
Discovery	of	Devices		
	

Practice	objectives:			
1. Discover	new	technologies	(Full	Body	Tracking	,	Augmented	Reality,…).	

2. Give	Idea	for	your	future	project	

3. Set	these	new	devices	in	a	Unity	Project	

4. Example	of	Unity	integration	

Since	you	have	to	spend	20	minutes	for	each	module	and	you	are	four	per	group,	each	people	have	5	
minutes	to	test	one	module.	This	practical	work	is	here	just	to	give	you	a	“flavor”	of	each	device.	

	
Station	1:		Full	Body	Interaction	(Kinect	2)	
	
Prepare:	Open	Unity	5.5.0f3	and	open	the	first	on	the	Unity	Wizard	list.	A	window	will	open	and	tell	
you	the	version	is	different;	you	just	click	continue.		

				

Objective	1:	Go	through	the	relevant	source	code	and	test	the	game.		
KinectModelControllerV2.cs		

Avatar	animation:	It	uses	the	joint	position	information	provided	by	Kinect	to	set	the	avatar	pose	(joints	
orientation).	Have	a	look	on	the	RotateJoint	function,	called	for	each	joint.		

KinectModelPosition.cs		

Set	the	avatar	position.	It	will	be	written	by	the	students	in	Objective	3,	currently	it	only	contains	the	
variables	the	students	might	need.		

Tasks:			

Goal:	 Real	 time	 character	 animation	 is	 not	 a	 trivial	 subject.	 It	
contains	several	steps	(modeling,	rigging	and	skinning)	and	may	
follow	 different	 animation	 approaches	 (forward/inverse	
kinematics).	 It	 also	 involves	 a	 tradeoff	 between	 latency	 and	
quality.	In	this	TP	we	are	going	to	use	a	low	cost	approach,	with	
a	Kinect	2	and	forward	kinematics.		

a. Run	the	program,	and	observe	the	degree	of	control	you	have	over	the	avatar	(i.e.	only	the	
noisy	control	of	the	avatar	joints)		

b. Observe	the	debugging	information	drawn	in	the	scene,	they	inform	the	RGB	image	
obtained	by	Kinect,	the	depth	+	RGB	drawn	as	a	mesh,	and	the	position	of	the	joints	of	the	
tracked	player.	(disable	the	KinectDebug	game	object	afterwards	as	it	consumes	resourses)		

Objective	2:	Play	the	multiplayer	game!		
Tired	of	playing	alone?	Deactivate	the	GameObject	“SinglePlayer”	and	activate	the	GameObject		
“Multiplayer”			

a. You	will	have	to	add	an	offset	along	the	X	axis	so	that	the	players	don`t	hit	each	other	while	
sharing	the	Kinect	tracking	space		

b. Make	it	a	fair	game	by	repositioning	the	canon	so	that	the	balls	are	thrown	from	above		

Known	issue:	sometimes	the	same	user	gets	2	player	IDs	and	end	up	controlling	both	avatars.	It	this	
happens,	restart	the	game.		

	

Station	2:		Bring	Hands	into	VR	(Leap	Motion)	
	
Prepare:	Open	Unity	5.5.2f1	and	open	the	first	on	the	Unity	Wizard	list.	A	window	will	open	and	tell	
you	the	version	is	different;	you	just	click	continue.		

		

Objective	1:	Play	the	“Jenga”	game	in	VR!		
In	this	task	we	are	going	to	test	the	capabilities	of	the	Leap	motion,	and	learn	how	to	set	an	Oculus	VR	

CV1	camera	in	a	Unity	scene.	We	will	also	learn	how	to	mount	the	Leap	motion	in	the	Oculus	VR	CV1.

