Measurement systems

Problem set 8

Exercise 1 (Resolution)

a) The resolution R of the A / D converter, with N_{1} bits and a full scale $F S_{1}$ is:

$$
R=\frac{F S_{1}}{2^{N_{1}}}=977 \mu V
$$

b) We calculate the resolutions R_{2} and R_{3} of the A / D converters:

$$
R_{2}=\frac{F S_{2}}{2^{N_{2}}}=19.53 \mathrm{mV} \quad R_{3}=\frac{F S_{3}}{2^{N_{3}}}=2.4 \mathrm{mV}
$$

We find a reduction λ between resolutions R_{2} and R_{3} :

$$
\lambda=\frac{R_{2}}{R_{3}}=\frac{F S_{2}}{F S_{3}} \cdot 2^{N_{3}-N_{2}}=8
$$

Exercise 2 (Binary code and sample-and-hold circuit)

a) The binary code b is converted to a decimal value $N_{\text {dec }}(N=8)$:

$$
(b)_{2}=(10101101)_{2}=1 \cdot 2^{7}+0 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=(173)_{10}=\left(N_{d e c}\right)_{10}
$$

The output voltage is then U_{s} :

$$
U_{s}=\frac{F S}{2^{N}} \cdot n=1.352 \mathrm{~V}
$$

b) The maximum time is ΔT :

$$
\Delta T=\frac{N}{f_{0}}=16 \mu \mathrm{~s}
$$

c) $f=\frac{f_{0}}{\pi \cdot 2^{N+1 \cdot N}}=38.85 \mathrm{~Hz}$
\rightarrow The use of a sample-and-hold circuit is necessary as the bandwidth of the signal is greater than f.

Exercise 3 (Accelerometer and A/D converter)

a) The maximum quantization error $\varepsilon_{\max }$ on the measured quantity is:

$$
\varepsilon_{\max }=\frac{1}{S} \cdot \frac{F S}{2^{N+1}}=1.2 \cdot 10^{-3} \mathrm{~g}
$$

b) First, we find the output voltage U_{s} as a function of $N_{d e c}$ and then we obtain $a_{N}=f\left(N_{-} d e c\right)$:

$$
U_{s}=\frac{F S}{2^{N}} \cdot N_{d e c}-U_{0} \quad \Rightarrow \quad a_{N}=\frac{U_{s}}{S}=\frac{1}{S} \cdot \frac{F S}{2^{N}} \cdot N_{d e c}-\frac{U_{0}}{S}
$$

c) The acceleration a_{N} for $N_{\text {dec }}=3658$ is:

$$
a_{N}=3.9307 \pm 1.2 \cdot 10^{-3} g
$$

