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1. What is a crystalline material? 

When we talk about crystals, most people will immediately think at minerals. We know them as 
objects with very nice outer shape. These can be found in nature i.e. they grow naturally without 
artificial aid as for instance the quartz crystal shown below. Quartz is silicon dioxide SiO2 i.e one of 
the possible solid compounds made of silicon and oxygen. Diamond is one of the possible solid 
compounds made of Carbon atoms. It is also well known that we can shape crystals easily in very 
nice forms as is the case for diamond.   
 

  
Naturally grown quartz crystal 
http://en.wikipedia.org/wiki/Quartz 
 

Particular crystal shape cut out from larger 
naturally grown crystal  
http://www.ogitechusa.com/images/sawcut/3.png 

 
The beautiful shape of crystals is related to the nature of the internal order and symmetry in which 
atoms are arranged. For instance, the quartz crystal has grown in the form of six-sided prisms with a 
six-sided pyramid at the end.  
 
Why is it that these materials can grow ( or be cut easily) in these nice shapes? This is because these 
crystals have translational symmetry. That brings us to the definition of a crystal 
 
 
A crystalline material is a material characterized by a regular arrangement of atoms or group of 
atoms over “large” distances, i.e. a crystal displays translational symmetry over a long range.  
In a crystal it is always possible to identify a group of atoms or molecules (can be also one atom) that 
repeats itself periodically on a grid in space. 
 
 
In two dimensions it is easy to distinguish what is crystalline and what is not crystalline or 
amorphous. 
 

  
Crystalline arrangement of 
spheres 

Amorphous arrangement 
of spheres 

http://en.wikipedia.org/wiki/Quartz
http://www.ogitechusa.com/images/sawcut/3.png
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These “spheres” do not have to be atoms, they can be a group of atoms or molecules. Important is 
that there is translational symmetry. In crystallography the “unit” that is repeated, is called the 
“motif”.   

  
2D presentation of a Quartz crystal: 
crystalline arrangement of SiO2 ( unit 
that is repeated 

2D presentation of glass: amorphous 
arrangement of SiO2. There is no 
translational symmetry 

 
How the translations are done together with the character of the motif determines the symmetry 
present in the crystal. This is easy to see in the images below. On the left, the translation gives a 4-
fold rotation axis, on the right, the translation gives a 6-fold rotation axis. 
 

 

 

 

Translation resulting in a 4-fold rotation axis 
 

Translation resulting in a 6-fold rotation axis 

 
In the above sample the unit that is repeated is spherical, and does not impose particular limits to 
the symmetry provided by the translation. However if we do the same with a unit that is very 
asymmetric, the symmetry of the crystal will be different. 
 

 

 

4-fold rotation axis is lost 6-fold rotation axis is lost 
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Why is symmetry important? 

Symmetry plays an important role in material science. Most material properties are anisotropic 
which means that their properties depend upon direction or angular orientation of crystals. 
Examples are chemical resistance, the ability to get charged when stressed (piezoelectricity) or 
fracture toughness.  

Take the example of cleavage. In crystals the breaking of atomic bonds can be easier in some 
directions than others. For example, in a crystal of sodium chloride (NaCl) cleavage can only be 
achieved along planes parallel to cube faces.  

 

 This is also the case for elastic properties. Most metals have a Young’s modulus that depends on the 
direction of loading: the crystal is soft in some directions but hard in others. Below a picture of the 
surface of the modulus of elasticity reconstructed using the single crystal elastic constants of 
Cementite (Fe3C crystal). 
 

 

 

 

Weisser et al Acta Materialia 59 (2011) 
4448– 

 
Another example of the importance of symmetry is diamond and graphite. Both materials are made 
of pure carbon, yet the translational symmetry is different.  
Diamond is the hardest known natural mineral. It can be used as an abrasive, meanwhile the 
diamond self is kept polished and lustered extremely well. No known naturally occurring substance 
can cut or scratch a diamond, except another diamond. In diamond, a unit of four covalently bonded 
C atoms is repeated translationally within a cubic lattice.  
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In graphite the C atoms are in-plane ordered by translation with a hexagonal symmetry. These layers 
are stacked and the bonding between the layers is weak.  
 

 
 
https://en.wikipedia.org/wiki/Allotropes_of_carbon 
 
 
 
Is the outer shape unique? 
 
With our advances observation techniques, it has been possible to show that the shape of a crystal 
can be already present at much smaller length scales then those of minerals as mentioned earlier. 
Below is a scanning electron microscopy image of GaAs wires with hexagonal shape and a length of 
the order of 300nm. In the same table you will find electron transmission images of MgO cubic 
shaped crystals supporting Au clusters.   
 

  
 

SEM image of GaAs nanostructure 
revealing 6-fold symmetry 
Mohan et al, Nanotechnology 23 
(2012) 025601 

TEM image of MgO crystals supporting Ag clusters and TEM 
image of a Ag cluster 
Stancic et al, Nanoscale, 2013, 5, 2448 
 

 
 
 

https://en.wikipedia.org/wiki/Allotropes_of_carbon
https://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiKo9DK5rrKAhWG6g4KHUN9CoIQjRwIBw&url=https://en.wikipedia.org/wiki/Allotropes_of_carbon&psig=AFQjCNF66Od_dq1lBaRvNo4z-Tg9OVPXfQ&ust=1453462146713248
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One can however not always rely on the outer shape of the crystal to derive symmetry.  
The morphology of a crystal strongly depends on how and how many building blocks are put 
together, as illustrated schematically below in an image taken from Hammond (fig.4.1).  
 

 
 
 
Similar as the example of the sugar cubes, it is possible to make very tiny crystals with different 
regular shapes. 
For example, Palladium is a crystalline material that can be 3-dimensional represented by the 
repetition of a cube. The figure below shows the yellow cube that can be repeated in 3 dimensions, 
a sphere represents here a Palladium atom. After stacking of the cubes, one can cut the sample 
along particular faces and make a shape that is not anymore a cube.  
 

 

 
 
Scientist have shown that one can grow such tiny clusters directly in different shapes, as suggested 
below in the schematics and the transmission electron microcopy images of Pt clusters with 
different shapes. Which outer shape is reached in nanoclusters, depends for instance on the 
environment in which the clusters are grown and on the incorporated impurities. Controlling the 
morphology and the three-dimensional arrangement of atoms in crystalline nanoparticles is 
important for applications: for instance the morphology influences the catalytic properties of the 
cluster. 
 

http://www.geocities.jp/ohba_lab_ob_page/Structure/FCC.jpg
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Pt nanocrystals with different shapes 
Tao et al ( review paper), Small 2008, 4, No. 3, 310 – 325 
 
 
In summary, the outer shape of the crystal can be misleading for determining the symmetry of the 
crystal. To obtain the symmetry of a crystal one needs better characterization methods such as 
those based on diffraction ( xray, neutron, electron..). The principles of these will be also given in 
this course. 
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Molecular crystals and Proteins 
 
In early crystallography, one was always dealing with minerals, metals, pure elements in solid state 
etc. But as mentioned earlier, the unit that is repeated can also be a molecule. Molecules are made 
up of atoms linked together. However, the links between the molecules within the crystal are much 
weaker. Nevertheless, they can be stacked regularly as shown below for the molecular crystal 
cinnamide 
 

 
http://www.xtal.iqfr.csic.es/Cristalografia/parte_01-en.html 
 
Crystallographers discovered that they could study biological materials, such as proteins or DNA, by 
making crystals of them. This extended the scope of crystallography to biology and medicine. 
Protein crystals are also a stacking of molecular units. In these packings there are usually many holes 
that are filled with water molecules (not necessarily ordered). 
 
Examples are  

 
 

Crystal structure of a protein: AtHal3. h41pkve6: crystal forming protein  
 
Why would you crystallize a protein?  As you will see in the course, diffraction is an excellent tool to 
learn more about the structure and symmetries of the “repeated unit”.  
  
 
 
 
 
 

http://www.xtal.iqfr.csic.es/Cristalografia/parte_01-en.html
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Polycrystalline material 
 
Single crystals form only under special conditions and it is not so easy to grow them artificially.  
Most engineering materials are not single crystals, but polycrystals. As the name suggests, a 
polycrystalline material is an ensemble of many crystals. The individual crystallites are often referred 
to as grains and the junctions between these grains are called grain boundaries. This is schematically 
presented below.  Parameters such as the size distribution of the grains, the morphology of the 
grains, the orientation relationships between the individual crystals are very important parameters 
determining the overall properties of the polycrystalline material. There are distinct diffraction 
methods that are designed to look at a single crystal and others to study polycrystals. Both will be 
discussed in this course. 
 

 

 
Polycrystal where each color represents a 
grain of the same crystal structure but with a 
different orientation. The picture is taken 
from 
(http://pimm.paris.ensam.fr/en/node/1457) 
 

 
 
 
 
 
How can we “see” the symmetry of a crystal ? 
 
In 1895, X-rays were discovered by William Conrad Röntgen, who was awarded the first Nobel Prize 
in Physics in 1901. It was Max von Laue and his co-workers, however, who would discover that X-
rays travelling through a crystal interacted with it and, as a result, were diffracted in particular 
directions, depending on the nature of the crystal. This discovery earned von Laue the Nobel Prize in 
Physics in 1914. 
Equally important was the discovery by father and son William Henry Bragg and William Lawrence 
Bragg in 1913 that X-rays could be used to determine the positions of atoms within a crystal 
accurately and unravel its three-dimensional structure. Known as Bragg’s Law, this discovery has 
largely contributed to the modern development of all the natural sciences because the atomic 
structure governs the chemical and biological properties of matter and the crystal structure most 
physical properties of matter. The Bragg duo was awarded the Nobel Prize in Physics in 1915. 
 
Diffraction (and more general the interaction) of Xrays, neutrons and electrons has become the 
major tool to analyze the composition, structure and symmetries of crystals.  
 

http://pimm.paris.ensam.fr/en/node/1457
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Why do we need “Crystallography”? 
 

- The way translation is performed on a “motif” i.e. a unit made out of atoms or molecules, 
the crystal will have a different symmetry 

- The symmetry of the crystal is not only determined by the translation induced symmetry, 
but also by the symmetry of the motif itself 

- Symmetry plays a key role many material properties  

Since there are so many ways to arrange atoms/molecules, crystallographers have developed a 
rigorous description of crystals and classified them according to their symmetry. To describe the 
crystal mathematically, crystallographers have defined the concept of a lattice. The lattice is an 
ensemble of mathematical points at specific coordinates in space constructed as such that the view 
from each lattice point is the same as from any other. These points are not necessary atoms, but to 
these points atoms or group of atoms/molecules are assigned. The lattice together with the 
symmetry of the crystal (which depends not only on the lattice but also on the position of the atoms) 
allows categorizing crystals in space groups.  

 

If you want to read more about the history and importance of crystallography, you can read the 
document  “Crystallography matters: international year of crystallography 2014 

http://www.iycr2014.org/__data/assets/pdf_file/0010/78544/220914E.pdf 

 

  

http://www.iycr2014.org/__data/assets/pdf_file/0010/78544/220914E.pdf
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Organization of the course crystallography, part I (H. Van Swygenhoven) 

First we will adopt a simpler “material science” approach before we will go to this rigorous 
description of crystals. We look into the different ways one can pack atoms while keeping 
translational symmetry in three dimensions. First we do this for stacking of atoms of the same 
chemical species, later we will look at other well-known crystal structures that stand as model for 
many other materials with more than one chemical specie. 

Chapter 2:  Packing of spheres (atoms)  

Chapter 3: Constructing crystal structures from packing hard spheres: stacking sequences, packing 
densities, interstitial sites 
 

The above chapters will help you convincing that a more rigorous approach is needed in 
crystallography. The coming chapters will be devoted to the mathematical description 

Chapter 4:    Crystal lattice and symmetry operations 

Starting with the definition of the lattice, we will study the possible symmetry operations: first in 2D 
then in 3D. This will allows us defining 5 2-dimensional lattices. For the 3-dimensional crystals we 
need 7 crystal systems and 14 Bravais lattices. In this chapter we will also investigate all possible 
symmetries that can be combined in one point: in 2D there are 10 point symmetries, in 3D there are 
32 point symmetry groups. Combining the point symmetries with the translational symmetry 
imposed by a lattice, allows classifying 2D objects into 17 plane groups and 3D crystals into 230 
space groups. 

 

Chapter 5: The mathematical description of the lattice 

In this chapter we will describe the lattice mathematically and introduce the concept of Miller 
indices, used in Xray diffraction. 

Chapter 6: Diffraction and interference from crystals 

Now that we know how to classify crystals according to their symmetry, we will here explain the 
basics of Xray diffraction, used experimentally to determine the symmetries of a crystal. 

 

Important note: exercises will be done during the lecture. Exercises are marked in the text in grey 
boxes. At the end of each lecture, the answers will be provided. 

