Measuring systems

Problem set 10

Data analysis

Exercise 1 (Estimate of the average)

We would like to calibrate a gyroscope. This is done by placing it on a motor driven at a known angular speed ω_{ref} . The obtained signal is sampled with the frequency f_{sam} during the period ΔT . The average value of each acquisition is then calculated. The measurement is repeated N times and the standard deviation of the averaged values $\sigma_{\overline{\omega}}$ is obtained.

- a) What is the value of the standard deviation σ_{ω} for the measured angular velocity?
- b) What is the value of the standard deviation of the averages if we quadruple the number of measurements *N*?
- c) What should be the duration ΔT_2 of acquisition to achieve a standard deviation $\sigma'_{\overline{\omega}}$ of the averages?
- d) What will be the standard deviation $\sigma_{\overline{\omega}}^{\prime\prime}$ of the averages if the sampling frequency is two times lower and the period is ΔT ?

Numerical values:

$\omega_{ref} = 50 \ ^{\circ}/sec$	N = 50
$f_{sam} = 200 Hz$	$\sigma_{\overline{\omega}}=0.35~^{\circ}/s$
$\Delta T = 1 \ sec$	$\sigma'_{\overline{\omega}} = 0.15 \ ^{\circ}/s$

Exercise 2 (Types of error, confidence level and number of measurements)

We have measured 200 times the atmospheric pressure $P_{atm} = 1.0 \ bar$ using a pressure sensor under the same conditions and found an average μ_P and standard deviation σ_P .

- a) Find the fidelity (precision), accuracy and total error for P_{atm} with a confidence level p_0 , p_1 and p_2 .
- b) What is the statistical error δ_{α} of μ_{P} for a risk factor 2α ?
- c) What is the number of measurements N needed to estimate the value of the pressure with error δ and risk of error 2α ?

Numerical values:

$\mu_P = 1.6 \ bar$	$p_0 = 68 \%$
$\sigma_P = 0.15 \ bar$	$p_1 = 95 \%$
$2\alpha = 10 \%$	$p_2 = 90 \%$
$\delta = 0.01 \ bar$	$C = 1 \mu F$