knows that Task 10 has been deleted. Task 5 might have to check periodically until
OS_ERR_TASK_NOT_EXIST is returned.

Arguments
prio is the task’s priority number of the task to delete. If you specify OS_PRIO_SELF, you are

asking whether another task wants the current task to be deleted.

Returned Value
OSTaskDelReq() returns one of the following error codes:

OS_ERR_NONE if the task deletion has been registered.

OS_ERR_TASK_NOT_EXIST if the task does not exist. The requesting task can monitor this
return code to see if the task is actually deleted.

OS_ERR_TASK_IDLE if you ask to delete the idle task (which is obviously not
allowed).

OS_ERR_PRIO_INVALID if you specify a task priority higher than
OS_LOWEST_PRIO or do not specify OS_PRIO_SELF.

OS_ERR_TASK_DEL if the task is assigned to a Mutex.

OS_ERR_TASK_DEL_REQ if a task (possibly another task) requests that the running task
be deleted.

Notes/Warnings
1. OSTaskDelReq() verifies that you are not attempting to delete the µC/OS-II idle task.

 523

Example

void TaskThatDeletes (void *p_arg) /* My priority is 5 */

{

 INT8U err;

 for (;;) {

 .

 .

 err = OSTaskDelReq(10); /* Request task #10 to delete itself */

 if (err == OS_ERR_NONE) {

 while (err != OS_ERR_TASK_NOT_EXIST) {

 err = OSTaskDelReq(10);

 OSTimeDly(1); /* Wait for task to be deleted */

 }

 . /* Task #10 has been deleted */

 }

 .

 .

 }

}

void TaskToBeDeleted (void *p_arg) /* My priority is 10 */

{

 .

 .

 (void)p_arg;

 for (;;) {

 OSTimeDly(1);

 if (OSTaskDelReq(OS_PRIO_SELF) == OS_ERR_TASK_DEL_REQ) {

 /* Release any owned resources; */

 /* De-allocate any dynamic memory; */

 OSTaskDel(OS_PRIO_SELF);

 }

 }

}

 524

OSTaskNameGet()
INT8U OSTaskNameGet(INT8U prio,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_TASK.C Task OS_TASK_NAME_SIZE

OSTaskNameGet() allows you to obtain the name that you assigned to a task. The name is an ASCII string
and the size of the name can contain up to OS_TASK_NAME_SIZE characters (including the NUL termination).
This function is typically used by a debugger to allow associating a name to a task.

Arguments
prio is the priority of the task from which you would like to obtain the name from. If you specify

OS_PRIO_SELF, you would obtain the name of the current task.
pname is a pointer to an ASCII string that will receive the name of the task. The string must be able to

hold at least OS_TASK_NAME_SIZE characters (including the NUL character).
perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the task was copied to the array pointed to by
pname.

OS_ERR_TASK_NOT_EXIST The task you specified was not created or has been deleted.

OS_ERR_PRIO_INVALID If you specified an invalid priority - a priority higher than the
idle task (OS_LOWEST_PRIO) or you didn't specify
OS_PRIO_SELF.

OS_ERR_PNAME_NULL If you passed a NULL pointer for pname.

OS_ERR_NAME_GET_ISR You called this function from an ISR.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

Notes/Warnings
1. The task must be created before you can use this function and obtain the name of the task.

2. You must ensure that you have sufficient storage in the destination string to hold the name of the task.

 525

Example

INT8U EngineTaskName[30];

void Task (void *p_arg)

{

 INT8U err;

 INT8U size;

 (void)p_arg;

 for (;;) {

 size = OSTaskNameGet(OS_PRIO_SELF, &EngineTaskName[0], &err);

 .

 .

 }

}

 526

OSTaskNameSet()
void OSTaskNameSet(INT8U prio,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 OS_TASK.C Task OS_TASK_NAME_SIZE

OSTaskNameSet() allows you to assign a name to a task. The name is an ASCII string and the size of the
name can contain up to OS_TASK_NAME_SIZE characters (including the NUL termination). This function is
typically used by a debugger to allow associating a name to a task.

Arguments
prio is the priority of the task that you want to name. If you specify OS_PRIO_SELF, you would set

the name of the current task.
pname is a pointer to an ASCII string that hold the name of the task. The string must be smaller than

or equal to OS_TASK_NAME_SIZE characters (including the NUL character).
perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the task was set.

OS_ERR_TASK_NOT_EXIST The task you specified was not created or has been
deleted.