References: 

Besides some web references given in the text, good reference books are 
Christopher Hammond, The Basics of Crystallography and Diffraction: Third Edition 
Neil W. Ashcroft, N. David Mermin, Solid State Physics  
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2. Packing of spheres (atoms) 

Consider atoms as spheres. The densest packing of atoms in a plane has a six-fold symmetry. Around 
the orange atom one can stack 6 other atoms of the same size 

 

 

 

The 2D building block that when repeated in a plane reproduces the hexagonal packing has a unit 
cell as shown above. We call this layer A.  As can be seen in the figure below, there are two types of 
open places which we call “interstitial” sites, the red which we call B and the blue which we call C 

 

When stacking a second layer, the atoms could in principle sit on top of an atom of layer A, but this 
is not the most stable position or, in energy terms, this is not a lower energy configuration. Imagine 
we represent the atoms by points, such a A-A stacking would then correspond with a  3D unit block 
as shown below (left hand side). Later we will see that this is called a primitive hexagonal lattice.  
There are no elements in the table of Mendeleev that have this crystal structure when in mono-
elemental form i.e. without the addition of other elements. This does not mean that the primitive 
hexagonal lattice does not exist. For instance WC ( Tungsten Carbide) can occur in this form: it has 
then all W atoms ( red)  on  primitive hexagonal lattice points and C atoms (grey) in interstitial 
positions as shown on the right hand side of the picture below 
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In pure mono-elemental crystals, the atoms of the second layer will always slip into one of the 
interstitial type sides of the A layer. Assumes the second layer covers the “B” sites 

Layer A 

 
Layer A+B 

 
 

 

Stacking A + B + A Stacking A + B + C 
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When a third layer is added, there are two possibilities: the third layer slips into the same type of 
interstitial sites (B) of the first layer. This is an ABAB packing. The third layer can also slip into the 
other type of interstitial sites i.e. “C”.  This is the ABCABC packing. 

Lower packing factors are obtained when one does not start from a 2D hexagon but from the lower 
2D square packing. Similar as in the hexagonal packing, no low energy configuration is obtained 
when packing two squares on top of each other. The unit block corresponding with this stacking is a 
primitive cubic. It is a very uncommon structure for mono-elemental crystals, nevertheless it exists: 
α-Polonium. 

More frequently observed is when the square lattices are stacked such that alternating layers lie in 
the interstitial valley ( shown below).  This unit cell corresponds with a body-centered cube.  

  
Square lattice A A + B layer 
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3. Constructing crystal structures from packing hard spheres: 
stacking sequences, packing densities, interstitial sites  

 

When one stacks atoms as previously shown, one can define a unit block and calculate for the 
obtained structure the packing fraction, the coordination number (number of nearest neighbors), 
number of atoms in a unit block and define open space i.e interstitial sites . These are important 
parameters that characterize the periodic structure. Open space is for instance important for 
alloying and impurities.  Below a few examples of how the unit blocks can be determined   

 

3.1  Crystal structure of mono-atomic crystals 

Face Centered Closed packed structure:  FCC  (ABCABC) 

The unit block for an ABC stacking corresponds to a cube with diagonal perpendicular to the 
triangular stacked  A, B and C  planes. Imagine we represent the atoms by points, as shown in the  
figures below. We obtain then a cube with additional points in the center of each face.  Later we will 
see that this unit corresponds to the face centered cubic lattice. 

 

 
 

 

 

  

Coordination number  
The coordination number = 12. Check this!  
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Number of atoms per unit cell 

In FCC unit cell we have: 
 6 face atoms shared by two cells: 6×1/2 = 3  
8 corner atoms shared by eight cells: 8×1/8 =1 
so the number of atoms per unit cell is 4 

Packing fraction 
Atomic packing factor,       APF  = fraction of volume occupied by hard spheres 

  = (Sum of atomic volumes)/(Volume of cell).  

To do this, we again assume the atoms as hard spheres with a radius R. At the faces of the cube, the 
two corner atoms and the atom in the center of the face touch each other. Hence the length of the 
face diagonal  D = R + 2R + R = 4R. 

Since D2 = a2 + a2 

a = 2R √2 

Volume of 4 hard spheres in the unit cell: 4× 4 πR3/3 when R is the radius of 
the atom.  The volume of the unit cell: a3 = 16 R3 √2 

 

This is the maximum possible packing factor of spheres in 3D 

Interstitial sites 
There are two types of interstitial open volumes in the FCC lattice: the octahedral and the 
tetrahedral shaped volumes. Interstitial sites are important since they are often filled up by 
impurities. Note that the octahedral and tetrahedral have different coordination. If another atom 
would sit in a tetrahedral site, the coordination would be 4, in an octahedral site it would be 6. 

 

 
There are eight tetrahedral sites in the FCC unit 
cell ( blue). They all have a corner lattice point 
at the top. The center of the site is of type  
(¼,¼,¼).  

 
Octahedral (red): is the volume shaped by all 
atoms ( or lattice points) in the centers of the 
faces of the cube. The position of the 
octahedral interstitial site is (½, ½, ½).  
http://en.wikipedia.org/wiki/Interstitial_defect 

 
 

 

http://en.wikipedia.org/wiki/Interstitial_defect
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Elements with the mono-atomic FCC structure (Ashcroft-Mermin) 

 

 

Hexagonal Closed Packed structure: HCP (ABAB) 

 The hexagonal closed packed structure can be seen as two interpenetrating hexagonal unit blocks 
where one is displaced vertically by a distance ½ of their common c axis, and horizontally so that the 
points of one lies directly above the centers of the triangles formed by the points of the other 

There is more than one way to define a unit block for this structure  

- Hexagonal unit block with axis a,b,c (a=b) and 2-atoms assigned to each of the corners of the 
unit block: coordinates (0,0,0) and  (2a/3 , a/3, c/2) 

-  Primitive unit cell a,b,c’ 
- Hexagon with three atoms in the center.  

Note that this is valid for all crystal structure, i.e. there are many ways to define a unit block. That is 
why crystallographers have defined particular lattice types: i.e. the Bravais lattice , as we will see 
later. 

 
 

HCP structure represented by the (green) unit block lattice with axes a,b=a,c  with an extra atom 
inside. The structure can also be presented by the unit block a,b,c’  for which a 2D projection is also 
shown.  
 



17 
 

 NXMM     Van Swygenhoven Helena 

The symmetry of the closed packed lattice is independent of the c/a ratio, the packing however 
depends on c. The structure with the highest packing, often called the truly hexagonal closed packed 
structure has a ratio 

c= �8/3a = 1.633a 

 
Exercise 3.1  
demonstrate that the highest packing is obtained for c/a = 1.63. 
Hint: consider that the densest structure will be when the distance between all atoms in the 
primitive cell is equal i.e. c’ = a=b 
 
 
 
 

Not all materials that crystallize in an HCP structure have this ideal value as can be seen from the 
table below (Elements with a mono-atomic HCP structure). 

Magnesium is nearest to the perfect ratio with 1.62 . 

 

 

 

Coordination number  

 
Exercise 3.2  
determine the coordination number for the truly HCP structure (c/a = 1.6233) 
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Number of atoms per unit cell 

 
Exercise 3.3  
determine the number of atoms in the three unit cells defined above for HCP 
 
 
 

Packing factor:  

 
Exercise 3.4 
determine the packing factor for the truly HCP structure. Hint: take as unit cell the hexagon ( the 

volume of a hexagon:  V=3√3
2
𝑎𝑎2𝑐𝑐) 

 
 
 

Interstitial sides 

  
 
There are six octahedral sites in a HCP 
cell.( green) 
 
There are eight tetrahedral sites in the 
HCP unit cell.(cyan) 
 

 

 

The body centered structure: BCC lattice 

When packing 2D squares (lower packing factor in 2D) in three dimensional periodic structures one 
can of course obtain a simple cube as building block (stacking AA) but that does in mono-elemental 
crystals not occur. By stacking AB one obtains as building block a cube with an atom in the center. 
From there the name body centered structure. This structure is of course less dense packed then the 
FCC structure. It is a frequent occurring structure for mono-elemental crystals. The central atom has 
the same environment as the corner atoms since it is simply deduced from a shift of a corner point 
over ½ (a +b+c) as shown in the picture below. The right-hand side of the picture below shows that 
one can also define a different building block ( green axis), which is smaller and has no extra atom 
inside 
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Two interpenetrating cubic cells The body centered unit cell (blue 
lines) and  primitive cell ( green) of a 
BCC lattice 

 

Coordination number  
 

 
Exercise 3.5 
 determine the coordination number of the BCC structure 
 
 
 

Number of atoms per unit cell 
 
 
Exercise 3.6   
determine the number of atoms for the two unit cells shown above 
 

 

Packing fraction 

 
Exercise 3.7  
show that the packing fraction of the BCC structure  APF= 0.68 
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The interstitial sides of the BCC lattice 

The BCC lattice has octahedral and tetrahedral interstitial free volumes.  

 

 

6  octahedral sites (green) 
 They are centered around each 
of the six BCC cell faces  
(e.g. coordination of the center 
(½,½,0))  
 
12 tetrahedral sites (cyan) 
(6x4)/2 ( image middle column) 
(e.g. coordination of the center 
(½,¼,0). 

 

Elements with mono-atomic BCC structure 

 

 

 

The diamond structure 

As already mentioned, the crystal structure taken is also influenced by the atomic bonding. In the 
above examples we considered the atoms as being all hard spheres with the same diameter with an 
interaction that is isotropic or mostly isotropic.  
 
The diamond structure is another way to pack atoms of the same species. It occurs for instance 
when the atom-atom bonding is a very directional covalent sp3 
bond (i.e. a chemical bond that involves the sharing of electron 
pairs between atoms) which has a tetrahedral symmetry as shown 
below (www.grandinetti.org).  
 

 

 

The resulting “diamond crystal structure” can be seen as an fcc-type lattice (made of Carbon atoms) 
but instead of only C atoms in the FCC positions, some of the tetrahedral interstitial sites are also 
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filled with C atoms. There is another way to look at the diamond structure: it can be considered as 
two interpenetrating FCC units, the second displaced by one quarter of the diagonal of the fcc lattice. 
Later we will see that the diamond structure can be described by an FCC lattice with a motif 
consisting of 2 atoms (0,0,0) and ( ¼, ¼, ¼ ).   

 
 

To understand the diamond structure 
look at the movie on  
http://en.wikipedia.org/wiki/Diamond_cubic 

 

The diamond structure The diamond structure showing the 
nearest neighbor bonds 

 
 

Two interpenetrating FCC lattices shifted 
by  ( ¼, ¼, ¼ ) 

Same picture showing only the atoms in 
the unit block 

  

 
Different views on the diamond lattice and 2D projection 

 

http://en.wikipedia.org/wiki/Diamond_cubic
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Coordination number 

 
Exercise 3.8  
determine the coordination number.  
 
 
 

Number of atoms in unit cell 

 
Exercise 3.9 
determine the number of atoms in the diamond cell 
 
 
 
 

Atomic packing fraction 

 
Exercise 3.10 
 determine the atomic packing fraction of the diamond cell 
 
 
 

Elements that crystallize in a diamond structure 

Element 
 

Cube side 
(Angstrom) 

Diamond ( C ) 3.57 
Si 5.43 
Ge 5.66 
α – Sn 6.49 
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3.3  Crystal structures of metallic alloys 

Mixing several metallic elements, can give result to ordered and disordered structures, requiring 
different lattices. A few examples 

 

 
CuAu 
 
Simple cubic, no chemical order 
Each light blue atoms is either Cu or Au (respecting 
that there are in equal amounts!) 

 

 
CuAu, CoPt,  FePt, TiAl 
 
Tetragonal lattice (L10), chemically ordered 
(a=b ≠c) 
 
Individual elementary components are fcc, bcc or 
hcp, but the alloy is simple cubic 

 

 
Cu3Au, Au3Cu, Ni3Mn, Ni3Fe, Ni3Al, Pt3Fe 
 
Cubic lattice L12, chemically ordered 
 
The lattice is simple cubic with chemical ordering 

 

 
Fe3Al, Cu3Al, Fe3Si 
 
Cubic FCC lattice, chemically ordered  

 

 
NiAl, CoAl, CuZn, AuZn 
 
The lattice is simple cubic 
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3.2  Packing spheres of different diameter: important crystal 
structures of ionic solids 

Ionic solids consist of positive and negative ions arranged in a manner so as to acquire minimum 
potential energy.  Since in the ionic bond the charge distribution is only weakly disturbed, one can 
still consider them in a first approximation as a cation (net positive charge) and an anion (net 
negative charge)   with different radius. Minimum energy can be achieved by decreasing the distance 
between cation and anion and reducing anion-anion repulsions. The structures which these solids 
adopt can be described in terms of large anions/cations forming a close packed arrangement and the 
small cations/anions occupying one or the other type of interstitial sites. A large number of ionic 
solids exhibit one of these five structures which are discussed here: 

Sodium chloride (NaCl) 
Zinc blende (ZnS) 
Wurtzite (ZnS) 
Cesium chloride (CsCl) 
Fluorite (CaF2) 
 
 
Which crystal structure is formed depends on  
- Charge balance requirement 
- Relative sizes of the cations and anions.  

The importance of the radius of the ions is summarized in the table below. Demonstration of the 
values is left as exercise. 

 
http://www.physics.uwo.ca/~lgonchar/courses/p2800/Chapter10_Ceramics_Handouts.pdf 

 
 
Ratio of the “radius” of the 
cation/anion 
 
(Cation= positive ion, 
anion=negative ion) 
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Cesium Chloride CsCl 

The lattice contains an equal amount of Cs and Cl atoms. The stacking of Cl and Cs they is BCC-type. 
The structure has a simple cubic building block with a motif of one Cs atom with coordinates (0,0,0) 
and one Cl atoms with coordinates (½, ½, ½) ( or vice versa!). The coordination number for each of 
the atoms = 8  

 

 

Unit cell of CsCl 4 unit cells showing that both 
elements are placed in a simple 
cubic structure 

 

 
Exercise 3.11  
Explain why Cs is sitting in the cubic interstitial site. The radius of Cs (+1) is ~1.67 Å and the radius of 
Cl (-1) is 1.81 Å .   
 