Open	the	scene	Jenga		

Goal:	Experiment	VR	hand	tracking	
and	 head	 mounted	 display	 with	
budget	 equipment.	 Controlling	 all	
the	degrees	of	freedom	of	a	virtual	
hand	is	far	from	trivial,	leap	motion	
accomplishes	that	that	with	stereo	
geometry	 (infrared	 projection	 +	
infrared	cameras).		

a. Run the scene (by pressing the “play” button) with the Leap motion over the table. Try
to remove the pieces without ruining the pile

a. Quite	impossible	hum?	Do	you	see	why?			

b. Set	the	friction	parameters	of	the	JengaPhysicsMaterial	asset	to	0.15,	and	duplicate	the	scale	of	
the	Jenga	GameObject	(from	0.1	to	0.2)	*.		

c. Set	the	fixed	timestep	to	0.002	(go	to	edit->project	settings->time)		
d. Set	the	default	contact	offset	to	0.0001	(go	to	edit->project	settings->physics)		
e. Play	the	scene	again,	now	it	might	be	possible	to	make	1	or	2	moves,	even	though	the	new	

physical	drag	values	make	it	seems	quite	icy.		
f. Now	disable	the	“table”	GameObject	and	enable	the	“Oculus”	GameObject		
g. Check	the	Virtual	Reality	supported	option	(go	to	edit->project	settings->player->other	settings)		
h. Finally,	mount	the	Leap	Motion	in	the	Oculus	and	play	the	Jenga	game	in	a	VR	setup!		

		

Objective	2:	Setup	an	augmented	reality	scene	using	infrared	cameras	overlay		
The	Leap	motion	has	two	infrared	cameras,	which	allow	for	a	sort	of	monochromatic	augmented	
reality.	In	this	task	we	are	going	to	explore	this	possibility.			

a. Open	the	scene	infraredCameraOverlay				
b. Press	play,	the	infrared	images	are	shown,	and	virtual	hands	are	drawn	over	your	own	hands.			

What	about	interacting	with	virtual	objects	over	the	table	in	front	of	you?	To	do	so	you	need	to	create	
an	invisible	surface	collocated	with	the	real	table.			

a. Create	a	new	GameObject	–	GameObject->3D	Object->Cube		
b. Iteratively:	Move	the	cube	down	and	test	the	scene,	until	it	feels	aligned	with	the	real	table	

(while	moving	the	head,	the	motion	parallax	–	which	is	an	important	depth	cue	–	will	make	the	
table	and	cube	appear	to	be	located	at	the	same	space,	i.e.	they	will	not	move	relative	to	each	
other).		

c. Disable	the	renderer	Component	of	the	cube	GameObject		
d. Drag	the	Jenga	prefab	to	the	scene	and	hit	play.		

Now	that	you	see	virtual	objects	over	your	table,	why	don’t	you	expand	the	scene?	What	about	having	
a	virtual	object	collocated	with	the	monitor,	and	other	objects	of	the	real	environment	so	that	the	
Jenga	pieces	can	interact	with	them?			

Extra		
Load	the	Joggling	scene	and	test	your	joggling	skills	in	VR.	The	scene	has	only	one	ball,	you	can	
duplicate	it	as	much	as	you	want	(you	can	also	cheat	by	lowering	the	gravity	force	under	the	edit-
>project	settings->physics	menu).		

*	Objective	2-e.a-	besides	the	dubious	and	noisy	tracking	the	Leap	motion	may	provide	at	times,	there	
are	two	other	reasons	that	make	playing	the	game	almost	impossible:	the	collision	is	not	computed	
with	the	mesh	you	see	rendered,	usually	simpler	primitives	are	used	to	compute	collisions	to	reduce	its	
impact	in	performance,	if	you	run	on	the	editor	you	can	select	the	collision	GameObject	to	see	the	
collision	mesh;	there	is	a	strong	friction	between	the	pieces,	this	can	be	addressed	by	reducing	both	
friction	parameters	in	the	JengaPhysicsMaterial	asset.	

Station	3:		Walk	in	VR	(Katwalk	VR)	
	
Prepare:	Open	Unity	5.5.2f1	and	open	the	first	on	the	Unity	Wizard	list.	A	window	will	open	and	tell	
you	the	version	is	different;	you	just	click	continue.		

