Measuring systems

Problem set n° 8

Exercise 1 (Resolution)

- a) What is the resolution R of an A/D converter, N_1 bits, if the full scale is FS_1 ?
- b) What is the change in resolution λ if one replaces an A/D converter, N_2 bits, with a full scale of FS_2 , with another A/D converter, N_3 bits, with full scale FS_3 .

Numeric values:

 $N_1 = 10 \text{ bits}$ $FS_1 = 0 - 1 V$ $N_2 = 8 \text{ bits}$ $FS_2 = 0 - 5 V$ $N_3 = 12 \text{ bits}$ $FS_3 = \pm 5 V$

Exercise 2 (Binary code and sample-and-hold circuit)

We use an A/D converter (N bits with full scale FS) with successive approximation with an internal oscillator that has a clock frequency f_0 .

- a) What is the input voltage U_i giving a binary code b (see numerical values at the end of this problem)?
- b) What is the minimum time delay ΔT before one can convert another value?
- c) Is the use of a sample-and-hold circuit necessary if one wants to convert a sinusoidal signal of bandwidth B_n ?

Numerical values:

b = 10101101 $f_0 = 500 \text{ kHz}$ FS = 0 - 2 V $B_p = 0 - 100 \text{ Hz}$

Exercise 3 (Accelerometer and A/D converter)

An accelerometer with sensitivity S has a measurement range E. Its output is converted into a digital signal by an A/D converter (N bits with full scale FS), resulting in an ADC value N_{dec} .

- a) Give the maximum quantization error ε_{max} on the measured quantity.
- b) Express the relationship $a_N = f(N_{dec})$ that gives the measured acceleration as a function of the ADC value N_{dec} , knowing that the output of the sensor is U_0 when the acceleration is zero.
- c) Calculate the acceleration a_N that corresponds to the ADC value N_{dec} .

Numerical values:

S = 500 mV/g $E = \pm 5 \text{ g}$ N = 12 bits FS = 0 - 5 V $N_{dec} = 3658$