Measuring systems

Problem set 10
Data analysis

Exercise 1 (Estimate of the average)

We would like to calibrate a gyroscope. This is done by placing it on a motor driven at a known angular speed $\omega_{r e f}$. The obtained signal is sampled with the frequency $f_{\text {sam }}$ during the period ΔT. The average value of each acquisition is then calculated. The measurement is repeated N times and the standard deviation of the averaged values $\sigma_{\bar{\omega}}$ is obtained.
a) What is the value of the standard deviation σ_{ω} for the measured angular velocity?
b) What is the value of the standard deviation of the averages if we quadruple the number of measurements N ?
c) What should be the duration ΔT_{2} of acquisition to achieve a standard deviation $\sigma_{\bar{\omega}}^{\prime}$ of the averages?
d) What will be the standard deviation $\sigma_{\bar{\omega}}^{\prime \prime}$ of the averages if the sampling frequency is two times lower and the period is ΔT ?
Numerical values:

$$
\begin{array}{ll}
\omega_{\text {ref }}=50^{\circ} / \mathrm{sec} & N=50 \\
f_{\text {sam }}=200 \mathrm{~Hz} & \sigma_{\bar{\omega}}=0.35 \% / \mathrm{s} \\
\Delta T=1 \mathrm{sec} & \sigma_{\bar{\omega}}^{\prime}=0.15 \% / \mathrm{s}
\end{array}
$$

Exercise 2 (Types of error, confidence level and number of measurements)

We have measured 200 times the atmospheric pressure $P_{\text {atm }}=1.0 \mathrm{bar}$ using a pressure sensor under the same conditions and found an average μ_{P} and standard deviation σ_{P}.
a) Find the fidelity (precision), accuracy and total error for $\boldsymbol{P}_{\boldsymbol{a t m}}$ with a confidence level p_{0}, p_{1} and p_{2}.
b) What is the statistical error δ_{α} of $\boldsymbol{\mu}_{\boldsymbol{P}}$ for a risk factor $\mathbf{2} \alpha$?
c) What is the number of measurements N needed to estimate the value of the pressure with error δ and risk of error 2α ?

Numerical values:

$$
\begin{array}{ll}
\mu_{P}=1.6 \mathrm{bar} & p_{0}=68 \% \\
\sigma_{P}=0.15 \mathrm{bar} & p_{1}=95 \% \\
2 \alpha=10 \% & p_{2}=90 \% \\
\delta=0.01 \mathrm{bar} & C=1 \mu F
\end{array}
$$