	 	

		

Objective:	Play	in	VR	
This	is	a	semester	project	made	by	a	previous	master	student.	The	goal	was	to	implement	a	new	way	to	
move	in	VR	thanks	to	the	treadmill.	The	Vive	Trackers	have	been	used	to	track	the	user	feet	and	
compute	the	user	acceleration	in	order	to	give	a	realistic	speed	to	the	avatar.	
	

a. Respect	the	order	for	turn	on	the	devices!	Turn	on	first	the	left	controller	then	the	right.	The	
torso	on	the	KatwalkVR	has	to	be	the	third.	Finally	turn	on	the	Vive	tracker	for	the	left	feet	and	
end	with	the	right	feet.		

b. One	helps	the	other	to	set	the	KatwalkVR	(2	persons	at	least).	First,	attach	the	Vive	trackers	
around	the	ankles,	then	grab	the	safety	bar	to	enter	in	the	KatwalkVR.	Then,	attach	the	belt	
around	your	belly	and	your	legs.	Finally,	put	the	headset	and	grab	the	controllers	from	your	
comrade.	

c. Go	to	“Level”	Folder	then	“launcher”	and	finally	select	the	scene	called	“launcher”.	
d. Hit	play	and	then	“C”	to	calibrate	the	feet	of	the	avatar.	Note:	You	can	read	the	README.txt	if	

you	want	more	commands.	
There	are	4	different	levels	you	can	try.	Each	level	exploits	one	or	several	features	exclusives	to	the	
KatwalkVR.		The	1st	level	is	challenging	the	precision	of	the	speed	and	the	movement	during	walking.	

Goal:	 Experiment	 treadmill	 in	 VR	 with	
head	 mounted	 display	 and	 a	 consumer	
tracking	 system.	 	 Locomotion	 is	 a	 real	
challenge	in	VR.	Indeed,	you	might	have	to	
travel	a	whole	world	in	your	living	room.	If	
the	user	uses	the	Joystick	to	move	it	might	
have	 cyber	 sickness.	 You	 can	 teleport	
yourself	but	you	will	be	less	immersed.		

The	second	level	lets	you	jump	for	real.	The	third	lets	you	jump,	walk	and	crouch.	Finally,	the	last	level	
lets	you	slide.	All	these	levels	are	demonstrating	new	kind	of	locomotion	you	might	want	to	use	in	the	
future.	
	
Station	4:	Augment	Reality	(HoloLens	V1)	
	
Prepare:	Open	Unity	2018.3.8,	and	load	the	project	HoloLens	(find	it	in	the	Unity	Hub	launcher).		

	

	 	

	 	

Objective:	Experience	Basic	AR	
All	of	the	assets	you	need	have	already	been	loaded	into	this	project.	You	can	now	test	different	scenes	
by	loading	them,	connecting	remotely	to	the	HoloLens,	and	then	using	emulation	mode	to	play	them	in	
real	time.	
	

a. Turn	on	the	HoloLens,	go	into	the	apps,	and	start	the	Holographic	Remoting	Player	app.		
b. You	will	see	an	IP	address	in	the	main	window,	take	note	of	this	address.	
c. In	Unity,	go	to	example	scenes,	UX,	and	choose	one	of	the	categories.	Load	a	scene	that	you’d	

like	to	try	(ideally	one	that	involves	interactivity).	
d. In	Unity,	go	to	Window>XR>Holographic	Emulation.	
e. In	the	popup	window,	set	Emulation	Mode	to	Remote	to	Device.	
f. Enter	the	HoloLens	IP	address	in	the	field	Remote	Machine,	click	connect.	
g. Once	the	device	is	connected	(green),	click	play	in	Unity.	Do	not	close	this	popup	window.	
h. You	should	now	see	the	game	playing	in	the	HoloLens.		
i. Try	one	or	two	scenes	to	experiment	with	different	interaction	and	grasping	methods.	(Note,	

you	may	need	to	“disconnect”	the	HoloLens	to	get	it	to	“forget”	your	previous	emulation	when	
changing	scenes).	

	
If	you	have	any	questions	during	the	session,	do	not	hesitate	to	ask	the	TAs!	
Good	Luck!	

Goal:	 Experiment	 with	 the	 elements	 of	
augmented	 reality	 in	 HoloLens.	 The	
additional	 information	 that	 can	 be	
overlaid	on	your	real-world	view	can	be	
informative,	 but	 also	 distracting.	 The	
input	methods,	especially	with	this	model	
HoloLens,	 are	 very	 limited	 and	 quickly	
can	 become	 frustrating,	 even	 if	 they	
show	future	promise.		

