Biological Modeling of Neural Networks

Optimizing Neuron Models For Coding and Decoding

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Reading for this week: NEURONAL DYNAMICS - Ch. 4.6, 6.1,6.2,6.4, 9.2 - Ch. 10.2.3, 11.1. 11.3.3

Cambridge Univ. Press

1 What is a good neuron model?

- Models and data
- 2 AdEx model
 - Firing patterns and adaptation
- 3 Spike Response Model (SRM)
 - Integral formulation
- 4 Generalized Linear Model
 - Adding noise to the SRM
 - Likelihood of a spike train
- **5** Parameter Estimation

(- Quadratic and convex optimization) 6 Modeling in vitro data

how long lasts the effect of a spike?
 7 Helping humans – in vivo data

1. Neuron Models and Data

-What is a good neuron model? -How can we estimate parameters of models? -What is a neuron model good for?

1. What is a good neuron model?

A) Predict spike times B) Predict subthreshold voltage C) Easy to interpret (not a 'black box') D) Flexible enough to account for a variety of phenomena E) Systematic procedure to 'optimize' parameters

(1)
$$\tau \frac{du}{dt} = f(u) + RI(t)$$

(2) If $u = \theta_{rese}$

What is a good choice of *f*?

(i) Extract f from more complex models

(ii) Extract f from data

_{ot} then reset to $u = u_r$

1. Review: 2-dim neuron models

(i) Extract f from more complex models $\tau \frac{du}{dt} = f(u) + RI(t)$

-=G(u,w)

A. detect spike and reset resting state

Separation of time scales: Arrows are nearly horizontal

Spike initiation, from rest RI(t) $W \approx W_{rest}$

B. Assume *W*=*W*rest

$$= -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

Exp. Integrate-and-Fire,

Badel et al. (2008)

(1)
$$\tau \frac{du}{dt} = f(u)$$

(2) If $u = \theta$

Best choice of *f* : linear + exponential $\tau \frac{du}{dt} = -(u - t)$

BUT: Limitations – need to add

- -Adaptation on slower time scales
- -Possibility for a diversity of firing patterns
- -Increased threshold \mathcal{G} after each spike -Noise

+RI(t)

 η_{reset} then reset to $u = u_r$

$$-u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

(1)
$$\tau \frac{du}{dt} = f(u)$$

(2) If $u = \theta$

Best choice of *f* : linear + exponential $\tau \frac{du}{dt} = -(u - t)$

BUT: Limitations – need to add

- -Adaptation on slower time scales
- -Possibility for a diversity of firing patterns
- -Increased threshold \mathcal{G} after each spike -Noise

+RI(t)

 η_{reset} then reset to $u = u_r$

$$-u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

Conclusion – 1 What is a good neuron model?

A) Predict spike times B) Predict subthreshold voltage C) Easy to interpret (not a 'black box') D) Systematic procedure to 'optimize' parameters E) Flexible enough to account for a variety of phenomena F) Account for adaption and firing patters

How can we find good, but easy-to-interpret neuron models A) Derived from detailed Hodgkin-Huxley B) Construct simple phenomenological model

Conclusion – 1 What is a good neuron model?

How can we find good, but easy-to-interpret neuron models A) Derived from detailed Hodgkin-Huxley

Step 1: reduce to 2 dimensions Step 2: Separation of time scales. Step 3: focus on spike initiation zone. Step 4: During spike initiation keep w constant.

Steps 1 to 4 yield an Exponential I&F model.

Step 5 (next): make w flexible again by giving it a dynamics.

Biological Modeling of Neural Networks

Week 12

Optimizing Neuron Models For Coding and Decoding

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

Reading for this week: NEURONAL DYNAMICS - Ch. 4.6, 6.1,6.2,6.4, 9.2 - Ch. 10.2.3, 11.1. 11.3.3

Cambridge Univ. Press

1 What is a good neuron model?

- Models and data
- 2 AdEx model
 - Firing patterns and adaptation
- 3 Spike Response Model (SRM)
 - Integral formulation
- 4 Generalized Linear Model
 - Adding noise to the SRM
 - Likelihood of a spike train
- **5** Parameter Estimation

(- Quadratic and convex optimization) 6 Modeling in vitro data

how long lasts the effect of a spike?
 7 Helping humans – in vivo data

2 Adaptation

Step current input – neurons show adaptation

1-dimensional (nonlinear) integrate-and-fire model cannot do this!

