Measuring systems

Exercise 1 (Estimate of the average)

We can begin by expressing the number of samples n that will be recorded for each measurement and the standard deviation of the population (standard measurement for a single measurement) σ, considering the known reference velocity $\omega_{\text {ref }}$:

$$
n=f_{e c h} \cdot \Delta T=200 \quad \text { and } \quad \sigma=\sigma_{\bar{\omega}} \cdot \sqrt{f_{e c h} \cdot \Delta T}
$$

a) $\sigma=\sigma_{\bar{\omega}} \cdot \sqrt{f_{\text {ech }} \cdot \Delta T}=4.95^{\circ} / \mathrm{s}$
b) If we quadruple the number of measurements N, we find the standard deviation $\sigma_{4 N}$ for the calculated average:

$$
\sigma_{\bar{\omega}, 4 N}=\sigma_{\bar{\omega}, N}
$$

The standard deviation of the average depends on the number of points used to calculate the average itself. It has nothing to do with how often we repeat this.
c) If the acquisition time is ΔT_{2}, for a standard deviation $\sigma_{N, 2}$ of the averages:

$$
\sigma=\sigma_{\bar{\omega}} \cdot \sqrt{f_{\text {ech }} \cdot \Delta T}=\sigma_{\bar{\omega}}^{\prime} \cdot \sqrt{f_{\text {ech }} \cdot \Delta T_{2}} \quad \Longrightarrow \quad \Delta T_{2}=\left(\frac{\sigma_{\bar{\omega}}}{\sigma_{\bar{\omega}}^{\prime}}\right)^{2} \cdot \Delta T=5.44 \mathrm{~s}
$$

d) The standard deviation of the averages $\sigma_{N, 3}$, for a sampling frequency which is two times smaller and the acquisition period of ΔT, will be:

$$
\sigma=\sigma_{\bar{\omega}}^{\prime \prime} \cdot \sqrt{\frac{f_{e c h} \cdot \Delta T}{2}}=\sigma_{\bar{\omega}} \cdot \sqrt{f_{e c h} \cdot \Delta T} \quad \Longrightarrow \quad \sigma_{\bar{\omega}}^{\prime \prime}=\sqrt{2} \cdot \sigma_{\bar{\omega}}=0.5 \% / \mathrm{s}
$$

Exercise $\mathbf{2}$ (Types of error, confidence level and number of measurements)

a) The accuracy of $P_{\text {atm }}$ is expressed as the systematic error ϵ_{μ}. Since an error on the central tendency is described as a systematic error, it must be sufficiently far from the central tendency (e.g. $\epsilon_{\mu}>3 \sigma_{p}$ for a confidence level of 99%. This is a somewhat arbitrary number and you could have chosen another confidence level but you need to declare the confidence level associated with your choice of $z \times \sigma_{p}$).

$$
\epsilon_{\mu}=\mu_{P}-P_{\text {atm }}=0.6 \mathrm{bar}
$$

Fidelity (precision) is expressed as the statistical error ϵ_{σ} according to the chosen confidence level for $P_{a t m} \cdot \epsilon_{\sigma}$ associated with p_{0} and p_{1} :

$$
\epsilon_{\sigma, p_{0}}=\sigma_{P}=0.15 \mathrm{bar} \quad \epsilon_{\sigma, p_{1}}=2 \cdot \sigma_{P}=0.3 \mathrm{bar}
$$

The statistical error $\epsilon_{\sigma, p_{2}}$ for p_{2} is calculated according to the table of the normal distribution:

$$
\begin{aligned}
& \alpha=\frac{1-p_{2}}{2}=0.05 \\
& z_{\alpha}=1.646 \\
& \epsilon_{\sigma, p_{2}}=z_{\alpha} \cdot \sigma_{P}=0.25 \mathrm{bar}
\end{aligned}
$$

The total error $\epsilon_{\text {tot }}$ of $P_{\text {atm }}$ corresponds to the sum of ϵ_{μ} and ϵ_{σ} :

$$
\epsilon_{t o t, p_{0}}=0.85 \mathrm{bar} \quad \epsilon_{t o t, p_{1}}=1.0 \mathrm{bar} \quad \epsilon_{t o t, p_{2}}=0.95 \mathrm{bar}
$$

b) The statistical error $\hat{\epsilon}_{\sigma, p_{2}}$ on the average for p_{2}, knowing that $n=200$:

$$
\hat{\epsilon}_{\sigma, p_{2}}=\frac{\epsilon_{\sigma, p_{2}}}{\sqrt{n}}=0.0175 \mathrm{bar}
$$

c) $\quad N=z_{\alpha}{ }^{2} \cdot\left(\frac{s_{P}}{\delta}\right)^{2} \gtrsim 609$