 
 

Elements that crystallize in a CsCl structure 
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Sodium Chloride NaCl 

NaCl consists of equal numbers of Na and Cl atoms placed at alternate points of a simple cubic unit 
block in such a way that each Na ion has 6 Cl atoms as nearest neighbors and vice versa. In other 
words, one can consider the Cl atoms at the corner of a face centered cubic lattice with the Na 
atoms in the octahedral sites ( or vice versa) , the coordination number=6 for both of Na and Cl   

 

Unit cell of NaCl  
 
http://www.metafysica.nl/turing/preparation_
3dim_2.html 

 

https:
//ww
w.bou
ndless
.com/i
mage/
nacl-
crysta
l-
struct
ure/ 

 
The Cl atoms are in the octahedral sites of the Na FCC 
lattice ( or vice versa)  

 

 
Exercise 3.12  
Explain why Na is sitting in the octahedral site.  The radius of Cl (-1) is 1.81 Å  and the radius of Na 
(+1) is 0.99Å.   
 
 
 

Other binary compounds crystallizing in a NaCl structure 

 

http://www.metafysica.nl/turing/preparation_3dim_2.html
http://www.metafysica.nl/turing/preparation_3dim_2.html
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Zinc Blende structure ZnS 

ZnS has an equal number of Zn atoms and S atoms. Zn is the cation and S the anion. One can 
consider that the S atoms are in an cubic face centered arrangement and the Zn atoms occupy half 
of the tetrahedral sites ( not all because of stoichiometry 1:1). Each zinc atom is surrounded by four 
S atoms and in turn each S atom is also surrounded by four zinc atoms.  
 If one looks careful, one can recognize that the Zn atoms form also an fcc lattice but displaced with 
by ¼ of the volume diagonal. In other words, cations and anions are present in equivalent positions 
and the coordination of zinc blende structure is described as 4:4. Another way to look at this 
structure: it has the same geometry as the diamond lattice but filled with Zn and S atoms instead of 
only C atoms. 
 
 

  

 

 

The Zn atoms are in tetrahedral sites  
 
 
 
Exercise 3.13  
Explain why Zn is sitting in a tetrahedral site.  The ionic radius of the zinc(II) cation is 0.74 Å and that 
of the sulfide (2-) ion is 1.84 Å.   
 
 
 
 
Other binary structures that crystallize in the Zink Blende structure 
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Wurtzite structure ZnS 

ZnS can also form in a hexagonal close packing crystal structure, keeping the coordination 4. This is 
shown in the picture below where the cations (Zinc) spheres and are located so that there are four 
sulphur anions around each zinc atom since they occupy tetrahedral sites of the hcp lattice ( and vice 
versa). Again cations and anions are in equivalent positions. 

 

 

 
 

Hexagonal image of wurtzite Unit cell 
 
Difference between zincblende and wurtzite 

 
 
 
 
Note that in Zink Blende and Wurtzite the atoms are in a tetrahedral coordination. The difference 
lies in the ordering of atoms that are further away. This is shown in the picture below. Here the 
sequence of the most dens planes is shown. Look at the movies on  
 http://www.chemtube3d.com/solidstate/_blende(final).htm 
 

http://www.chemtube3d.com/solidstate/_blende(final).htm
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Zinc Blende: since it has an HCP lattice it 
has the typical ABC stacking  

Wurtzite: since it has  hexagonal lattice, it 
has the typical AB stacking 

 
 
Other “Wurtzite” type crystals 
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Calcium Fluroride CaF2 
CaF2 has twice as much Fluor atoms as Calcium atoms. The Ca cations arrange themselves in a face 
centered cubic structure and the Fluor anions occupy the 8 tetrahedral interstitial sites. Therefore 
the coordination of Ca cation is 8 and of the F anion is 4, corresponding to the stoichiometry. The 
structure can however also be considered as a simple cubic structure of F anions with the Ca cations 
sitting in cubic (8-coordinate)  holes.  sits in the cubic interstitial site of the simple cubic F lattice. You 
will find also the opposite, sometimes called anti-Fluorite, as is the case of Na2=. Here the Na cations 
occupy the 8 tetrahedral sites and the O anions arrange in a face centered structure 

 

 

Unit structure of CaF2 ( in each sub-cube 
there is a F atom). Each F atoms is 
surrounded by 4 Ca atoms 

Each Calcium ion is surrounded by eight Fluorine 
neighbors when the structure is imagined to be 
extended indefinitely. 

 

 
Exercise 3.14  
Explain why Ca is sitting in a cubic interstitial site.  The ionic radius of the Ca anion is 1.17 Å and that 
of the F anion is 1.26 Å.   
 
 
 

Other crystals 
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Conclusive Note 
 
With the above examples it is clear that  
- many crystalline solids have the same crystal structure 
- the same crystal can be described in several ways 
We only considered some simple metals, alloys and some ionic/covalent crystals. There are however 
many other crystals such as for instance the perovskite structure shown below 
 

 
 

Perovskite structure  CaTiO3  (Ca=green, 
O=blue, Ti=red) 

Double perovskite structure AA'3B4O12. 

 
Or molecular crystals ( see http://en.wikipedia.org/wiki/Buckminsterfullerene) 

 
 

 C60 molecular crystal of weakly bound C60 
crystals molecules. 
In this example there are no atoms in the 
lattice points!  

alkaline-metal-doped fullerenes such as Cs3C60 
crystals evidencing superconductivity at 33K 

 
 
It is obvious that a rigorous mathematical description of a crystal is needed! That is what will be 
done in the next chapter.  
 
 

 

http://en.wikipedia.org/wiki/File:Fulleride_Cs3C60.jpg
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Extra Exercises 
3.15    Write down the coordinates of the center of all the tetrahedral and octahedral sites for the 

fcc and bcc structures. 
 

3.16     Assuming that atoms are hard spheres in contact and letting r' be the radius of the interstitial 
site and r the radius of the solvent atom in contact, calculate the critical ratio of the radius 
(r'/r). i.e. 

i. show that for the two fcc interstitial sites (r'/r) equals 0.4142 and 0.2247. 

ii. show that for the two bcc interstitial sites octahedral and tetrahedral  
(r'/r) equals 0.1540 and 0.2910  

 

3.17    Using geometrical considerations, derive the critical ratio of the radius cation/anion for the 
crystal structure CsCl, NaCl and ZnS. The critical radius occurs when the cations just fit into 
the space left by the anions so that the anions and cations just touch each other. 

Show that the critical ratio corresponds to √3 − 1, √2 − 1, √6
2
− 1 

 
 
 
 

For imaging some of the crystal structures 
http://www.dawgsdk.org/crystal/en/library/CsCl#0010 

References that can be used and from which some of the pictures are taken 

Christopher Hammond 
The Basics of Crystallography and Diffraction: Third Edition 

Neil W. Ashcroft, N. David Mermin 
“Solid State Physics”, 1st edition 

http://www.materials.ac.uk/elearning/matter/IntroductionToPointDefects/Interstitials/introduction
.html 

https://www.e-education.psu.edu/matse201/node/8 

http://en.wikipedia.org/wiki/Close-packing_of_equal_spheres 

http://en.wikipedia.org/wiki/Hexagonal_crystal_system 

http://www.tcm.phy.cam.ac.uk/~cjp20/old/lectures/topic2.pdf   

http://web.nchu.edu.tw/~jillc/me/Ch03%20-%20Crystalline%20Structure%20-%20Perfection.pdf 

http://www.metafysica.nl/turing/preparation_3dim_3.html 

http://www.dawgsdk.org/crystal/en/library/CsCl#0010
http://www.materials.ac.uk/elearning/matter/IntroductionToPointDefects/Interstitials/introduction.html
http://www.materials.ac.uk/elearning/matter/IntroductionToPointDefects/Interstitials/introduction.html
https://www.e-education.psu.edu/matse201/node/8
http://en.wikipedia.org/wiki/Close-packing_of_equal_spheres
http://en.wikipedia.org/wiki/Hexagonal_crystal_system
http://www.tcm.phy.cam.ac.uk/%7Ecjp20/old/lectures/topic2.pdf
http://web.nchu.edu.tw/%7Ejillc/me/Ch03%20-%20Crystalline%20Structure%20-%20Perfection.pdf
http://www.metafysica.nl/turing/preparation_3dim_3.html
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4.    Crystal lattice and symmetries 

4.1  Definition of a lattice 
 
To describe the crystal mathematically, a lattice is defined. The lattice is an ensemble of 
mathematical points at specific coordinates in space. The view from each lattice point is the same as 
from any other. 

To reconstruct the crystal from a lattice one needs to define the “base” or “motif” of the crystal 
which are atoms or molecules in some specific arrangement unambiguously placed at every lattice 
point. In other words, the lattice tells you how to repeat the motif and the motif tells you what to 
repeat. It is important to realize that a lattice is not a crystal, but each crystal has a lattice even so 
the two words are often used synonymously in spoken language. Only in the case of elemental 
crystals where the motif consists of one atom sitting at each lattice point, lattice and crystal have the 
same meaning. This is for instance the case for pure metals such as Fe, Cu and Ti, following 
respectively the bcc, fcc and hcp stacking.  As we have seen earlier, for instance ZnS can be described 
by the same lattice as Cu ( fcc lattice for S) but needs a motif for the positions of the Zn atoms . 

  Crystal = Lattice + Motif 

The lattice is a very important concept in material science. Many physical properties of crystals like 
elastic and plastic deformation, cleavage, electronic band structure and optical transparency are 
strongly governed by the lattice structure and are also described using the lattice concept. Many 
experimental techniques as for instance Xray, neutron and electron diffraction use for their 
interpretation the concept of the lattice  

This section starts with the concept of the lattice which defines the translational symmetry. Then the 
different symmetries that can be contained in one lattice point will be introduced ( point 
symmetries). Finally it will be shown that the combination of the motif, the translational and point 
symmetry allows the crystallographer to classify materials into 230 space groups. 

For the ease we will explain crystallography using 2 dimensional patterns. The lattice and symmetry 
operations used here are those used to make the patterns in wall paper or tissues. Two dimensional 
lattices do however exist: a nice example is graphene ( see picture below from 
http://en.wikipedia.org/wiki/Graphene ). 

  

Graphene and wall paper with same symmetry group 
http://www.clarku.edu/~djoyce/wallpaper/groups.html 

http://www.clarku.edu/%7Edjoyce/wallpaper/groups.html
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Most materials need however a 3D lattice. The classification of the 2D lattices and symmetry groups 
is analog to the 3D case, however much simpler. If the construction in 2D case is understood, it is 
easier to understand the classification of 3D crystals in 230 space groups. 

 
4.2    The 2D lattice and symmetry operations 

4.2.1   The 2D lattice 

 
Lattice is a mathematical description of translational periodicity, and this description is usually not 
unique. 

 

 
To mathematically define the translational symmetry in 2D, we need 2 vectors. The pictures below 
show that there are many possibilities to fully represent the translational periodicity. One can define 
a unit cell, but again the choice of the unit cell is not unique. The unit cell can be primitive i.e. the 
cell contains only one lattice point ( pink examples) or non-primitive, when the cell contains more 
than one lattice point ( blue example).  

 
 

 
In other words, for a rigorous mathematical description of crystals, we need a common practice for 
defining the lattice. Criteria used are 
 

 
1.  Short unit vectors 
2.  Angles between vectors closest to 90° 
3.  Primitive unless the cell does not reflect the major symmetry axis of the lattice 
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In the 2D example from above, the lattice is called “oblique” and is by convention defined as 
 
 

 

 

- The two shortest vectors, a≠b 
- Both angles are “closest” to 90° 
- Primitive “P” 

 
It is easy to recognize that the lattice has certain symmetries. For instance, the 2D lattice considered 
above has several 180° rotation axes as shown below. Such a symmetry operator is called a point 
symmetry because when it acts there remains at least one point unchanged 
 

 

 

180° rotation axes of the oblique lattice 

 
If a reflection line ( “m”) is present, the cell must be rectangular. This is shown for the 2D lattice 
below 
 

 

 

2D lattice 

a≠b     γ= 90 

all blue lines are reflection lines 

. 
Presence of a 4-fold axis requires that the lattice vectors are equal in size ( square lattice) 
 
Combining translational, rotational and reflection symmetry in a plane, and using the three 
convention criteria listed above, has allowed to define five 2D lattice that can describe any regular 
2D repeating of points in a plane: the primitive oblique lattice, the primitive rectangular lattice, the 
primitive square lattice, the primitive hexagonal lattice and the non-primitive rectangular lattice. The 
lattices are shown in the table below ( red points are lattice points). In the right column the 
maximum symmetry a lattice point can have is provided 
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2D lattice Maximal symmetry of 2D 

lattice 

 

2-fold axis 

 

2-fold axis with two 
reflection lines 

 

4-fold axis with two 
reflection lines 

 

6-fold axis with three 
reflection lines 

 

When a primitive lattice is taken, it is called Rhombic 

2-fold axis with 2 reflection 
lines 

 
What concerns the non-primitive rectangular lattice, an obvious question is why for these cases one 
does not choose a primitive cell with a=b. This is sometimes done ( see for instance 
en.wikipedia.org/wiki/Wallpaper_group ).  The lattice however contains mirror planes and so 
according to convention 3, the unit cell should present the major symmetry elements of the lattice. 
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4.2.2  The 2D Symmetry operations 
 
The symmetry operations in 2D that are compatible with translational symmetry are 
  1-fold ( no symmetry) 
  2-fold (180° rotation) 

3-fold ( 120° rotation) 
4-fold ( 90° rotation) 
6-fold (60° rotation)  
Reflection line (m)   

Of course rotation axis and reflection lines can be combined.  
 
The notations used in this course are those from Hermann–Mauguin: 

1,2,3,4,6 for the rotation axis 
m for the reflection line 

When symmetry operations are combined this results in notations such as 
3m: a 3-fold rotation axis lying on a reflection line 
6mm: a 6 fold axis lying on two symmetry lines 

 
Why not a 5-fold rotation axis? 
 