Data: Markram et al. (2004)

2 Adaptation

What is adaptation? 'Firing that slows down in response to step input' (\rightarrow previous slide)

Idea: Add one (or several) variables to exponential IF model, so as to account for adaptation (→ next slide)

2 Adaptive Exponential I&F Add adaptation variables: $\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Lambda}) - R \sum_{k} W_{k}$

$$\tau_k \frac{dw_k}{dt} = a_k (u - u_{rest}) - w_k + b_k \tau_k \sum_f$$

SPIKE AND RESET

after each spike W_k jumps by an amount b_k

If $u = \theta_{reset}$ then reset to $u = u_r$

Blackboard ! **Exponential I&F** + 1 adaptation var. $\delta(t-t^f) = AdEx$

AdEx model, Brette&Gerstner (2005):

Conclusion – 2 Firing patterns

There are many different firing patterns. Experimentalists have classified them in 9 different groups. Non-adapting (=tonic), adapting, bursty; Combined with or without initial burst or delay.

The AdEx model can also account for 9 different types of patterns – changing just 3 parameters!

We will consider parameters a, b, and ur.

But before we start we need to construct the nullclines.

Week 12 - Firing Patterns EPFL

Biological Modeling of Neural Networks:

Week `1 – Optimizing Neuron Models For Coding and Decoding

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

1 What is a good neuron model?

- Models and data
- 2 AdEx model
 - Firing patterns and adaptation
- 3 Spike Response Model (SRM) - Integral formulation
- 4 Generalized Linear Model
 - Adding noise to the SRM
- **5** Parameter Estimation
 - Quadratic and convex optimization
- 6. Modeling in vitro data
 - how long lasts the effect of a spike?

2 Adaptive Exponential 1&F

AdEx model: exponential I&F plus adaptation variable

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta}) - Rw + RI(t)$$
$$\tau_w \frac{dw}{dt} = a \ (u - u_{rest}) - w + b \ \tau_w \sum_f \delta(t - t^f)$$

Two variables \rightarrow Phase plane analysis!

Can we understand the different firing patterns?

Quiz. Nullclines of AdEx

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta}) - \frac{u - \vartheta}{\Delta}$$

$$\tau_{w} \frac{dw}{dt} = a (u - u_{rest}) - w$$

A - What is the qualitative shape of the w-nullcline?

[] constant

- linear, slope a
- linear, slope 1
- [] linear + quadratic
- [] linear + exponential

2 minutes

Rw + RI(t)

B - What is the qualitative shape of the u-nullcline?

- [] linear, slope 1
- linear, slope 1/R
- [] linear + quadratic
- [] linear w. slope 1/R+ exponential
- Restart at 9:45

2. AdEx model

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - u_{rest}}{dt})$$

$$\tau_{w} \frac{dw}{dt} = a (u - u_{rest}) - w + b \tau$$
after each spike
w jumps by a

parameter *a* – slope of *w*-nullcline Can we understand the different firing patterns?

after each spike u is reset to ur

 $\left(\frac{-\mathcal{G}}{\Lambda}\right) - Rw + RI(t)$

 $\tau_w \sum_f \delta(t-t^f)$

n amount **b**

2. AdEx model – phase plane analysis

Next slides: phase plane analysis

- 3 different examples of firing patterns
- 3 different choices of parameters a and b

2. AdEx model – phase plane analysis: large b

2. AdEx model – phase plane analysis: small b

adaptation

 \mathbf{D}

w [pA]

Quiz: AdEx model – phase plane analysis

What firing pattern do you expect? (i) Adapting (ii) Bursting (iii) Initial burst (iv)Non-adapting

2. AdEx model – phase plane analysis: a>0

2 AdEx model and firing patterns

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{du}{dt})$$

$$\tau_{w} \frac{dw}{dt} = a (u - u_{rest}) - w + k$$
after each spike
w jumps by a

parameter *a* – slope of *w* nullcline

Firing patterns arise from different parameters!

h spike u is reset to ur $u - \vartheta = Rw + RI(t)$

 $b \tau_w \sum_f \delta(t-t^f)$

n amount **b**

See Naud et al. (2008), see also Izikhevich (2003)

1)
$$\tau \frac{du}{dt} = f(u) + RI(t)$$
(2) If $u = \theta_{reset}$

Best choice of *f* : linear + exponential

BUT: Limitations – need to add

- Adaptation on slower time scales
- -Possibility for a diversity of firing patterns
 - -Increased threshold \mathcal{G} after each spike
 - -Noise

then reset to $u = u_r$

2. AdEx with dynamic threshold

Add dynamic threshold:

2. Generalized Integrate-and-fire

We started with a one-dimensional nonlinear I&F model $\tau \frac{du}{dt} = f(u) + RI(t)$

