Measuring systems Problem set n° 11

Comparison of measured data

Exercice 1 (Proximity detector)

a) We use a **bilateral z-test** (N>30, known standard deviation) in order to determine if there is a systematic error between the theoretical average D and the experimentally measured \bar{d}_A . We repeat the same for \bar{d}_B . The null hypothesis corresponds to:

 H_0 : "Sensor A does not show a systematic error" ($\bar{d}_A = D$)

We proceed identically for sensor B. We find for z_{α} , $z_{obs,A}$ and $z_{obs,B}$:

$$z_{\alpha} = z_{2.5\%} = 1.96$$
 $z_{obs,A} = \frac{\bar{d}_A - D}{\frac{\sigma_A}{\sqrt{N}}} = 1.59$ $z_{obs,B} = \frac{\bar{d}_B - D}{\frac{\sigma_B}{\sqrt{N}}}$
= -2.12

 $z_{obs,A} \in [-z_{\alpha}; z_{\alpha}] \qquad \Leftrightarrow \qquad z_{obs,B} \notin [-z_{\alpha}; z_{\alpha}]$

According to these results it can be said that sensor B shows a systematic error with a risk of error 2α (H_0 is rejected in this case) while the systematic error of sensor A (H_0 not rejected) is not significant.

b) We want to compare the two experimental averages \bar{d}_A and \bar{d}_B . We choose again a **bilateral z-test** (N>30, known standard deviation) in order to verify the null hypothesis H_0 :

 H_0 : "The sensors do not differ from each other with respect to their average" ($\bar{d}_A = \bar{d}_B$)

For z_{α} we find the same value as in a) and for $z_{obs,B-A}$:

$$z_{obs,B-A} = \frac{\bar{d}_A - \bar{d}_B}{\sqrt{\frac{\sigma_B^2 + \sigma_A^2}{N}}} = -2.55 \quad \Rightarrow \quad z_{obs,B-A} \notin [-z_\alpha; z_\alpha]$$

Thus the hypothesis H_0 is rejected and it can be said that the sensors are significantly different from each other with respect to their average with a risk of error 2α .

c) We choose a **unilateral z-test** (N>30, known standard deviation) to find out if the experimental average \bar{d}_{A} is greater than the experimental average \bar{d}_{B} . The null hypothesis is H_{0} :

 H_0 : "The average of B is greater or equal to that of A" $(\bar{d}_A \ge \bar{d}_B)$

We obtain the same value for $z_{obs,B-A}$ as in b) and for $-z_{\alpha}$ we find:

$$-z_{\alpha} = -z_{5\%} = -1.65$$
 $z_{obs,B-A} \notin [-z_{\alpha}; \infty[\Rightarrow \bar{d}_A > \bar{d}_B]$

We thus reject the hypothesis H_0 and we can affirm that the average \bar{d}_A is significantly greater than the average \bar{d}_B with a risk of error α .

Exercise 2 (Accelerometers)

We compare the two experimental averages μ_1 and μ_2 , in order to find out the error risk α for which there is a systematic error between the two accelerometers. For this purpose we may use a **bilateral z-test** (N>> 30 and the standard deviation is not known) with a null hypothesis H₀:

 H_0 : << The sensors do not exhibit systematic error with respect to each other>> ($\mu_1 = \mu_2$) In order to test this hypothesis we calculate the $z_{obs,2-1}$ and the corresponding risk of error $2\alpha_{obs,2-1}$:

$$z_{obs,2-1} = \frac{\mu_1 - \mu_2}{\sqrt{\frac{(S_2^2 + S_1^2)}{N}}} = -2.6$$

 $\alpha_{obs,2-1}$ = 0.47 % (from the table)

The obtained risk of error is $2\alpha_{obs,2-1} = 0.94\%$.