  
Penrose tilling gives a quasicrystal 
http://en.wikipedia.org/wiki/Penrose_tiling 
A quasiperiodic crystal (quasicrystal)  
is a structure that is ordered but not periodic.  
A quasicrystalline pattern can continuously fill all 
available space,  but it lacks translational 
symmetry 

Atomic model of an aluminium-palladium-
manganese (Al-Pd-Mn) quasicrystal surface.  
http://chemvista.org/quasicrystals1.html 
 

 
 
In the case the motif is simple and falls on the lattice point, the 2D lattices describe all possible 2D 
periodic structures and the lattice + motif has the same symmetry operations as the lattice. However, 
when the motif is more complex, the symmetry of the unit cell may change. Take the example of the 
square P lattice shown below. When the motif is one black spherical point, the lattice shows a 4-fold 
axis with two reflection lines. However when the motif consists of a black and a blue spherical point, 

http://en.wikipedia.org/wiki/Penrose_tiling
http://chemvista.org/quasicrystals1.html
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the translational symmetry of the lattice repeats the black and blue points on the horizontal axis. 
The 4-fold rotation axis reduces to a 2-fold axis and some of the mirror planes are omitted. 
 

 
 

Square P lattice, motif: one black point  

  

Square P lattice, motif: one black and one blue point 
 
 
 
In summary, the symmetries provided on the right hand side of the table with the lattices are the 
maximal symmetries the lattice can have. However, as we know,  
 
                                          crystal = lattice + motif  
 
This is also valid for the 2D case. Once one “decorates” a 2D lattice with a motif, the symmetry might 
change. To further classify 2D crystals, one has introduced the concept of 2D point groups, 
representing the possible symmetries operating in a point and compatible with translational 
symmetry. There are 10 point groups in 2D. These are illustrated in the table on the next page using 
a non-symmetrical motif 
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Exercise 4.1 
 
Complete the table below for all 2D  symmetry operations 

2D Point 
symmetry 

 Symmetry elements 

1    

 

No symmetry 

m 

 

One mirror line 

2mm 

 

2-fold axis and 2 mirror lines 

2 

 
 

2-fold axis 

3  
 
 

3-fold axis 

3m  
 
 

3-fold axis and three mirror lines 

4  
 
 

4-fold axis  

4mm  
 
 

 
 

4-fold axis and 2 mirror lines 

6  
 
 

6-fold axis 

6mm  
 
 

6-fold axis and 3 mirror lines 
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Other symmetry operators: combination with 2D translational symmetry 

A Lattice + motif can also contain a glide line i.e. a mirror line combined with a translation vector . In 
the table below, the difference between a mirror line and a glide line is shown 

 mirror line   glide line (symbol “g” or ˥) 
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4.2.3  The 2D Plane groups 

The five 2D lattices combined with the ten possible 2D point symmetries and the possibility to have a 
glide plane result together 17 plane  groups. These are presented in the table below. As exercise, use 
a non-symmetric motif and perform all symmetry operations.  Rotation axis are shown in black, 
mirror lines are red and glide lines are dashed blue; “p” stands for primitive, “c” for centered lattice 
For further details see https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-
resources/2d-symmetry-groups On this web page you can also find nice examples of wall papers. 
 

Lattice type Symmetry operations Plane group 

oblique 

 

p1 

oblique 

 

p2 

rectangular 

 

pm 

rectangular 

 

pg 

Rectangular C 

(Rhombus) 
 

 

cm 

rectangular 

 

pmm (p2mm) 

rectangular 

 

pmg (p2mg) 

rectangular 

 

pgg (p2gg) 

https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-resources/2d-symmetry-groups
https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-resources/2d-symmetry-groups
https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-resources/2d-symmetry-groups/p1_symm.png?attredirects=0
https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-resources/2d-symmetry-groups/cm_symm.png?attredirects=0


42 
 

 NXMM     Van Swygenhoven Helena 

Rectangular C 

(Rhombus) 
 

cmm (c2mm) 

square 

 

p4 

square 

 

p4m (p4mm) 

square 

 

p4g (p4gm) 

hexagonal 

 

p3 

hexagonal 

 

p3m 

hexagonal 

 

p31m 

hexagonal 

 

p6 

Hexagonal 

 

p6m (p6mm) 

 
Further reading 
http://users.aber.ac.uk/ruw/teach/334/groups.php 
http://www.clarku.edu/~djoyce/wallpaper/seventeen.html 
https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-resources/2d-symmetry-groups 

http://users.aber.ac.uk/ruw/teach/334/groups.php
http://www.clarku.edu/%7Edjoyce/wallpaper/seventeen.html
https://sites.google.com/a/uw.edu/diffraction-resources/symmetry-resources/2d-symmetry-groups
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Extra Exercises 
 
Exercise 4.2  
Name the 2-dimensional lattices given below. Use the five planar lattices. Draw the primitive unit 
cell vectors in each case and draw a full unit cell. 
 
 

a) 
                                                                                  b)   
 
 
 
 

     
 

c)                                                                                  d)  
 
      

                        
 

e)                                                                                 f)                         
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g)                                                                                     h)              
 
 

                
 

i)                                                                       j) 
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Exercise 4.3  
 
i) For the planar lattices below, indicate those pairs of vectors which are primitive (P), and those 
non-primitive (N) 
 

 
 
ii) Calculate the number of lattice points contained within each of the unit cells given below and 
mark those that are primitive (P) and those non-primitive (N). 
 

 
 
iii) On the planar lattice below construct two different primitive unit cells (A and B) and one non-
primitive unit cell (C). 
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Exercise 4.4 
Name the lattices of the structures given below and draw the unit cell that illustrates the symmetry 
of the lattice. Identify the motif in each case and identify the number of atoms in the motif  
 
 

       
         
 

a)                                                                                        b) 
 

                
 
c)                                                          d)                                                         e) 
 

                       
 

f)           g) 
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                                                                                   i) 
 
Exercise 4.5  

Show that Graphene and the two wallpapers below belong to the same plane group symmetry 
p6mm. To demonstrate this, use the unit cell below (upper left hand side) on which all symmetry 
operations are indicated. Demonstrate the presence of the rotation axis, glide planes, mirror planes 

 
 

 

 
 

 
http://www.jameshedberg.com/ 

 

 

  

http://en.wikipedia.org/wiki/File:WallpaperP6M.GIF
http://en.wikipedia.org/wiki/File:Wallpaper_group-p6m-1.jpg
http://www.jameshedberg.com/img/samples/graphene-lattice-onSubstrate-3Dmodel.jpg
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4.3.   The 3D lattice and symmetry operations 

4.3.1 The 3D Bravais lattice 

The number of ways points can be arranged regularly in 3D space such that stacking the unit cells 
fills the space is also limited. Bravais showed in 1848 that all possible arrangements can be 
presented by 14 lattices. His work was to a great extend based on the work of Frankenheim who 
showed in 1845 that the number of lattices was limited, he claimed however there were 15.  
 
The 14 Bravais lattices can be classified according to a set of defining symmetry elements which any 
crystal within that system must possess as a minimum requirement. This allowed classifying the 14 
Bravais lattices into 7 systems(cubic, tetragonal, orthorhombic, trigonal, hexagonal, monoclinic and 
triclinic). The geometry of the cells are specified by the length of their axis ( a,b,c) and the angle 
between them: α between b and c, β between a and c, γ  between a and b. A right hand axes is 
used by convention ( see picture below) 
 

 

 

3D lattice using a right hand axis 

 
 
 The seven crystal systems are listed below and shown in a table together with the symmetry 
element that defines the shape of the crystal system 
 
- The triclinic system: one primitive Bravais lattice (P).  
- The monoclinic system: a primitive (P) and a base-centered (C ) Bravais lattice. ( the 

nomenclature C comes from the fact that the lattice point lies in the plane defined by a and b 
vectors).  

- The orthorhombic system: 4 Bravais lattice unit cells; the primitive-P, and three non-primitive 
unit cells:  the face centered-F, the body centered-I and the side centered-C 

- The tetragonal system: a primitive P and a body-centered I  Bravais lattices  
- The rhombohedral system: one primitive Bravais lattice 
- The hexagonal system: a primitive P lattice  
- The cubic crystal system: 3 Bravais lattice unit cells; the primitive-P, and two non-primitive unit 

cells:  face centered -F and  body centered-I 
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Crystal system The 14 Bravais lattices Defining 
symmetry 

Triclinic  

a≠ b ≠ c  

α≠β≠γ≠90° 

  

 

1-fold axis 

Monoclinic  

a ≠ b ≠ c ;  

α = γ = 90°; β ≠ 90 

 

 

 

 

2-fold axis 

Orthorhombic 

a≠ b ≠ c  

α=β=γ=90° 

 

 

3 x 2 fold axis 

Tetragonal 

a= b ≠ c  

α=β=γ=90° 

 

 

 

 

 

 

4-fold axis 

Rhombohedral  
( trigonal)  

a= b = c  

α=β=γ≠90° 
 

 

3-fold axis 

Hexagonal 

a= b ≠ c  

α=β=90, γ=120° 

 

 

 

6-fold axis 

Cubic 

a= b = c  

α=β=γ=90° 

 

 

 

 

 

4 x 3-fold axis 



50 
 

 NXMM     Van Swygenhoven Helena 

Note that also here the choice of the unit cell is not unique. We have seen in the section on stacking 
sequences of hard spheres that one can take for instance instead of a body centered cubic lattice 
also a primitive lattice.  Analytically all lattice points can be described by a linear combination of the 
primitive lattice vectors or by the bcc unit cell. The shape of the primitive cell does however not 
reflect the highest symmetry of the cube i.e. the 90° rotation axis, which is a convention for Bravais 
lattices. 

 
4.3.2 The 3D point symmetry operators 

In 3D there are more symmetry operators than in 2D 
 
Rotation axis 
1-fold ( no symmetry) 
 2-fold (180° rotation)  
3-fold ( 120° rotation) 
4-fold ( 90° rotation) 
6-fold (60° rotation)  
 
Reflection or mirror plane 
This is the equivalent of a mirror line in 2D . Graphically the mirror plane is shown by a full line ( see 
table below).  
 
the inversion center and the roto-inversion axis. 
These symmetry operators are easiest to visualize when using a projection on the plane of the paper 
( see below) The inversion center will project a point that lies above the plane ( black circle) into a 
point that lies below the plane ( open circle) 
A roto-inversion axis is a rotation followed by an inversion center. The roto-inversion axis is 
graphically shown by the same symbol as the rotation axis but with  a open circle in the center 
 
Examples: 
Take a point that lies above the surface of the paper plane. 
The picture below shows the operation of an inversion center on a red point, a 2-fold axis and a 2-
fold roto-inversion axis, which is noted  as .  
The inversion center turns the full red point ( above the plane) into an open red circle (point below 
the plane) through reflection at the central point of the circle.    
The 2-fold axis rotates the full red point over 180° (also lying above the plane).  
The 2-fold roto-inversion axis  rotates the point above the plane ( red circle) over 180° around the 
rotation axis and then the symmetry center acts, bringing the point back to its original position but 
this time below the plane ( open circle). Note that the action of a 2-fold roto-inversion axis is the 
same as a mirror plane m (that is also why the circle is shown as a full line) .  
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Inversion center 2-fold roto-axis (2) 2-fold roto-inversion axis= 

Mirror plane ( =m) 
   

 

 
Exercise 4.6  
Show the operation of a 4-fold, 6-fold and 3-fold roto-inversion axis and demonstrate that 6-fold 
roto-inversion axis = 3 fold roto-axis + mirror plane m perpendicular to the 3-roto axis. That is why 
there is no special symbol for a 6-fold roto-inversion axis. 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

4-fold roto-inversion axis 6-fold roto-inversion axis = 3 fold roto-axis + mirror 
plane m 

 
 
3-fold roto-inversion-axis 
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4.3.3  The 32  3D symmetry point groups 

Similar as the 2D case, 3D lattices are regular arrays of “points” in space. A real crystal has atoms 
associated with these points i.e. there is motif 
 

Crystal = lattice + motif 
 
Examples: 
Ni ( and also Al, Cu, Pd..) has a face centered cubic (fcc) Bravais lattice with as motif one Ni atom at 
each lattice point. The Ni crystal has therefore the highest point symmetry that a fcc Bravais lattice 
can have. The diamond lattice is also face centered cubic (see section packing) but the motif consists 
of two carbon atoms, one at position (000) and the other at (1/4, ¼, ¼). It is easy to see that the 
diamond crystal has less symmetry then the Ni crystal, the reason being motif 
 

 

Ni crystal 

 

 

Diamond crystal 

 
A point symmetric operation is an operation that leaves at least one point of a crystal fixed. A set of 
symmetry operations in a crystal (rotation, mirror plane, center of symmetry, rotary inversion) forms  
a point group symmetry. It does not consider translation but since it describes the symmetry of a 
crystal ( and not just symmetry), the point groups are combinations of 3D symmetry elements 
passing through a point and compatible with translational symmetry. That is why a 5-fold rotation is 
not included since it is not self-consistent with translational symmetry ( but it exists i.e. the 
quasicrystal)   
 
Crystallographers have found that all symmetry operations that can exist in a point of a lattice can 
combine in 32 possible crystallographic point groups. These are listed in the table for the 7 crystal 
systems. 
 