OS_ERR_PRIO_INVALID If you specified an invalid priority - a priority higher than
the idle task (OS_LOWEST_PRIO) or you didn't specify
OS_PRIO_SELF.

OS_ERR_TASK_NAME_TOO_LONG If the name you are giving to the task exceeds the storage
capacity of a task name as specified by
OS_TASK_NAME_SIZE.

OS_ERR_PNAME_NULL If you passed a NULL pointer for pname.

OS_ERR_NAME_SET_ISR You called this function from an ISR.

Returned Values
None.

Notes/Warnings
1. The task must be created before you can use this function to set the name of the task.

 527

Example

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSTaskNameSet(OS_PRIO_SELF, “Engine Task”, &err);

 .

 .

 }

}

 528

OSTaskResume()
INT8U OSTaskResume(INT8U prio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_SUSPEND_

EN

OSTaskResume() resumes a task suspended through the OSTaskSuspend() function. In fact,
OSTaskResume() is the only function that can unsuspend a suspended task.

Arguments
prio specifies the priority of the task to resume.

Returned Value
OSTaskResume() returns one of the these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_TASK_RESUME_PRIO if the task you are attempting to resume does not exist.

OS_ERR_TASK_NOT_SUSPENDED if the task to resume has not been suspended.

OS_ERR_PRIO_INVALID if prio is higher or equal to OS_LOWEST_PRIO.

OS_ERR_TASK_NOT_EXIST if the task is assigned to a Mutex PIP.

Notes/Warnings
none

Example

void TaskX (void *p_arg)

{

 INT8U err;

 for (;;) {

 .

 .

 err = OSTaskResume(10); /* Resume task with priority 10 */

 if (err == OS_ERR_NONE) {

 . /* Task was resumed */

 .

 }

 .

 .

 }

}

 529

OSTaskStkChk()
INT8U OSTaskStkChk(INT8U prio,
 OS_STK_DATA *p_stk_data);

Chapter File Called from Code enabled by
4 OS_TASK.C Task code OS_TASK_CREATE_EXT

OSTaskStkChk() determines a task’s stack statistics. Specifically, it computes the amount of free stack space,
as well as the amount of stack space used by the specified task. This function requires that the task be created
with OSTaskCreateExt() and that you specify OS_TASK_OPT_STK_CHK in the opt argument.

Stack sizing is done by walking from the bottom of the stack and counting the number of 0 entries on the
stack until a nonzero value is found. Of course, this assumes that the stack is cleared when the task is created.
For that purpose, you need to set OS_TASK_OPT_STK_CLR to 1 as an option when you create the task. You
could set OS_TASK_OPT_STK_CLR to 0 if your startup code clears all RAM and you never delete your tasks.
This reduces the execution time of OSTaskCreateExt().

Arguments
prio is the priority of the task about which you want to obtain stack information. You can check the

stack of the calling task by passing OS_PRIO_SELF.
P_stk_data is a pointer to a variable of type OS_STK_DATA, which contains the following fields:

 INT32U OSFree; /* Number of bytes free on the stack */

 INT32U OSUsed; /* Number of bytes used on the stack */

Returned Value
OSTaskStkChk() returns one of the these error codes:

OS_ERR_NONE if you specify valid arguments and the call is successful.

OS_ERR_PRIO_INVALID if you specify a task priority higher than
OS_LOWEST_PRIO or you don’t specify OS_PRIO_SELF.

OS_ERR_TASK_NOT_EXIST if the specified task does not exist.

OS_ERR_TASK_OPT_ERR if you do not specify OS_TASK_OPT_STK_CHK when the task
was created by OSTaskCreateExt() or if you create the task
by using OSTaskCreate().

OS_ERR_PDATA_NULL if p_stk_data is a NULL pointer.

Notes/Warnings
1. Execution time of this task depends on the size of the task’s stack and is thus nondeterministic.

2. Your application can determine the total task stack space (in number of bytes) by adding the two fields
.OSFree and .OSUsed of the OS_STK_DATA data structure.

3. Technically, this function can be called by an ISR, but because of the possibly long execution time, it is not
advisable.

 530

Example

void Task (void *p_arg)

{

 OS_STK_DATA stk_data;

 INT32U stk_size;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSTaskStkChk(10, &stk_data);

 if (err == OS_ERR_NONE) {

 stk_size = stk_data.OSFree + stk_data.OSUsed;

 }

 .

 .

