Measuring systems

Problem set n° 11

Comparison of measured data

Exercise 1 (Proximity detector)

Two proximity detectors are set to go off at a distance D. They are subjected to N tests each. The average triggering distance of detector A is \bar{d}_A and that of detector B is \bar{d}_B . The manufacturer guarantees a standard deviation σ_A for detector A and σ_B for detector B. We allow a risk of error of 5%.

- a) Do detectors A and B present a significant systematic error?
- b) Are the average values they provide significantly different from each other?
- c) Is the average value provided by detector A significantly higher than that provided by detector B?

Numerical values:

$$D = 100 \ cm$$
 $N = 40$ $\bar{d}_A \pm \sigma_A = 101 \pm 3.97 \ cm$ $\bar{d}_B \pm \sigma_B = 99 \ \pm 2.98 \ cm$

Exercise 2 (Accelerometers)

Two accelerometers are positioned onto a horizontal table for measuring the acceleration of gravity. The first sensor gives $\mu_1 \pm s_1$ and the second gives $\mu_2 \pm s_2$; the results are obtained with a large number N of measurements.

Calculate the risk that we make an error if we claim the presence of a systematic error between the two sensors.

Numerical values:

$$\mu_1 \pm s_1 = 1.1 \pm 0.45 \ g$$
 $\mu_2 \pm s_2 = 0.96 \pm 0.29 \ g$ $N = 100$