Nomenclature 
-      m  is used in preference to 2�  
-  mirror plane normal to symmetry axis, X/m with X=2,3,4 or
- where there are two distinct sets of mirrors parallel to asymmetry axes mm is used 
-  Up to three symbols or combination of symbols are used to describe the 

point group and not more: for instance 3m, 23, 432 and 6/mmm  The order is important 
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Crystal system No center of symmetry Center of 

symmetry 
Min symmetry 

Triclinic  
a≠ b ≠ c  

α≠β≠γ≠90° 

 

1 

 

1�  

None 

Monoclinic   
a≠ b ≠ c  

α≠β≠γ≠90° 

 

2, m  

 

2/m 

1 diad or inversion diad 
(=mirror plane) 

Orthorhombic  
a≠ b ≠ c  

α=β=γ=90° 

222, 2mm mmm 3 diads equally inclined at 
90° 

Tetragonal  
a= b ≠ c  

α=β=γ=90° 

 
4, 4�, 422, 4mm, 4�2m 

 

4/m, 4/mmm 

1 tetrad or inversion tetrad 

Rhombohedral  
( trigonal)  

a= b = c  
α=β=γ≠90° 

 
3, 32, 3m 

 

3�, 3�𝑚𝑚 

 

1 triad or inversion triad 
(= triad + center of 

symmetry) 

Hexagonal 
a= b ≠ c  

α=β=90, γ=1200° 

 
6, 6�, 622, 6mm, 6�m2 

 

6/m, 6/mmm 

1 hexad or inversion 
hexad( = traid +mirror plane 

perpendicular) 

Cubic    
a= b = c  

α=β=γ=90° 

 
23, 432, 4�3m 

 

 

m3, m3m 

4 triads equally inclined at 
109.47° 

 

Note that the point group symmetry of a crystal system is independent of whether the Bravais lattice 
is primitive or not. For instance all cubic lattices can have the same point group symmetry. This has 
important consequences: it is not possible to derive from the observed point symmetry of a crystal, 
whether the underlying Bravais lattice is primitive or not.  

 
Coming back on our two examples, it is clear that Ni belongs to the symmetry point group that has 
the highest symmetry corresponding to a cubic Bravais lattice i.e m3m. Diamond on the other hand 
belongs to a lower symmetry point group of the cubic Bravais lattice, i.e. m3 

 
 
Translational symmetry elements in 3D 
 
As mentioned earlier, the point groups do not take into account the possible translational 
symmetries. 
In 3D there are two extra types of translational symmetry elements ( in 2D it was the glide line) 
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- The glide plane. They are usually symbolized by a,b,c according to which plane of the unit cell 

they are parallel. There is also the n glide, which is a glide along the half of a diagonal of a face, 
and the d glide, which is a fourth of the way along either a face or space diagonal of the unit cell 

- The screw axis: a combination of a rotation and a translation that leaves the crystal unchanged. 
It is usually indicated by the rotation symbol with a lower index that specifies the translation as 
a portion of the lattice vector parallel to the rotation axis. Below the example of a 21 screw axis, 
it is a 180° (twofold) rotation followed by a translation of 1/2 of the lattice vector.   
The 31 axis is also shown: a 120° (threefold) rotation followed by a translation of 1/3 of the 
lattice vector. The 32 axis is a 120° (threefold) rotation followed by a translation of 2/3 of the 
lattice vector. 

-  

 

 
 

 
The possible screw axes are 21, 31, 32 ,41, 42, 43 ,61, 62, 63 ,64 , 65  . Note that 31 and 32  are different 
and are not each other mirror image, they are called enantiomorphous  

 
 
Exercise 4.7 
Show the projection along the axis of a 41, 42, 43 screw axis using the asymmetric motif R 
 
 
 

Exercise 4.8 
Show the projection along the axis of a 61, 62, 63 ,64 , 65   screw axis using the asymmetric motif R 
  
 

3D view of all screw axes (http://ictwiki.iitk.ernet.in/wiki/index.php/Unit-1:_Introduction_to_Crystallography) 

http://en.wikipedia.org/wiki/Chirality_(mathematics)
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4.3.4   The 230 Space groups 
 
Finally, when combining all 14 Bravais lattices with the 32 point symmetry groups and the extra 
translational symmetry elements, it can be demonstrated that there are 230 possible 3D patterns or 
space groups.  
We will here not further elaborate on these space groups. What has to be understood is how they 
are constructed. The list and details can be found on the web 
http://en.wikipedia.org/wiki/Crystallographic_point_group 
http://en.wikipedia.org/wiki/Space_group 
 
a stereographic projection of all space groups can be found on 
http://img.chem.ucl.ac.uk/sgp/mainmenu.htm 
 
 

Extra Exercises 
 
4.9   To image space groups, often the stereographic projection is used: the stereographic 

projection is a particular mapping that projects a sphere onto a plane ( see principle below). 
You will learn more details in the second part of the course. Here we need only the basics in 
order to be able to “read” the projections of the space groups.  
 
   
   
   
   
   
   
   
   
   
   
   

 
Show where in the stereographic circle the 3-fold rotation axes of a cube are lying 
 

4.10 Show the highest symmetry elements that one can have in one point of the orthorombic, 
tetragonal, cubic and hexagonal system. Make also the 2D stereographic projection 

 
4.11  Compare motif, lattice and point symmetry operations for Cu, Fe, NaCl, CsCl, CaF2 

 
 

4.12  The hexagonal crystal system has only one Bravais lattice but can host 7 point symmetry 
groups 
( 6, 6 ̅, 622, 6mm, 6 m̅2, 6/m, 6/mmm) Draw using the 2D visualization the symmetries for 
the 7 point groups 
 
 

http://en.wikipedia.org/wiki/Crystallographic_point_group
http://en.wikipedia.org/wiki/Space_group
http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
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4.13    All hexagonal space groups that are compatible with the point group 6 can be derived from 
considering 6 and the possible screw axes. How many space groups can you find besides P6? 
Draw the hexagonal lattice with the symmetries corresponding to P6 and those to P61 , P62  , 
P63 , P64 , P65 , P6�  , P6/m .  What is the difference? Use symbols  
 
 

 
Where “+” or “-“ means lying above or below the plane,  the “comma” indicates a change of 
handedness, the last symbol means that all possibilities are present 
http://img.chem.ucl.ac.uk/sgp/mainmenu.htm 

 
4.14 The orthorhombic Crystal system contains 4 Bravais lattices P (primitive), I (body centered), 

A (or B,C one face centered) and F (face centered. The lattice is compatible with 3 point 
symmetry groups 222, 2mm and mmm.  All space groups corresponding with the primitive 
lattice are obtained by combining the lattice with the point symmetry groups, including the 
possibility to replace  
- a rotation axis by a screw axis    
- a mirror plane “m” by a glide plane “a,b,c , n or d”  (n= half of body or face diagonal, “d” 
fourth of the way along either a face or space diagonal of the unit cell ) 
Below all space groups that can be derived for the orthorhombic P lattice. The number 
corresponds with the number of the space group. 
 
 

16. P 2 2 2 17. P 2 2 21 18. P 21 21 2  19. P 21 21 2 1 20. C 2 2 21 

21. C 2 2 2 22. F 2 2 2 23. I 2 2 2 24. I 21 21 2 1 25. P m m 2 

26. P m c 21 27. P c c 2 28. P m a 2 29. P c a 21 30. P n c 2 

31. P m n 21 32. P b a 2 33. P n a 21 34. P n n 2 35. C m m 2 

36. C m c 21 37. C c c 2 38. A m m 2 39. A b m 2 40. A m a 2 

41. A b a 2 42. F m m 2 43. F d d 2 44. I m m 2 45. I b a 2 

46. I m a 2 47. P m m m 48. P n n n 49. P c c m 50. P b a n 

51. P m m a 52. P n n a 53. P m n a 54. P c c a 55. P b a m 

56. P c c n 57. P b c m 58. P n n m 59. P m m n 60. P b c n 

61. P b c a 62. P n m a 63. C m c m 64. C m c a 65. C m m m 

66. C c c m 67. C m m a 68. C c c a 69. F m m m 70. F d d d 

71. I m m m 72. I b a m 73. I b c a 74. I m m a   

 
 

a) Draw in 2D the orthorhombic P lattice ( projection along c axis> and show all  additional 
symmetry operations of the space group   P222, P2221, Pmm2, Pcc2, Pba2, Pmmm.  
 

b) Draw also C222 , I222, F222, 
 

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
http://img.chem.ucl.ac.uk/sgp/medium/016az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/017a.htm
http://img.chem.ucl.ac.uk/sgp/medium/018az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/019a.htm
http://img.chem.ucl.ac.uk/sgp/medium/020az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/021az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/022az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/023az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/024az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/025az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/026az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/027az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/028az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/029az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/030az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/031az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/032az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/033az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/034az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/035az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/036az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/037az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/038az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/039az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/040az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/041az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/042az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/043az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/044az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/045az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/046az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/047az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/048a.htm
http://img.chem.ucl.ac.uk/sgp/medium/049az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/050az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/051az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/052az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/053az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/054az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/055az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/056az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/057az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/058az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/059a.htm
http://img.chem.ucl.ac.uk/sgp/medium/060az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/061az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/062az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/063az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/064az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/065az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/066a.htm
http://img.chem.ucl.ac.uk/sgp/medium/067a.htm
http://img.chem.ucl.ac.uk/sgp/medium/068a.htm
http://img.chem.ucl.ac.uk/sgp/medium/069az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/070a.htm
http://img.chem.ucl.ac.uk/sgp/medium/071az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/072az1.htm
http://img.chem.ucl.ac.uk/sgp/medium/073a.htm
http://img.chem.ucl.ac.uk/sgp/medium/074a.htm


57 
 

 NXMM     Van Swygenhoven Helena 

c) Look at  Cmm2, Ima2, Fmm2 and verify if you can understand the symmetries 
 

Use symbols above and others as defined on 
              http://img.chem.ucl.ac.uk/sgp/mainmenu.htm 
 
4.15 The tetragonal crystal system has two Bravais lattices ( P and I) and can host 7 symmetry 

point groups ( 4, 4�, 422, 4mm, 4�2m, 4/m, 4/mmm). Using 2D visualization and the same 
symbols, draw the tetragonal lattice and show all symmetry operations for P4, P41,P42 P4�  , 
P4/m, P422. 
 
 

4.16 Understand the difference in space group between 
Cu: Fm3�m (nr 225), CsCl: Pm3�m (nr 221), Fe: Im3�m (nr 229) 
Use the images and symbols used on 
http://img.chem.ucl.ac.uk/sgp/mainmenu.htm 
 

 
 

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
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4.17 Compare the symmetry point operations in Cu (m3�m) and Zinc Blende, ZnS, (4�3m) 
and understand the different space groups 
Cu: Fm3�m (nr 225),   ZnS: F4�3m (nr 216) 
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4.18 Compare the symmetry point operations of two hexagonal systems: Zn (6/mmm) and 
Wurtzite, ZnS, (6mm) 
and understand the different space groups 
Zn: P63/mmc (nr 194),   ZnS: : P63mc (nr 186) 
 

4.19 Diamond has a FCC lattice and belongs to the space group Fd3�m space group, point 
symmetry group. Determine the screw axis and glide planes in the diamond structure. 
 

4.20 Why has Zinc Blende not a glide plane, although atoms are sitting in similar positions?  
 

 
 
 
 
 
 

  

https://en.wikipedia.org/wiki/Space_group
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5.  The mathematical description of a lattice 

5.1 The unit cell 

To define the geometry of the unit cell in 3 dimensions we choose a right-handed set of 
crystallographic axes, x, y, and z, which point along the edges of the unit cell. The origin of our 
coordinate system coincides with one of the lattice points. 

The length of the unit cell along the x, y, and z direction are defined as a, b, and c. The angles 
between the crystallographic axes are defined by: 

α = the angle between b and c 

β = the angle between a and c 

γ = the angle between a and b 

 

a, b, c, α, β, γ are collectively known as the lattice parameters (often also called ‘unit cell 
parameters’, or just ‘cell parameters’). 

Lattice points 

They are given by the coordinates in the coordinate system. For instance 
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5.2 Lattice direction 

Lattice direction 

A lattice vector is a vector joining any two lattice points. Any lattice vector can be written as a linear 
combination of the unit cell vectors a, b, and c. The direction is the vector t passing though the origin 
of the lattice 

t= ua + vb+ wc 

where u,v and w are the coordinates of a point ( any point) in this direction when a,b and c are the 
unit vectors resp. along the x,y,z axis.  Note that the vectors are either written bold or have a bar i.e. 

𝑎⃗𝑎, 𝑏𝑏�⃗ , 𝑐𝑐 
The direction is written in the form       [UVW] where U,V,W are integers. 

Example:  

 

Direction OP 
Coordinates point P:  ½, 0,1   vector OP = ½ a + c  or   [1/2 0 1 ] 
Coordinates point Q:  ½ ,0, ½   vector  OQ = ¼  a + ½ c                or   [1/4 0 ½] 

Both vectors define the direction OP=OQ=OL. Directions are expressed with whole numbers i.e  
the [102] direction 

Direction SN  
consider OM which is parallel to SN 
Coordinates OM:   1, -1,0 
Vector OM= a – b   
Direction SN and OM:    [11�0]    Note: when the number is negative, a bar is added above the 
number 

  direction of the basics lattice vectors a,b,c  are resp.  [100], [010] and [001] 

A family of directions 

Due to the symmetry of crystal systems, different directions can be equivalent. 
e.g. For cubic crystals, the directions [1 0 0], [ -1 0 0], [0 1 0], [0 -1 0], [0 0 1], [0 0 -1 ] are all 
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equivalent by symmetry. There is a special notation for directions of the same form: <100>, which in 
this case means the family made of the three basis axis a,b,c 

Similarly, there are 8 equivalent <111> directions in a cubic system , as shown below. The number of 
equivalent directions is called the multiplicity of the direction.  