 }

}

 531

OSTaskSuspend()
INT8U OSTaskSuspend(INT8U prio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_SUSPEND_EN

OSTaskSuspend() suspends (or blocks) execution of a task unconditionally. The calling task can be
suspended by specifying its own priority number or OS_PRIO_SELF if the task doesn’t know its own priority
number. In this case, another task needs to resume the suspended task. If the current task is suspended,
rescheduling occurs, and µC/OS-II runs the next highest priority task ready to run. The only way to resume a
suspended task is to call OSTaskResume().

Task suspension is additive, which means that if the task being suspended is delayed until n ticks expire, the
task is resumed only when both the time expires and the suspension is removed. Also, if the suspended task is
waiting for a semaphore and the semaphore is signaled, the task is removed from the semaphore-wait list (if it is
the highest priority task waiting for the semaphore), but execution is not resumed until the suspension is
removed.

Arguments
prio specifies the priority of the task to suspend. You can suspend the calling task by passing

OS_PRIO_SELF, in which case, the next highest priority task is executed.

Returned Value
OSTaskSuspend() returns one of the these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_TASK_SUSPEND_IDLE if you attempt to suspend the _C/OS-II idle task, which is
not allowed.

OS_ERR_PRIO_INVALID if you specify a priority higher than the maximum
allowed (i.e., you specify a priority of OS_LOWEST_PRIO
or more) or you don’t specify OS_PRIO_SELF.

OS_ERR_TASK_SUSPEND_PRIO if the task you are attempting to suspend does not exist.

OS_ERR_TASK_NOT_EXITS if the task is assigned to a Mutex PIP.

Notes/Warnings
1. OSTaskSuspend() and OSTaskResume() must be used in pairs.

2. A suspended task can only be resumed by OSTaskResume().

 532

Example

void TaskX (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSTaskSuspend(OS_PRIO_SELF); /* Suspend current task */

 . /* Execution continues when ANOTHER task .. */

 . /* .. explicitly resumes this task. */

 .

 }

}

 533

OSTaskQuery()
INT8U OSTaskQuery(INT8U prio,
 OS_TCB *p_task_data);

Chapter File Called from Code enabled by
4 OS_TASK.C Task or ISR N/A

OSTaskQuery() obtains information about a task. Your application must allocate an OS_TCB data structure to
receive a snapshot of the desired task’s control block. Your copy contains every field in the OS_TCB structure.
You should be careful when accessing the contents of the OS_TCB structure, especially OSTCBNext and
OSTCBPrev, because they point to the next and previous OS_TCBs in the chain of created tasks, respectively.
You could use this function to provide a debugger kernel awareness.

Arguments
prio is the priority of the task from which you wish to obtain data. You can obtain information

about the calling task by specifying OS_PRIO_SELF.
p_task_data is a pointer to a structure of type OS_TCB, which contains a copy of the task’s control block.

Returned Value
OSTaskQuery() returns one of these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_PRIO_INVALID if you specify a priority higher than OS_LOWEST_PRIO.

OS_ERR_PRIO if you try to obtain information from an invalid task.

OS_ERR_TASK_NOT_EXIST if the task is assigned to a Mutex PIP.

OS_ERR_PDATA_NULL if p_task_data is a NULL pointer.

Notes/Warnings
1. The fields in the task control block depend on the following configuration options (see OS_CFG.H):

• OS_TASK_CREATE_EN

• OS_Q_EN

• OS_FLAG_EN

• OS_MBOX_EN

• OS_SEM_EN

• OS_TASK_DEL_EN

 534

Example

void Task (void *p_arg)

{

 OS_TCB task_data;

 INT8U err;

 void *pext;

 INT8U status;

 (void)p_arg;

 for (;;) {

 .

 .

 err = OSTaskQuery(OS_PRIO_SELF, &task_data);

 if (err == OS_ERR_NONE) {

 pext = task_data.OSTCBExtPtr; /* Get TCB extension pointer */

 status = task_data.OSTCBStat; /* Get task status */

 .

 .

 }

 .

 .

 }

}

 535

OSTimeDly()
void OSTimeDly(INT16U ticks);

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

OSTimeDly() allows a task to delay itself for an integral number of clock ticks. Rescheduling always occurs
when the number of clock ticks is greater than zero. Valid delays range from one to 65,535 ticks. A delay of 0
means that the task is not delayed, and OSTimeDly() returns immediately to the caller. The actual delay time
depends on the tick rate (see OS_TICKS_PER_SEC in the configuration file OS_CFG.H).

Arguments
ticks is the number of clock ticks to delay the current task.

Returned Value
none

Notes/Warnings
1. Note that calling this function with a value of 0 results in no delay, and the function returns immediately to

the caller.