If $u = \theta_{reset}$ then reset to $u = u_r$

we added

-Adaptation variables -Possibility for firing patterns -Dynamic threshold ${\cal G}$ -Noise

Use 'escape noise' (see earlier lecture) \rightarrow Section 9.4

Week 12 - Firing Patterns EPFL

Biological Modeling of Neural Networks:

Week `1 – Optimizing Neuron Models For Coding and Decoding

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

1 What is a good neuron model?

- Models and data
- 2 AdEx model
 - Firing patterns and adaptation
- 3 Spike Response Model (SRM)
 - Integral formulation
- 4 Generalized Linear Model
 - Adding noise to the SRM
- **5** Parameter Estimation
 - Quadratic and convex optimization
- 6. Modeling in vitro data
 - how long lasts the effect of a spike?

3. Review: Exponential Integrate-and-Fire

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta}) + R$$

What is the size of the parameter Δ ? \rightarrow experiments?

What is the role of the parameter Δ ? \rightarrow make Δ smaller and smaller

RI(t)

15 $\tilde{f}(u)$ [mV/ms] 10-5-70-40-60-50u [mV]

Badel et al (2008)

3. Exponential versus Leaky Integrate-and-Fire

In the limit $\Delta \rightarrow 0$ the exponential I&F simplifies to $\tau \frac{du}{dt} = -(u - u_{rest}) + RI(t)$ Reset if $u = \mathcal{9}$

Leaky Integrate-and-Fire
3. Adaptive leaky integrate-and-fire

Defined by 1) voltage equation, adaptation variables

$$\tau \frac{du}{dt} = -(u - u_{rest}) - \tau_k \frac{dw_k}{dt} = a_k (u - u_{rest}) - \tau_k \frac{dw_k}{dt} = a_k ($$

2) spike and _____ and reset

If $u = \Theta(t)$ then reset to $u = u_r$ w_k jumps by an amount b_k

3) Dynamic threshold $\vartheta(t)$

 $R\sum_{k} w_{k} + RI(t)$

 $-w_k + b_k \tau_k \sum_f \delta(t-t^f)$

Exercise 1: from adaptive IF to SRM

$$\tau \frac{du}{dt} = -(u - u_{rest}) - R \alpha w + RI(t), \qquad \alpha = \{0,1\}$$
If $u = 9$ then reset to $u = u_r$

$$\frac{dw}{dt} = -w + b \tau_w \sum_f \delta(t - t^f)$$
Start at 10:15
Next lecture at 10:25
Tate the above system of two differential equations so as

$$\tau \frac{du}{dt} = -(u - u_{rest}) - R \alpha w + RI(t), \qquad \alpha = \{0,1\}$$
If $u = 9$ then reset to $u = u_r$

$$\tau_w \frac{dw}{dt} = -w + b \tau_w \sum_f \delta(t - t^f)$$
Start at 10:15
Next lecture at 10:25
tegrate the above system of two differential equations so as

Int to rewrite the equations as

potential $u(t) = \int \eta(s)S(t-s)ds + \int_0^\infty$ Hint: voltage reset equivalent to s A – what is $\varepsilon(s)$? (i) $x(s) = \frac{R}{\tau} \exp(\frac{\pi}{s})$ B – what is $\eta(s)$? (iii) $x(s) = C[\exp(\frac{\pi}{s})]$

$$\sum_{w=1}^{\infty} \frac{\varepsilon(s)I(t-s)ds + u_{rest}}{\varepsilon(s)I(t-s)ds + u_{rest}}$$

hort current pulse
 $(-\frac{s}{\tau})$ (ii) $x(s) = \frac{R}{\tau_w} \exp(-\frac{s}{\tau_w})$
 $(-\frac{s}{\tau}) - \exp(-\frac{s}{\tau_w})$] (iv) Combi of
(i) + (iii)

3. Adaptive leaky I&F and SRM

$$\tau \frac{du}{dt} = -(u - u_{rest}) - R \sum_{k} w_{k} + RI(t)$$

$$\tau_{k} \frac{dw_{k}}{dt} = a_{k}(u - u_{rest}) - w_{k} + b_{k}\tau_{k} \sum_{f} \delta$$

Linear equation \rightarrow can be integrated!

$$u(t) = \sum_{f} \eta (t - t^{f}) + \int_{0}^{\infty} ds \kappa(s) I(t - s)$$

$$\mathcal{G}(t) = \theta_0 + \sum_f \theta_1(t - t^f)$$

Firing condition: $u(t) = \vartheta$

Adaptive leaky I&F

Spike Response Model (SRM) Representation of potential and threshold by linear filters of arbitrary shape