 

 

Angles between directions 

Angle between two directions is given by the scalar product of two vectors of the resp. directions 
t1.t2= t1.t2 cosϑ  where t1 and t2  are the length of the lattice vectors  t1 and t2 , ϑ is the angle between  
two vectors 

Or in the notation of the directions 
The angle between the directions [u1 v1 w1] and [u2 v2 w2] is 

cos𝜗𝜗 = 
𝑢𝑢1𝑢𝑢2 + 𝑣𝑣1𝑣𝑣2 +  𝑤𝑤1𝑤𝑤2 

�𝑢𝑢12 + 𝑣𝑣12 + 𝑤𝑤12  .  �𝑢𝑢22 +  𝑣𝑣22 + 𝑤𝑤22 
 

 

 

5.3 Lattice planes 

A lattice plane is a plane passing through at least three lattice points. Because of the translational 
symmetry of the Bravais lattice, a lattice plane contains an infinite number of lattice points which 
form a 2D Bravais lattice. Below a picture of two types of lattice planes in a simple cubic Bravais 
lattice. As exercise, draw the 2D lattice of both type of planes. ( taken from Ashcroft-Mermin fig 5.3) 
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A family of lattice planes is a set of parallel equally spaced lattice planes which together contain all 
the points of the Bravais lattice. Such families play an important role in X-ray diffraction as we will 
see later. ). In the example above all planes on the left hand side picture belong to one family, all 
planes on the right hand side to another family 

 

Notation of family of planes in crystals 

The general equation of a plane is of the form 

px + qy + rz=1   

and any other plane parallel to this can be written as px + qy + rz=c 
The value of p,q,r,c are found by filling into the equation the coordinates of points lying on the plane 

In crystallography one expresses the coordinates as a fraction of the unit vector along the axis x,y,z. 

 

               

 

 A lattice plane family is characterized by its Miller indices (hkl) 
The Miller indices are integers with no common factors. Negative indices 
are indicated with horizontal bars, as in directions. 

Any other plane from the same family can be written as 

 

where C is a constant. The value of C is determined by the coordinates of a point in the plane.  
C = zero is the plane through the origin of the unit cell 

 

In practice, 
To determine the Miller indices of a family of planes one takes the plane which is nearest to the 
origin but does not go through the origin. The Miller indices of the family are proportional to the 
inverse of the intercepts of that plane with the unit cell (in the basis of the lattice vectors). If a plane 
is parallel with a unit vector, the intersection is at infinity and the Miller index will be zero. If the 
plane intersects the unit cell in the origin, the plane has to be shifted away from the origin to the 
find the Miller indices.  

Notation used:  
Miller indices of a family of planes:  (hkl) 
 

a

b
c

(

Cz
c
ly

b
kx

a
h

=++
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It becomes clear when looking at an example 

 

The planes EMS and E’M’S’ belong to the same family of the Bravais lattice determined by the unit 
cell with unit vectors a,b,c along the x,y,z axis  

The intersects of plane EMS:  ½, 1, 1,  
Inverse of the intercepts: 2,1,1, so the   Miller index of this family is  (211) 

The same Miller indices would have been obtained by considering E’M’S’ 
Intersects: 1,2,2    
Inverse of intersects: 1, ½,½ 
which expressed as whole numbers give the same Miller indices (211) 

 

Multiplicity of a plane 

Miller indices of the set of all planes that are equivalent by symmetry of the lattice:  {hkℓ} . The 
number of equivalent planes is called the multiplicity of the (hkl) plane. This is strongly dependent 
on the symmetry i.e. on the crystal system.  

For instance in a cubic crystal system the (110) and (011) planes belong to the same {110} set of 
planes. However in a tetragonal system the (110) and (011) are not equivalent and belong to 
different  sets {110} and {011}. 
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Exercise 5.1 
 
Show that in the tetragonal system the (110) and (011) planes are not equivalent  
 
 
 

 
Exercises 5.2 
 
For the following structures, define: 

a. The crystal system 
b. The indices of the directions  

(remember to use a right hand axes) 
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Exercise 5.3 
 
Draw cells showing the [121] direction in each of the following latticies: 

i) cubic 
ii) tetragonal where a = l, c = Z  
iii) orthorhombic where a = 1, b = 2. c = 3 

 
 
Exercise 5.4 
 
For the following stuctures, what is 

- the Bravais lattice 
- the Miller Indices of the shaded plane 
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Exercise 5.5 
 
Draw unit cells showing the planes given. Draw a total of 10 unit cells, one for each plane: 
  
Cubic:  (111), (013), (11�1), (101) 
  
Orthorhombic; (001), (123), (010) 
  
Tetragonal:  (011), (122), (112) 
 
  
Exercise 5.6 
 
For the cubic system, write out all the families (sets) of planes included in each of the following: 
 
{112}, {110}, {400}, {321},  
 
 

5.4  Intersections of planes, zone axis 

A zone is defined as “a set of planes in a crystal whose intersections are parallel”.  The common 
direction of the intersections is called the zone axis. Therefore one often has to calculate the 
intersection of two planes 

 

 
For instance the [001] direction is the zone axis 
of the {100} and {110} family of planes. 

The calculation of the zone axis is very 
important during electron diffraction 
microscopy and Laue diffraction 

 

How to calculate a zone axis? 

Assume there are two crystal planes (h1 k1 l1) and   (h2 k2 l2 ) which are not parallel to each other. The 
intersection of these two planes is a line. What is the direction of the lines? Assume the direction of 
the line is     [u v w]. The two planes, when translated to the origin of the unit cell are 



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The intersection is the ensemble of points lying on both planes. Mathematically this is a problem of 
three variables, two equations so only the ratios of the variables can be determined.. 

After some math ( divide the equations by one parameter) one can show that the ratios fulfill 
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Of course one can additionally require the intersection line is shifted trough the origin. The base 
vector [uvw] is then defined as  
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Or 

u=(k1l2-k2l1), v=(l1h2-l2h1) and w=(h1k2-k1h2) 

It is not necessary to know the above derivation for the exam. However you must know the trick to 
calculate the zone axis 

 

Trick to calculate the zone axis 

2- Miller indices of the two faces have to be known, (h1 k1 l1) and (h2 k2 l2 ) 
3- The indices of each face are written twice. 
4- Using cross multiplication of determination law. 
 

 
 
:Example: The indices of the two faces are (011) and (111), find the zone axis [uvw]. 

               0   1   1   0   1   1 

               1   1   1   1   1   1  

 x/a = u, 

So the zone axis direction [uvw]= [011�] 

 

 

 

 

u  = 1x1 – 1x1 =0 
v  = 1x1 – 0x1 =1 
w = 0x1 – 1x1 =-1  
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 Zone axis and “Weiss zone law” 

Weiss Zone Law: A zone axis [u v w] is parallel to a family of lattice planes of Miller indices (hkl) if:  

uh + vk + wl = 0 

This is a way to check whether an axis is the zone axis of a family of planes 

 

 

Prove: 

 

 

Any lattice vector [uvw] in a plane (hkl) can be formed by a linear combination of two other lattice 
vectors 
I.e. for instance of the vectors AB  [ 1/ℎ�����  1/k   0] and AC  [1/ℎ�����   0   1/l] 

In other words, if [uvw] lies in the plane (hkl) then 
[uvw] =λ [ 1/ℎ�����, 1/k  0]  + µ[1/ℎ����� 0 1/l] 

Or    u= -1/h(λ+µ)     v=λ/k         w=µ/l 

By substituting λ and µ in the equation for u one becomes              hu + kv+lw=0   

 

Examples for the use of Weiss law: do [111�] and [11�1] lie in (101)? 
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Examples of directions and Miller indices for planes in the cubic system 

 

 

Important note : 

in the cubic system the (hkl) plane and the vector [hkl] are normal to one another but this 
characteristic is unique to the cubic crystal system and does not apply to crystal systems of lower 
symmetry. This has important consequences when analyzing diffraction patterns, we will come back 
to that later. As an exercise, verify that the [011] direction is not perpendicular to the (011) plane in 
the tetragonal system. 

 

Exercises 5.7 
 
Answer the following : 

a. Does [3�21] lie parallel to (111)? 

b. Does [110] lie parallel to (01�0) ? 

c. Does [210] lie parallel to (110) ? 

d. Does [111] lie parallel to (011�) ? 

e. Does [3�11] lie parallel to (1-12) ?   
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Exercises 5.8 
 
What are the directions of intersections for the following pairs of planes? 

f. (110) and (11�1) 

g. (010) and (01�0) 

h. (111) and (12�2) 

i. (01�0) and (011�) 

j. (012) and (001) 

 
Exercises 5.9 

Find the planes in which the following pairs of directions lie. 

k. [21�1] and [11�1] 

l. [100] and [11 �1�] 

m. [201�] and [12�0] 

n. [102] and [31�1] 

o. [010] and [41�1] 
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5.5   Miller indices for trigonal and hexagonal Bravais lattices: Miller-Bravais 
symbols 
 

The above Miller indices and derived rules are valid for all Bravais lattices. They are however not 
very convenient for trigonal ( or rhombohedral) and hexagonal systems. Consider the picture below 

  

We have seen in the previous section that, for a cubic system, we can list all the members of a family 
{hkl} by writing down all the permutations of the three numbers h, k, and l and their negatives. 

 

 If the symmetry of the system is lower than cubic, then the members of a family are still given by 
permutations, but not all permutations belong to the same family. This was shown for instance in 
the tetragonal system for {110} and {011}. In the rhombohedral system we have {100} = {(100), (-
100), (010), (0-10), (001), (00-1)} as a family set of equivalent planes. In the orthorhombic system 
{100} = {(100), (-100)} contains just two type of planes. The only exception to this rule of index 
permutations is the hexagonal crystal system. 

 

In the hexagonal system one does not obtain equivalent planes by 
permutation of the numbers 

Here we would have in the Miller notation for instance 
 {100}hexagonal = (100), (010) and (-110) 
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To overcome this problem, often a fourth axis is used in the hexagonal system: i.e. an . The index on 
this axis is called “i” 

The Miller-Bravais indices for a plane are now 
(hkil)  where i= -(h+k) 

This notation has the advantage that the planes of the zone belonging to the z-axis can be obtained 
by permutation 

  

In this way, the meaning of the four Miller-Bravais indices of a plane is the same as the three Miller 
indices i.e. the inverse of the intersection of the plane with the four axes 

 

The notation for zone axis has then also a 4-digit index, however determining these vectors i.e. the 
components of a vector using four base vectors in a 3D space is not straight forward. Essentially, the 
components of the vector [UVTW] are adapted so that the condition  T= -(U + V) is fulfilled.  

In practice the procedure is to determine the zone axis [uvw] and then transform according to   

U = (2u-v)/3 
V = (2v-u)/3 
T = -(u+v)/3 = -(U+V) 
W=w 

The reserves transformation is easier 
u=(U-T) 
v=(V-T) 
w=W 

When using the Miller-Bravais symbols, the zone law axis becomes 
hU+kW+iT+lW=0 
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Exercises 5.10 
 
Draw hexagonal lattices showing the following planes. Draw a new lattice for each plane: 

(0001) 

(11�00) 

(101�0) 

(101�1) 
 
 

 
Exercises 5.11 
 
Index the directions shown below using four index notation. 
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Extra exercizes 
 
5.12  Determine the indices for the directions shown in the following cubic unit cell 
 

 
 
 
 
5. 13  Sketch within a cubic unit cell the following planes 
 
a) (1 0 -1) 
b) (2 -1 1) 
c) (0 1 2) 
d) (3 -1 3) 
e) (-1 1 -1) 
f) (-2 1 2) 
g) (3 -1 2) 
h) (3 0 1) 
 
5.14  Determine the Miller indices for the planes shown in the following unit cell: 
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5.15   Within a cubic unit cell, sketch the following directions 
 
a) [1 0 1] 
b) [2 1 1] 
c) [1 0 -2] 
d) [3 -1 3] 
e) [-1 1 -1] 
f) [-2 1 2] 
g) [3 -1 2] 
h) [3 0 1] 
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6   Diffraction and interference from crystals 

Till now we have learned that crystals have periodic lattices and can exhibit a variety of symmetries. 
In this section we are going to discuss methods allowing the detection of the crystal symmetry and 
lattices.  For that we are going to use a “probe” i.e. a radiation that is scattered by an atom. Then we 
will use well-known interference and diffraction laws to show that the angles of constructive 
interference can be related to the distance between lattice planes 

In what follows, the basics of diffraction and interference are summarized. We start by refreshing 
the concepts of interference and diffraction and elaborate the conditions for light falling onto a 
grating with gaps that are parallel lines. Then we will discuss diffraction of waves from a crystal 
lattice. Later on we will briefly discuss the possible radiation probes ( Xrays, neutrons and electrons). 

 

6.1  General aspects of diffraction and interference 

Interference  

When two or more propagating waves of same type are incident on the same point, they will 
interfere and the total displacement at that point is equal to the vector sum of the displacements of 
the individual waves: this is called the superposition principle.  After they have passed they return to 
their original forms. This is true for all waves,  i.e. if they have the same frequency, amplitude or 
phase 

At the point they meet, the two waves will combine to give a resultant wave whose amplitude (or 
intensity) may be greater or less than the original two waves. If a crest of a wave meets a crest of 
another wave of the same frequency at the same point, then the magnitude of the displacement is 
the sum of the individual magnitudes – this is constructive interference. If a crest of one wave meets 
a trough of another wave then the magnitude of the displacements is equal to the difference in the 
individual magnitudes – this is known as destructive interference.  If the waves are coherent i.e. they 
have a constant phase relationship between each other, they will interfere to produce a fixed 
pattern. 