2. To ensure that a task delays for the specified number of ticks, you should consider using a delay value that
is one tick higher. For example, to delay a task for at least 10 ticks, you should specify a value of 11.

Example

void TaskX (void *p_arg)

{

 for (;;) {

 .

 .

 OSTimeDly(10); /* Delay task for 10 clock ticks */

 .

 .

 }

}

 536

OSTimeDlyHMSM()
void OSTimeDlyHMSM (INT8U hours,
 INT8U minutes,
 INT8U seconds,
 INT8U ms);

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

OSTimeDlyHMSM() allows a task to delay itself for a user-specified amount of time specified in hours, minutes,
seconds, and milliseconds. This format is more convenient and natural than ticks. Rescheduling always occurs
when at least one of the parameters is nonzero.

Arguments
hours is the number of hours the task is delayed. The valid range of values is 0 to 255.
minutes is the number of minutes the task is delayed. The valid range of values is 0 to 59.
seconds is the number of seconds the task is delayed. The valid range of values is 0 to 59.
ms is the number of milliseconds the task is delayed. The valid range of values is 0 to 999. Note

that the resolution of this argument is in multiples of the tick rate. For instance, if the tick rate is
set to 100Hz, a delay of 4ms results in no delay. The delay is rounded to the nearest tick. Thus,
a delay of 15ms actually results in a delay of 20ms.

Returned Value
OSTimeDlyHMSM() returns one of the these error codes:

OS_ERR_NONE if you specify valid arguments and the call is successful.

OS_ERR_TIME_INVALID_MINUTES if the minutes argument is greater than 59.

OS_ERR_TIME_INVALID_SECONDS if the seconds argument is greater than 59.

OS_ERR_TIME_INVALID_MS if the milliseconds argument is greater than 999.

OS_ERR_TIME_ZERO_DLY if all four arguments are 0.

OS_ERR_TIME_DLY_ISR if you called this function from an ISR.

Notes/Warnings
1. Note that OSTimeDlyHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) results in no delay,

and the function returns to the caller. Also, if the total delay time is longer than 65,535 clock ticks, you
cannot abort the delay and resume the task by calling OSTimeDlyResume().

 537

Example

void TaskX (void *p_arg)

{

 for (;;) {

 .

 .

 OSTimeDlyHMSM(0, 0, 1, 0); /* Delay task for 1 second */

 .

 .

 }

}

 538

OSTimeDlyResume()
INT8U OSTimeDlyResume(INT8U prio);

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

OSTimeDlyResume() resumes a task that has been delayed through a call to either OSTimeDly() or
OSTimeDlyHMSM().

Arguments
prio specifies the priority of the task to resume.

Returned Value
OSTimeDlyResume() returns one of the these error codes:

OS_ERR_NONE if the call is successful.

OS_ERR_PRIO_INVALID if you specify a task priority greater than OS_LOWEST_PRIO.

OS_ERR_TIME_NOT_DLY if the task is not waiting for time to expire.

OS_ERR_TASK_NOT_EXIST if the task has not been created or has been assigned to a Mutex
PIP.

Notes/Warnings
1. Note that you must not call this function to resume a task that is waiting for an event with timeout. This

situation makes the task look like a timeout occurred (unless you desire this effect).

2. You cannot resume a task that has called OSTimeDlyHMSM() with a combined time that exceeds 65,535
clock ticks. In other words, if the clock tick runs at 100Hz, you cannot resume a delayed task that called
OSTimeDlyHMSM(0, 10, 55, 350) or higher.

(10 minutes * 60 + (55 + 0.35) seconds) * 100 ticks/second

Example

void TaskX (void *pdata)

{

 INT8U err;

 pdata = pdata;

 for (;;) {

 .

 err = OSTimeDlyResume(10); /* Resume task with priority 10 */

 if (err == OS_ERR_NONE) {

 . /* Task was resumed */

 .

 }

 .

 }

}

 539

OSTimeGet()
INT32U OSTimeGet(void);

Chapter File Called from Code enabled by
5 OS_TIME.C Task or ISR N/A

OSTimeGet() obtains the current value of the system clock. The system clock is a 32-bit counter that counts
the number of clock ticks since power was applied or since the system clock was last set.

Arguments
none

Returned Value
The current system clock value (in number of ticks).

Notes/Warnings
none

Example

void TaskX (void *p_arg)

{

 INT32U clk;

 for (;;) {

 .