Interference (and also diffraction) are easiest to visualize with mechanical waves although similar 
phenomena occur with electromagnetic waves (Note: an electromagnetic wave can propagate 
trough vacuum, i.e. it does not need a medium to transmit its energy; a mechanical wave requires a 
medium to transport its energy)  
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Below an illustration of interference for a one-dimensional transverse mechanical wave ( imagine a 
wave traveling along a rope)   

Constructive interference: two waves with the 
same wavelength and a phase difference of nλ 
( n = integer)  

Destructive interference: : two waves with the 
same wavelength and a phase difference of 
(n+1/2)λ ( n = integer) 

  
 

A nice way to demonstrate interference patterns is with water waves ( this are surface waves, for 
more info see http://www.physicsclassroom.com/class/waves/u10l1c.cfm) . The waves are here 
coming from a point source and if they have a constant phase relationship, they will create the well 
known interference patterns on the surface http://people.rit.edu/andpph/exhibit-splashes.html 

 

Weather ones sees at a point a crest will depend on the phase difference of the waves arriving in the 
point. This phase difference depends on the difference in path the wave has to travel 

The waves we will deal with here in this course are 3 dimensional electromagnetic waves. For such 
waves threads are radiating out in all directions. Connecting points of constant phase makes a 
spherical surface ( a bit like the layers of an onion). Such a wave is called a spherical wave. A long 
way from a coherent source, the curve of the wave fronts (the surfaces of constant phase) becomes 
flat surfaces (plane surfaces) in the case of three-dimensional waves. That is what we call a plane 
wave and that is what we will work with in this chapter. 

http://www.physicsclassroom.com/class/waves/u10l1c.cfm
http://people.rit.edu/andpph/exhibit-splashes.html
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3D representation of plane wave front 
http://upload.wikimedia.org/wikipedia/commons/thumb/2/20/
Plane_wave_wavefronts_3D.svg/330px-
Plane_wave_wavefronts_3D.svg.png 

2D representation of a plane wave front: 
The picture illustrates that far away from a 3D 
source, the wave can be taken as a plane wave 

 

 

Because of ease of presentation, in what follows we will always talk about plane waves and present 
them in 2D sections. 

 

Diffraction at a single slit 

Diffraction is the bending of a wave around objects and results in the spreading of wave after 
passing through a gap. To understand diffraction, one often uses the Huygens' Principle which says 
that each point in a wave front may be regarded as a new source of secondary wavelets ( pictured by 
the small circles). Note that Huygens principle ( 1680) has no physical meaning and is only valid for 
elastic or mechanical waves. If coherent light with a planar wave front ( surface connecting the 
crests) impinges on a gap (front parallel to the gap) , diffraction from various places in a gap will lead 
to path differences and will make an interference pattern. That is why interference is often 
associated with diffraction – since it is responsible for the diffraction pattern!( Hammond fig. 7.8) 

Schematic (2D) presentation of Huygens principle 
applied on a gap ( line with opening width w): the 
Huygens wavelets are shown behind the gap, the 
wave fronts before and after are represented by the 
blue lines 

Interference of Huygens wavelets: for certain 
directions of α there will be destructive interference 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/2/20/Plane_wave_wavefronts_3D.svg
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The picture on the right hand side assumes that we look at distances far away from the gap so that 
the Huygens wavelets can be considered as planar waves. 

In the forward direction, the waves will constructively interfere. At increasing angles away from 
direct beam direction, the waves will start to interfere destructively. The first destructive 
interference can be obtained as follows: imagine dividing the width of the gap in two parts. When 
the path difference between the upper wavelet and the central one equals λ/2, destructive 
interference will occur for these two wavelets and for each of the other wavelets, another wavelet 
with a λ/2 path difference can be found. The path difference can be written as  

BC=  λ/2= (w/2) sinα   

where α= angle between the viewing direction and the direction of the incoming wave 

This is not the only direction where destructive interference will be obtained. The second destructive 
interference will be obtained by doing the same reasoning but with the wavelet from the top and 
the wavelet from a quarter of the gap. It is easy to show that destructive interference will be 
obtained when looking at angles for which 

Sinα= λ/w, 2λ/w, 3λ/w, … 

The angle at which the first min is observed in a diffraction pattern, depends on the ratio between 
the wavelength and the width of the gap. (http://hyperphysics.phy-
astr.gsu.edu/hbase/phyopt/sinslitd.html) 

 

 

 

Depending on the dimensions of the width w, a typical 
diffraction patterns will have one central high intense 
peak with lower intensity peaks on each side 

 

 If the width of the gap is large compared with the wavelength, the wavefront in the forward 
direction will be hardly disturbed, as is shown below. To benefit from constructive and destructive 
interference effects in diffraction, the width of the gap must be of the order of the wavelength or 
lower.  

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html
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Diffraction from a grating 

In 1803, Thomas Young showed in a two-slit experiment that the distance between the maximum of 
a detector and the center of the pattern was proportional to the reciprocal of the distance between 
the slits.  This is easily demonstrated by assuming each slit as a single course emitting a single 
wavelet and calculating the conditions for constructive and destructive interference by using the 
path difference. The picture below illustrates this ( Hammond fig. 7.5) 

 

The conditions for constructive interference are very similar as for diffraction at one gap, but here 
the path difference is a function of the distance a between the openings in the diffraction grating 

asinϑ= nλ  where n is an integer 

Note that such an interference pattern will need a wavelength that is of the order of the distance 
between the slits. 

This is however only valid if each slit is so narrow that it can be considered as just one Huygens 
wavelet. This is practically not the case and therefore the diffraction pattern will depend on the 
width of a slit (w) and on the distance between the slits (a). There are analytically and graphical ways 
by means of amplitude and phase diagrams to sum up the contributions of each wavelet. This is 
however beyond the scope of this course.  
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Summary interference and diffraction from grating 

The important aspects of interference and diffraction from a grating made of multiple slits of width 
w and separation are: 

1. To have constructive interference among slits  
         nλ ≤ a (distance between slits). 
This means that we need a wavelength of the order of the distance between the 
width. If the wavelength is much smaller, the maxima will be very close to the 
forward direction i.e. the interference fringes will be very close to each other 
 

2. When the width w of the slit is only slightly larger than λ smaller and w<a,  the 
envelope function becomes broader and the first min induced by the width of the 
slit might not be visible. The pattern will look like 
 
 

 
 
            When w is larger than λ  but still w<a, the diffraction pattern will look like 
 

 
 

3. The diffraction angles are invariant under scaling; that is, they depend only on the 
ratio of the wavelength to the size (w) of the diffracting object 

4. While diffraction occurs whenever propagating waves encounter slits, its effects are 
generally most pronounced for waves whose wavelength is roughly similar to the 
dimensions of the diffracting objects 

5. When multiple slits are present, the spacing between a maximum on the detector 
and the center of the pattern is proportional to the reciprocal of the separation 
between the slits 
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The pictures below show the diffraction patterns for a planar diffracting grating consisting of circular 
openings, illustrating the same trends  for this 2D grating (Hammond fig. 7.3) 
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6.2 Diffraction from crystals: the lattice plane view 

Classical diffraction theory at a series of line slits (2D aperture grating) can be extended to diffraction 
at a 3D crystal lattice. That is in principle the contribution of Max von Laue and William Lawrence 
and William Henry Bragg (father and son). In 1912 Von Laue had the idea to send a beam of X-rays 
through a copper sulfate crystal and showed that there were diffraction spots surrounding the 
central spot of the primary beam. Around the same time, crystallographers were becoming 
convinced of the lattice-like construction of crystals.  Paul Ewald revealed that the spacing between 
lattice points was possibly a suitable distance to create interference of X-rays 

If one derives it from an analogy with the slits, the distance between the atoms is the grating 
distance and the size of the atoms is the width of the slit. Of course in such a simple comparison, one 
assumes that atoms are sitting solely at lattice points ( which is as we know not always the case!) 
and one also assumes that the interaction of the wave can be compared to light going through a slit.  

From what we learned in the previous section, visible light will not be a good probe since the 
wavelength is 400nm-700nm, which is much bigger than the distance between the atoms, typically 
of the order of a few 10−10m. For instance,  
- the lattice parameter of the element Ni is 3.6 10−10m,   
- the size of an atom is about 1.4   10−10m.  
 This means that w<a, so one can have constructive interference. 

Which radiation? 
Xrays, neutrons and electrons can be used, the wavelength are shown below.  

 Energy wavelength 
Neutrons 1 – 5 meV (cold) 

25 – 50 meV (thermal) 
9 - 4  A 
1.8 – 1.3 A 

Xrays 100keV 
40 keV 
5 keV 

0.12 A ( hard Xrays) 
0.31 A 
2.48 A  (soft Xrays) 

Electrons 200 keV  0.025 A 
 

Xrays and electrons fulfill the conditions for the relations between a, w and λ, the diffraction 
patterns will however differ i.e. the relation between λ and ϑ will differ. For instance, when one uses 
hard xrays, the angle at which one will see constructive interference will be smaller than when using 
soft xrays.  Cold neutrons have a too large wavelength for diffraction from Ni crystals.    

Within a year of the discovery that  X-rays diffract at crystals, father and son Bragg, have exploited 
the phenomenon to solve the first crystal structure and determined the rule governing a diffraction:  

The interference will be constructive when  
 

2dsinθ = nλ 
 

where d is the spacing between diffracting planes, θ is the incident angle, n is any integer, and λ is 
the wavelength of the beam (right). 
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The picture below shows that the Bragg law is simply the criteria that the path difference (AB + BC) 
where AB=BC=dsinϑ  is an integer of the wavelength λ. 

 

 

 
The discoveries of von Laue and Bragg gave birth to two new sciences, X-ray crystallography and X-
ray spectroscopy, and two Nobel Prizes in physics: Max von Laue “for his discovery of the diffraction 
of X-rays by crystals” in 1914 and to Bragg and his father, Sir William Henry Bragg, “for their services 
in the analysis of crystal structure by means of X-rays” in 1915. William was then 25 years old! 

 

Max von Laue made already in 1912 the analogy between grating interference and diffraction at 
crystals but he took the 3D crystal as an ensemble of rows of atoms. His theory did not become 
immediately popular because it was rather complex. Father (W.H. Bragg) and son (W.L.) Bragg 
explained these patterns as layers of planes of atoms which behave as reflecting planes. This is not 
really correct in physical sense since planes of atoms do not reflect Xrays ( lattice planes are an 
geometrical construction and not real) but the electrons in the atom interact with the Xrays.  

Bragg law defines on a purely geometrical basis for which angles constructive interference 
can occur 
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More general  pictures related  Bragg’s law are  

 

 

Or  

 

 

In both cases, the path difference between the two red reflected rays should be an entire number of 
λ for constructive interference 

 
Exercise 6.1     
 
Show that in both cases there will be constructive interference when Bragg equation is fulfilled 
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One can find in internet many different schematics to explain Bragg law. Often pictures with atoms 
on the planes are shown such (as those below).  

From these pictures one gets the impression that for fulfilling Bragg’s law the atoms need to be in 
special positions in a plane. This is not correct, Bragg’s law only refers to the distance to the planes.  

 

 
 

 

 

 
 

 
 
http://en.wikipedia.org/wiki/Bragg's_law 

 

These images reflect however better that Xrays interact with the electrons in the atom which will be 
discussed in the next section. The derivations of Bragg’s law done in exercise 6.1 show however 
clearly that the law is valid independent where atoms are placed.  

Is this not contradictive?? 
It is important to understand that Bragg’s law gives the geometrical condition for constructive 
interference. This condition depends solely on the spacing between the planes which needs 
irrespective of where the atoms are sitting in that plane.  HOWEVER, when Bragg’s law is fulfilled, 
that does not mean that the interference peak will be always there! The intensity can be zero!  
 

 
Exercise 6.2 
  
Consider the situation below: Bragg law is fulfilled for the planes with interplanar distance d ( full 
lines). Imagine the motif of that crystal lattice has two atoms, one atom sitting at the lattice points 
and one atom sitting in between on the dashed line, both atoms having the same chemical 
character. In spite that Bragg is fulfilled for d and λ at the angle ϑ, the intensity will be zero. Why?? 
 
 

http://en.wikipedia.org/wiki/Bragg's_law
http://en.wikipedia.org/wiki/File:Braggs_Law.svg
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In other words, if one describes crystals with Bravais lattices + motif, one will use Bragg’s law to 
determine where reflections can ocuur, but will have to take into account the extinctions occuring 
due to th enon-primitive chgaracter of the lattice and/or the motif. This part will be  discussed in 
more detail later in the section of the structure factor. 

 

Important notes 

1) Even if only one λ is used (monochromatic Xray beam), more than one lattice plane might 
reflect. This will occur under a different angle ϑ’ and correspond with a different distance d’ 
between the lattice planes.  

 

If the xray beam is polychromatic ( contains many wavelengths) usually more reflections can be 
obtained simultaneously. This will be treated later when discussing the different diffraction 
methods. 
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2) What is the meaning of the order n in the Bragg equation?. 
The first order is when n=1 
 
2dsinϑ=λ 
 
The second order when n=2 
 
2dsinϑ=2λ                which can be also written as            2(d/2) sinϑ’=λ 
 
In other words, the second order can be always seen as a reflection under a different angle 
of lattice planes half way, schematically presented in 2D below (first row pictures). 

  

Diffraction from (100) planes Diffraction from (200) planes 
 

 

In summary 
The most important conclusions of the Bragg equation is that it demonstrates that the diffraction 
pattern has a unique relation with the distance between lattice planes i.e. the sinus of the angle at 
which constructive interference can take place is inverse proportional to the distance between the 
lattice planes. Bragg’s law applies independent of the position of the atoms in the lattice plane, and 
it is solely the spacing between the planes that has to be considered.  We will see later that for non-
primitive lattices some of the possible Bragg reflections become extinct and that a motif can induce 
additional changes in intensities of the diffracted beams.  

The unique relation with the inverse of the distance between the lattice planes is the motivation to 
introduce the reciprocal lattice ( done in chapter 7) 
 

 
Extra exercise 6.3 
 
Calculate the angles at which there will be reflections for the following sets of planes in KCl which is 
cubic with ɑ = 6.27 Å and CuKα radiation,  λ = 1.54 Å. 
(001) 
(110) 
(111) 
 
What is the difference when using a smaller wavelength i.e. xrays with higher energy? 
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6.3    Diffraction from crystals: the structure factor 

The crystal can be seen as a 3-D array of lattice points to which a motif is assigned. Bragg’s law gives 
the geometrical condition for obtaining constructive interference when radiation with a wavelength 
of the order of the distance between the crystal planes falls in on the crystal.  

It was already mentioned that it is physically not correct to say that the impinging waves interact 
with lattice planes or that all lattice planes diffract similar. There are several mechanisms for 
interaction of Xray photons with matter. Bragg diffraction of X-rays is primarily due to the scattering 
of X-ray from electrons bound to the atoms of the crystal structure i.e. Thompson scattering, also 
called elastic or coherent scattering.  

 
The incident photon interacts with an electron in the outer-shell by causing it to vibrate momentarily 
at the same frequency as the incoming photon. The vibration causes the electron to radiate energy 
in the form of another x-ray photon with the same frequency and energy as in the incident photon, 
but the direction of the incident x-ray photon is altered.  

Then of course one has to take into account that there might be several outer shell atoms and 
several atoms in the lattice. In other words, this means that we need to follow the following chain in 
order to know what the scattering power is of a crystal: scattering from an electron, scattering from 
an atom and scattering from the unit cell, as schematically presented below 

 

 

In other words, to calculate the amplitude of the scattered wave coming from a unit cell, one has to 
sum over the atoms in the cell ( positions relative to the origin of the unit cell) and to sum over all 
the positions  of the electrons relative to the center of the atom 
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The polarization factor 

It can be schematically presented as follows:  when an electromagnetic wave falls in on an electron 
(charged particle) the electron will start oscillating with the same wavelength as the incoming wave 
and there will be a defined phase relationship, i.e. the radiation is coherent.   

Let’s picture this for the simplified case of a planar wave traveling in the z direction. Assume the 
wave is linear polarized in the direction x. This wave will cause the electron oscillate in the x 
direction and create a dipolar field. The electromagnetic radiation emitted by the oscillating electron 
will then not be spherical. The field in the xz plane is shown in the figure (Neutrons and Synchrotron 
Radiation in Engineering Materials Science, 2008, editors  Walter Reimers, Anke Rita Pyzalla, Andreas 
K. Schreyer, Helmut Clemens; Online ISBN: 9783527621927)  

 

Although the incidental radiation has a particular direction, the scattered radiation will occur in all 
directions but the intensity will depend on the direction of the incoming beam 

Expressed in terms of the angle 2ϑ between the incoming beam and the scattered direction, the 
intensity will in certain approximations ( free electron) be proportional to  

�
𝑒𝑒2

𝑐𝑐2𝑚𝑚𝑒𝑒
�
2

(1 + 𝑐𝑐𝑐𝑐𝑐𝑐22𝜗𝜗) 

The factor 1/𝑚𝑚𝑒𝑒
2 shows why the electrons are the only effective scatteres in the atom. The same 

type of radiation would be possible with any charged particle of the atom but for instance the 
proton ( lightest nucleus in case of Hydrogen) has a mass that is 1837 times higher 

Important to realize here is that the scattered intensity from a charged particle depends on the 
angle between the incoming beam and the scattered intensity and that the maximum intensity is 
scattered in the forward direction. 
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The atomic scattering factor 

The atomic scattering factor ( or form factor) is defined as 

Atomic scattering factor                  f= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

It is beyond the purpose of this course to derive the formula, but it is important to understand the 
origin and know the influence on the overall scattered intensity by the crystal. On the web you can 
find the picture below which illustrates well the influence of the electron distribution  
(http://www.xtal.iqfr.csic.es/Cristalografia/parte_05-en.html) 

 

 
Schematically presentation of the electron 
“cloud” in an atom. The incident beam with unit 
vector S0, the scattered vector S for an electron  

 

An atom with Z electrons (its atomic number) can be expected to scatter Z times. The distances 
between the electrons of an atom are of the order of the X-rays wavelength ( dimension of the atom 
10 -10m), and therefore destructive interferences can occur among the scattered waves. This will 
affect of course only partially the wave scattered by the electrons, since electrons are sitting in a 
cloud and do not have these regular positions as atoms in a lattice. Since Thompson scattering has 
the highest intensity in the forward direction there will be also a dependence on the angle between 
the incident radiation and the direction where we measure the scattering.  

The orbital electrons in an atom move very fast ( of the order of 10-18 sec for an orbital) and 
therefore an impinging wave sees only an average electron cloud which is characterized by an 
electron density of charge ρ(r’). 

If this distribution is considered spherically symmetric, its influence on the scattering will 
predominantly depend on the distance to the nucleus. The atomic scattering factor can be described 
as ( r is the position of the electron in the atoms) 

f(k) = 4π ∫ 𝑟𝑟2∞
0 𝜌𝜌(𝑟𝑟) sin(𝒌𝒌−𝒌𝒌𝟎𝟎).𝒓𝒓

(𝒌𝒌−𝒌𝒌𝟎𝟎).𝒓𝒓
   where k-k0 = (s-s0)/λ  

Note that 4π∫r2ρ(r)dr is equal to the total number of electrons Z in the atom. Hence the atomic form 
factor is equal to Z when θ=0 ( forward direction) , and less then Z for all other angles of scattering. 
Important is however to realize that the form factor depends via  (s-s0) on sinϑ/λ . 

http://www.xtal.iqfr.csic.es/Cristalografia/parte_05-en.html
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The dependence of the atomic scattering factor of Z is an important aspect of Xray scattering since it 
makes light elements “invisible”. 

 

Below a few diagrams showing the dependence of the atomic scattering factor on sinϑ/λ 
Lower intensities are observed for higher diffraction angles. 

  
Atomic scattering factors for several ions with the 
same number of electrons. One can observe that the 
O-- has a more diffuse electronic cloud than Si 4+ and 
shows a faster decay. 

Atomic scattering factors calculated for atoms and 
ions with different numbers of electrons.  Hydrogen 
( only one electron) scatters very little as compared 
with other elements. 
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The Structure factor 

Now that we know how an atom scatters, let us investigate how the arrangement of the atoms in 
the unit cell can influence the scattered intensity.  A unit cell has a motif and this can be one atom at 
a lattice point but it can be also a cluster of atoms related to a lattice point 

 

 
 

Imagine a simple cubic unit cell with a motif with one (red) atom at a lattice point and one (blue) 
atom in one of the faces at a position x from the top face. The atoms are different chemical species. 
The red planes are those that fulfill the Bragg equation. The purple plane is parallel to the Bragg 
planes but does not fulfill the Bragg equation.  

The path difference between the rays ( R1 and R2) impinging on the (h00) Bragg planes. If we 
directly compare with the lattice drawn in the picture above, this is the (100) plane but to keep it 
more general we take the (h00) plane. The distance between the (h00) planes is then noted as   𝑑𝑑ℎ00 
and has the length a/h where a is the lattice parameter. 

MCN= 2AC sinϑ = 2 𝑑𝑑ℎ00 sinϑ = λ as expected since Bragg is fulfilled 

The path difference between R1 and R3 (from the blue plane) is  

RBS= 2ABsinϑ  

AC is the distance between the lattice planes (h00) with length   𝑑𝑑ℎ00 = a/h    

Taking the ratio’s     
𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

=  𝑥𝑥𝑎𝑎
ℎ

 

and implementing AB as a function of AC in the equation of RBS  

RBS= 
𝑥𝑥
𝑎𝑎
ℎ

 2AC sinϑ 

And since  2ACsinϑ= λ  finally result in a path difference 
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   RBS= h 
𝑥𝑥
𝑎𝑎

λ 

This will result in a phase difference of the wave and so a reduction in intensity. Note that for an 
atom sitting halfway ( distance  x/a=1/2) there will be maximal reduction in intensity. In case of two 
similar atoms, this will result in extinction.  This means that even when the geometrical Bragg 
condition for diffraction is fulfilled, the intensity can be strongly reduced or even extinct. 

 

 

General expression for the structure factor   

 
𝑭𝑭(𝒉𝒉𝒉𝒉𝒉𝒉) = ∑ 𝒇𝒇𝒏𝒏𝒆𝒆𝒊𝒊𝟐𝟐𝝅𝝅(𝒉𝒉𝒙𝒙𝒏𝒏+𝒌𝒌𝒚𝒚𝒏𝒏+𝒍𝒍𝒛𝒛𝒏𝒏)𝑵𝑵

𝟎𝟎    
 
where 𝒇𝒇𝒏𝒏 is the atomic form factor of atom n, and (𝒙𝒙𝒏𝒏,𝒚𝒚𝒏𝒏,𝒛𝒛𝒏𝒏,) are the coordinates of atom n 
expressed in the lattice. N is the total number of atoms in the unit cell 
 
the term 𝟐𝟐𝝅𝝅(𝒉𝒉𝒙𝒙𝒏𝒏 + 𝒌𝒌𝒚𝒚𝒏𝒏 + 𝒍𝒍𝒛𝒛𝒏𝒏) is the phase angle φ 
 
 

The intensity is proportional to the square of the structure factor,  I   ~  (F(hkl) .𝐹𝐹∗(hkl))  which 
equals to 𝐹𝐹(ℎ𝑘𝑘𝑘𝑘)2 when the structure factor is real  ( see examples). There will be extinctions when 
the structure factor is zero. F does not give us absolute values of intensities, but one can use ratios 
of intensities of different reflections to get information on the motif. That is what crystallographers 
do.   
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6.4  Diffraction from Bravais lattices: systematic absences  
 

The structure factor for non-primitive Bravais lattices show systematic extinctions, Below the 
example foe an face centered cubic lattice, the others are left as an exercise. To calculate the 
structure factor, we assume only one chemical specie and atoms that are sitting at the lattice point.  

 For the calculations, remind that 𝑒𝑒𝑖𝑖𝑖𝑖 𝑛𝑛 = 1  when n is an even integer 
                   = -1 when n is an odd integer 

And that even + even = even, odd + odd = even, even + odd = odd 

Face centered  cubic lattice with one atomic specie 

 

The number of atoms in the Bravais unit cell is 4 
Positions of equivalent atoms (0,0,0)  (½, ½, 0), (½, 0, ½), (0, ½, ½) 
 
 
 
 
 
 

  
hkl all even or odd:  F=4f  e.g. (111), (200), (220), (333), (420) 
 
hkl mixed:  F=0 e.g. . (100), (211); (210), (032), (033) 
 

 

 
Exercises 6.4 
 
Define for which hkl values extinction or maximal constructive interference occurs in 
 
- I-  body centered orthorhombic lattice with one atomic specie 
- C-centered orthorhombic lattice with one atomic specie 
- A centered orthorhombic lattice 
- B centered orthorhombic lattice 
- P primitive lattice 
 
 
Exercises 6.5 
 
Determine the 8 Bragg reflections of Cu (FCC lattice with a=3.615) with the smallest ϑ value and 
determine the angle ϑ when λ= 1.54184 Angstrom. Will all these reflections have the same 
intensity? 
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Exercise 6.6 
 
Define for the two Ni-Al alloys for which (hkl) planes one has maximal intensity and for which 
minimal intensity 
 
- NiAl: an alloys with a primitive cubic Bravais lattice with positions Al ( 0,0,0) , Ni (½, ½, ½) 
 
- Ni3Al: an alloy with a primitive cubic Bravais lattice with  positions  Al ( 0,0,0) , Ni (½, ½, 0) 
 
Which reflections are present in Ni3Al that would have been extinct in pure Ni 
 
 
 
Exercise 6.7 
 
Write the structure factor for NaCl. What is the effect on the Bragg reflections? 
Compare the intensity of the (111) and the (200) reflection with those of Cu 
 
 
Exercise 6.8 
 
Write the structure factor for zincblende ZnS (take S atom placed at the origin of the unit cell) 
Evaluate the intensities of the (111), (200), and (220) reflections assuming that atomic scattering 
factors are proportional to atomic number 
 
 
Exercise 6.9 
 
Write the structure factor for Ti (HCP Bravais lattice) and discuss intensities 
 
 
Exercise 6.10 
 
Write the structure factor for Diamond and discuss intensities 
 
 
Exercise 6.11 
 
Identify the Bravais lattice of CaF2, SrTiO3 (perovskite) and CsCl and write down the coordination of 
the atoms necessary to describe the crystal. Make a 2D plot of the structure 

   
CaF2 SrTiO3 CsCl 
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Exercise 6.12 
 
Write the structure factor for CaF2  
 
 
Exercise 6.13 ( not for exam) 
 
Write the structure factor for Wurzite (HCP Bravais lattice) using the unit cell below 

 
 
 
Exercise 6.14 
 
Demonstrate that also a  screw axes can cause systematic extinctions. Take as example the 21 screw 
axis parallel to b. This will have the effect of replicating each atom j, originally at (xj , yj, zj), at  
(-xj , 1/2 +yj ,-zj). Calculate the structure factor and determine conditions for extinction 
 
 
 
 
 

 