 .

 clk = OSTimeGet(); /* Get current value of system clock */

 .

 .

 }

}

 540

OSTimeSet()
void OSTimeSet(INT32U ticks);

Chapter File Called from Code enabled by
5 OS_TIME.C Task or ISR N/A

OSTimeSet() sets the system clock. The system clock is a 32-bit counter that counts the number of clock ticks
since power was applied or since the system clock was last set.

Arguments

ticks is the desired value for the system clock, in ticks.

Returned Value
none

Notes/Warnings
none

Example

void TaskX (void *p_arg)

{

 for (;;) {

 .

 .

 OSTimeSet(0L); /* Reset the system clock */

 .

 .

 }

}

 541

OSTimeTick()
void OSTimeTick(void);

Chapter File Called from Code enabled by
5 OS_TIME.C Task or ISR N/A

OSTimeTick() processes a clock tick. µC/OS-II checks all tasks to see if they are either waiting for time to
expire [because they called OSTimeDly() or OSTimeDlyHMSM()] or waiting for events to occur until they
timeout.

Arguments
none

Returned Value
none

Notes/Warnings
1. The execution time of OSTimeTick() is directly proportional to the number of tasks created in an

application. OSTimeTick() can be called by either an ISR or a task. If called by a task, the task priority
should be very high (i.e., have a low priority number) because this function is responsible for updating
delays and timeouts.

 542

Example
(Intel 80x86, real mode, large model)

_OSTickISR PROC FAR

 PUSHA ; Save processor context

 PUSH ES

 PUSH DS

;

 MOV AX, SEG(_OSIntNesting) ; Reload DS

 MOV DS, AX

 INC BYTE PTR DS:_OSIntNesting ; Notify µC/OS-II of ISR

;

 CMP BYTE PTR DS:_OSIntNesting, 1 ; if (OSIntNesting == 1)

 JNE SHORT _OSTickISR1

 MOV AX, SEG(_OSTCBCur) ; Reload DS

 MOV DS, AX

 LES BX, DWORD PTR DS:_OSTCBCur ; OSTCBCur->OSTCBStkPtr = SS:SP

 MOV ES:[BX+2], SS ;

 MOV ES:[BX+0], SP ;

 CALL FAR PTR _OSTimeTick ; Process clock tick

 . ; User Code to clear interrupt

 .

 CALL FAR PTR _OSIntExit ; Notify µC/OS-II of end of ISR

 POP DS ; Restore processor registers

 POP ES

 POPA

;

 IRET ; Return to interrupted task

_OSTickISR ENDP

 543

OSTmrCreate()
OS_TMR *OSTmrCreate(INT32U dly,
 INT32U period,
 INT8U opt,
 OS_TMR_CALLBACK callback,
 void *callback_arg,
 INT8U *pname,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.83 OS_TMR.C Task OS_TMR_EN

OSTmrCreate() allows you to create a timer. The timer can be configured to run continuously (opt set to
OS_TMR_OPT_PERIODIC) or only once (opt set to OS_TMR_OPT_ONE_SHOT). When the timer counts down to
0 (from the value specified in period), an optional ‘callback’ function can be executed. The callback can be
used to signal a task that the timer expired or, perform any other function. However, it’s recommended that
you keep the callback function as short as possible.

You MUST call OSTmrStart() to actually start the timer. If you configured the timer for one shot mode and
the timer expired, you need to call OSTmrStart() to retrigger the timer or OSTmrDel() to delete the timer if
you don’t plan on retriggering it and or not use the timer anymore. Note that you can use the callback function
to delete the timer if you use the one shot mode.

Arguments
dly specifies an initial delay used by the timer (see drawing below).

 In ONE-SHOT mode, this is the time of the one-shot.

 If in PERIODIC mode, this is the initial delay before the timer enters periodic mode.

 The units of this time depends on how often you call OSTmrSignal(). In other words, if

OSTmrSignal() is called every 1/10 of a second (i.e. OS_TMR_CFG_TICKS_PER_SEC set to
10) then, dly specifies the number of 1/10 of a second before the delay expires. Note that
the timer is NOT started when it is created.

period specifies the amount of time it will take before the timer expires. You should set the

‘period’ to 0 when you use one-shot mode. The units of this time depends on how often
you call OSTmrSignal(). In other words, if OSTmrSignal() is called every 1/10 of a
second (i.e. OS_TMR_CFG_TICKS_PER_SEC set to 10) then, period specifies the number of
1/10 of a second before the timer times out.

opt OS_TMR_OPT_PERIODIC:

specifies whether you want to timer to automatically reload itself.
 OS_TMR_OPT_ONE_SHOT:

specifies to stop the timer when it times out.
 Note that you MUST select one of these two options.

 544

callback specifies the address of a function (optional) that you want to execute when the timer expires
or, is terminated before it expires (i.e. by calling OSTmrStop()). The callback function must
be declared as follows:

 void MyCallback (void *ptmr, void *callback_arg);
 When the timer expires, this function will be called and passed the timer ‘handle’ of the

expiring timer as well as the argument specified by callback_arg.
 You should note that you don’t have to specify a callback and, in this case, simply pass a

NULL pointer.

callback_arg Is the argument passed to the callback function when the timer expires or is terminated.

callback_arg can be a NULL pointer if the callback function doesn’t require arguments.

pname Is a pointer to an ASCII string that allows you to give a name to your timer. You can retrieve

this name by calling OSTmrNameGet().

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the task was copied to the array pointed to by
pname.

OS_ERR_TMR_INVALID_DLY
You specified a delay of 0 when in ONE SHOT mode.

OS_ERR_TMR_INVALID_PERIOD
You specified a period of 0 when in PERIODIC mode.

OS_ERR_TMR_INVALID_OPT
If you did not specify either OS_TMR_OPT_PERIODIC or
OS_TMR_OPT_ONE_SHOT.

OS_ERR_TMR_ISR
If you called this function from an ISR, which you are not
allowed to do.

OS_ERR_TMR_NON_AVAIL
You get this error when you cannot start a timer because all
timer elements (i.e. objects) have already been allocated.

OS_ERR_TMR_NAME_TOO_LONG
The name you are giving to the timer is too long and must be
less than OS_TMR_CFG_NAME_SIZE.

 545

 PERIODIC MODE (see ‘opt’) – dly > 0

 PERIODIC MODE (see ‘opt’) – dly == 0

 ONE-SHOT MODE (see ‘opt’) – dly MUST be non-zero

dly

OSTmrStart()
Called

Time
Callback
called

period

OSTmrStart()
Called

Time
Callback
called

dly period

OSTmrStart()
Called

Time

Callback
called

 546

Returned Values
A pointer to an OS_TMR object that you MUST use to reference the timer that you just created. A NULL pointer
is returned if the timer was not created because of errors (see returned error codes).

Notes/Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

3. Note that the timer is NOT started when it is created. To start the timer, you MUST call
OSTmrStart().

Example

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 CloseDoorTmr = OSTmrCreate(10,

 100,

 OS_TMR_OPT_PERIODIC,

 DoorCloseFnct,

 (void *)0,

 “Door Close”,

 &err);

 if (err == OS_ERR_NONE) {

 /* Timer was created but NOT started */

 }

 }

}

 547

OSTmrDel()
BOOLEAN OSTmrDel(OS_TMR *ptmr,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.83 OS_TMR.C Task OS_TMR_EN

OSTmrDel() allows you to delete a timer. If a timer was running, it will be stopped and then deleted. If the
timer has already timed out and is thus stopped, it will simply be deleted.

It is up to you to delete unused timers. If you delete a timer you MUST NOT reference it anymore.

Arguments
ptmr is a pointer to the timer that you want to delete. This pointer is returned to you when the timer

is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the function returned the time remaining for the timer.

OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

OS_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
A pointer to an OS_TMR object that you MUST use to reference the timer that you just started. A NULL pointer
is returned if the timer was not started because of errors (see returned error codes).

Notes/Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

3. If you delete a timer you MUST NOT reference it anymore.

 548

Example

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 CloseDoorTmr = OSTmrDel(CloseDoorTmr,

 &err);

 if (err == OS_ERR_NONE) {

 /* Timer was deleted ... DO NOT reference it anymore! */

 }

 }

}

 549

OSTmrNameGet()
void OSTmrNameGet(OS_TMR *ptmr,
 INT8U *pdest,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.81 OS_TMR.C Task OS_TMR_EN

OSTmrNameGet() allows you to retrieve the name associated with the specified timer. OSTmrNameGet()
places the name of the timer in an array of characters which must be as big as OS_TMR_CFG_NAME_SIZE (see
OS_CFG.H).

Arguments
ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the

timer is created (see OSTmrCreate()).

pdest is a pointer to where you would like the name of the timer to be copied to. You MUST ensure

that your destination string holds sufficient storage to hold as mush as
OS_CFG_TMR_NAME_SIZE characters (see OS_CFG.H).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the task was copied to the array pointed to by
pname.

OS_ERR_TMR_INVALID_DEST You specified a NULL pointer for pdest.

OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

OS_ERR_NAME_GET_ISR You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
The length of the timer name (in number of characters).

Notes/Warnings
1. You MUST ensure that your destination string holds sufficient storage to hold as mush as

OS_CFG_TMR_NAME_SIZE characters (see OS_CFG.H).

2. You should examine the return value of this function.

3. You MUST NOT call this function from an ISR.

 550

Example

INT8U CloseDoorTmrName[80];

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSTmrNameGet(CloseDoorTmr, &CloseDoorTmrName[0], &err);

 if (err == OS_ERR_NONE) {

 /* CloseDoorTmrName[] holds the name of the timer */

 }

 }

}

 551

OSTmrRemainGet()
INT32U OSTmrRemainGet(OS_TMR *ptmr,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.81 OS_TMR.C Task OS_TMR_EN

OSTmrRemainGet() allows you to obtain the time remaining (before it times out) of the specified timer. The
value returned depends on the rate (in Hz) at which the timer task is signaled (see
OS_TMR_CFG_TICKS_PER_SEC in OS_CFG.H). In other words, if OS_TMR_CFG_TICKS_PER_SEC is set to 10
then the value returned is the number of 1/10 of a second before the timer times out. If the timer has timed out,
the value returned will be 0.

Arguments
ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the

timer is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the function returned the time remaining for the timer.

OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

OS_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
The time remaining for the timer. The value returned depends on the rate (in Hz) at which the timer task is
signaled (see OS_TMR_CFG_TICKS_PER_SEC in OS_CFG.H). In other words, if
OS_TMR_CFG_TICKS_PER_SEC is set to 10 then the value returned is the number of 1/10 of a second before
the timer times out. If you specified an invalid timer, the returned value will be 0. If the timer has already
expired then the returned value will be 0.

Notes/Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

 552

Example

INT32U TimeRemainToCloseDoor;

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 TimeRemainToCloseDoor = OSTmrRemainGet(CloseDoorTmr, &err);

 if (err == OS_ERR_NONE) {

 /* Call was successful */

 }

 }

}

 553

OSTmrSignal()
void OSTmrSignal(void);

Chapter File Called from Code enabled by
New in V2.81 OS_TMR.C Task or ISR OS_TMR_EN

OSTmrSignal() is called either by a task or an ISR to indicate that it’s time to update the timers. Typically,
OSTmrSignal() would be called by OSTimeTickHook() at a multiple of the tick rate. In other words, if
OS_TICKS_PER_SEC is set to 1000 in OS_CFG.H then you should call OSTmrSignal() every 10th or 100th tick
interrupt (100 Hz or 10 Hz, respectively). You should typically call OSTmrSignal() every 1/10 of a second.
The higher the timer rate, of course, the more overhead timer management will impose on your system.
Generally, we recommend 10 Hz (1/10 of a second).

You ‘could’ call OSTmrSignal() from the µC/OS-II tick ISR hook function (see example below). If the tick
rate occurs at 1000 Hz then you can simply call OSTmrSignal() every 100th tick. Of course, you would have
to implement a simple counter to do this.

Arguments
None.

Returned Values
OSTmrSignal() uses semaphores to implement the signaling mechanism. Because of that, OSTmrSignal()
can return one of the following errors. However, it’s very unlikely you will get anything else but
OS_ERR_NONE.

OS_ERR_NONE The call was successful and the timer task was signaled.
OS_ERR_SEM_OVF If OSTmrSignal() was called more often than OSTmr_Task() can handle the

timers. This would indicate that your system is heavily loaded.
OS_ERR_EVENT_TYPE Unlikely you would get this error because the semaphore used for signaling is

created by µC/OS-II.
OS_ERR_PEVENT_NULL Again, unlikely you would ever get this error because the semaphore used for

signaling is created by µC/OS-II.

 554

Notes/Warnings
None.

Example

#if OS_TMR_EN > 0

static INT16U OSTmrTickCtr = 0;

#endif

void OSTimeTickHook (void)

{

#if OS_TMR_EN > 0

 OSTmrTickCtr++;

 if (OSTmrTickCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {

 OSTmrTickCtr = 0;

 OSTmrSignal();

 }

#endif

}

 555

OSTmrStart()
BOOLEAN OSTmrStart(OS_TMR *ptmr,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.81 OS_TMR.C Task OS_TMR_EN

OSTmrStart() allows you to start (or restart) the countdown process of a timer. The timer to start MUST
have previously been created.

Arguments
ptmr is a pointer to the timer that you want to start (or restart). This pointer is returned to you when

the timer is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the timer was started.

OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

OS_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
OS_TRUE if the timer was started
OS_FALSE if an error occurred.

Notes/Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

3. The timer to start MUST have previously been created.

 556

Example

OS_TMR *CloseDoorTmr;

BOOLEAN status;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 status = OSTmrStart(CloseDoorTmr,

 &err);

 if (err == OS_ERR_NONE) {

 /* Timer was started */

 }

 }

}

 557

OSTmrStateGet()
INT8U OSTmrStateGet(OS_TMR *ptmr,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.83 OS_TMR.C Task OS_TMR_EN

OSTmrStateGet() allows you to obtain the current state of a timer. A timer can be in one of 4 states:

OS_TMR_STATE_UNUSED The timer has not been created
OS_TMR_STATE_STOPPED The timer has been created but has not been started or has been

stopped.
OS_TMR_STATE_COMPLETED The timer is in ONE-SHOT mode and has completed its delay.
OS_TMR_STATE_RUNNING The timer is currently running

Arguments
ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the

timer is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the function returned the time remaining for the timer.

OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

OS_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
The state of the timer (see description).

Notes/Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

 558

Example

INT8U CloseDoorTmrState;

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 CloseDoorTmrState = OSTmrStateGet(CloseDoorTmr, &err);

 if (err == OS_ERR_NONE) {

 /* Call was successful */

 }

 }

}

 559

OSTmrStop()
BOOLEAN OSTmrStop(OS_TMR *ptmr,
 INT8U opt,
 void *callback_arg,
 INT8U *perr);

Chapter File Called from Code enabled by
New in V2.81 OS_TMR.C Task OS_TMR_EN

OSTmrStop() allows you to stop (i.e. abort) a timer. You can execute the callback function of the timer when
it’s stopped and pass this callback function a different argument than what was specified when the timer was
started. This allows your callback function to know that the timer was stopped because the callback argument
can be made to indicate this (this, of course, is application specific). If the timer is already stopped, the
callback function is not called.

Arguments
ptmr Is a pointer to the timer you want to stop. This ‘handle’ was returned to your application

when you called OSTmrStart() and uniquely identifies the timer.

opt specifies whether you want the timer to:

1) OS_TMR_OPT_NONE:
Do NOT call the callback function.

2) OS_TMR_OPT_CALLBACK:
Call the callback function and pass it the callback argument specified when you started
the timer (see OSTmrCreate()).

3) OS_TMR_OPT_CALLBACK_ARG:
Call the callback function BUT pass it the callback argument specified in the
OSTmrStop() function INSTEAD of the one defined in OSTmrCreate().

callback_arg If you set opt to OS_TMR_OPT_CALLBACK_ARG then this is the argument passed to the

callback function when it’s executed.

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the timer was started.

OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

OS_ERR_TMR_ISR You called this function from an ISR which is NOT
allowed.

OS_ERR_TMR_INVALID_OPT You specified an invalid option for ‘opt’.

OS_ERR_TMR_STOPPED The timer was already stopped. However, this is NOT
considered an actual error since it’s OK to attempt to stop a
timer that is already stopped.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has
been deleted or was not created.

 560

OS_ERR_TMR_NO_CALLBACK If you wanted the callback to be called but no callback has
been specified for this timer.

Returned Values
OS_TRUE if the timer was stopped (even if it was already stopped).
OS_FALSE if an error occurred.

Notes/Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

3. The callback function is NOT called if the timer is already stopped.

Example

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)

{

 INT8U err;

 (void)p_arg;

 for (;;) {

 OSTmrStop(CloseDoorTmr,

 OS_TMR_OPT_CALLBACK,

 (void *)0,

 &err);

 if (err == OS_ERR_NONE || err == OS_ERR_TMR_STOPPED) {

 /* Timer was stopped ... */

 /* ... callback was called only if timer was running */

 }

 }

}

 561

OSVersion()
INT16U OSVersion(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Task or ISR N/A

OSVersion() obtains the current version of µC/OS-II.

Arguments
none

Returned Value
The version is returned as x.yy multiplied by 100. For example, v2.85 is returned as 285.

Notes/Warnings
none

Example

void TaskX (void *p_arg)

{

 INT16U os_version;

 for (;;) {

 .

 .

 os_version = OSVersion(); /* Obtain µC/OS-II's version */

 .

 .

 }

}