Gerstner et al. (1996)

3. Spike Response Model (SRM)

- Voltage equation in integrated form, includes linear filters
- Linear filters can result from linear differential equations
- Alternatively linear filters can be directly fitted to experiments Simple 'flow diagram' (next slide)

Linear filters shape neuronal behavior (e.g., bursting)

3. Spike Response Model (SRM)

3. Bursting in the SRM

SRM with appropriate η leads to bursting

$$u(t) = \sum_{f} \eta (t - t^{f}) + \int_{0}^{\infty} ds \kappa(s) I(t - s) + u_{f}$$
$$u(t) = \int_{0}^{\infty} ds \eta(s) S(t - s) + \int_{0}^{\infty} ds \kappa(s) I(t - s) + u_{f}$$

rest

I rest

3. Spike Response Model (SRM)

 $u(t) = \mathcal{G}(t)$

threshold

firing if

3. Summary Spike Response Model (SRM)

- Membrane potential in integral form
- Three arbitrary linear filters
- Threshold condition for firing

potential

$$u(t) = \sum_{t'} \eta(t-t') + \int_0^\infty \kappa(s) I(t-s) ds + \frac{1}{2} \kappa(s) I(t-s) I(t-s) ds + \frac{1}{2} \kappa(s) I(t-s) I(t-s) I(t-s) ds + \frac{1}{2} \kappa(s) I(t-s) I(t$$

threshold $\vartheta(t) = \theta_0 + \sum_{t'} \theta_1(t-t')$ firing if

$$u(t) = \mathcal{G}(t)$$

Linear filters for

- input: ĸ
- refractoriness η
- threshold θ

Week 12 - Generalized Linear Model **1** What is a good neuron model? EPFL

Biological Modeling of Neural Networks:

Week 12 – Optimizing Neuron Models **For Coding and Decoding**

Wulfram Gerstner EPFL, Lausanne, Switzerland

- Models and data

2 AdEx model

- Firing patterns and adaptation
- **3** Spike Response Model (SRM)
 - Integral formulation

4 Generalized Linear Model

- Adding noise to the SRM
- **5** Parameter Estimation
 - Quadratic and convex optimization
- 6. Modeling in vitro data
 - how long lasts the effect of a spike?

Gerstner et al., 4. Spike Response Model (SRM) 1992,2000 = Generalized Linear Model GLM Truccolo et al., 2005 Pillow et al. 2008

- take a (deterministic) spike response model - add escape nose
- \rightarrow Generalized Linear Model (GLM)

4. Review: Escape noise

perate
$$\rho(t) = \rho_0 \exp(\frac{u(t) - \vartheta}{\Delta})$$

Example: leaky integrate-and-fire model

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

if spike at
$$t^f \Rightarrow u(t^f + \delta) = u_r$$

Exerc. 2.1: Non-leaky IF with escape rates

$$\frac{du}{dt} = \frac{R}{\tau}I(t) = \frac{1}{C}I(t)$$
nonleaky
reset to $u_r = 0$

Integrate for constant input (repetitive firing) Calculate

- $u(t-\hat{t})$ - potential
- $\rho(t \hat{t}) = \beta \cdot [u(t \hat{t}) \vartheta]_{\perp}$ - hazard
- $S(t-\hat{t})$ - survivor function
- $P_0(t-\hat{t})$ - interval distrib.

 $\tau \frac{du}{dt} = -(u - u_{rest}) + RI(t)$

reset to $u_{rest} = u_r = 0$

12 minutes, **Next lecture** at 10:51

4. Review: Escape noise

Survivor function

$$\frac{d}{dt}S_I(t|\hat{t}) = -\rho(t)S_I(t|\hat{t})$$

4. Likelihood of spike train

linear filters escape rate →likelihood of observed spike train

4. Likelihood of a spike train in GLMs

Measured spike train with spike times Likelihood L that this spike train could have been generated by model?

$$L(t^{1},...,t^{N}) = \exp(-\int_{0}^{t^{1}} \rho(t')dt')\rho(t^{1}) \cdot \exp(-\int_{t^{1}}^{t^{2}} \rho(t')dt')...$$

$$t^1, t^2, ..., t^N$$

4. Log-Likelihood of a spike train

$$\log L(t^{1},...,t^{N}) = -\int_{0}^{f} \rho(t')dt' + \sum_{f} \log \rho(t^{f})$$

4. Summary: SRM with escape noise = GLM

1) A GLM is a Spike Response Model with escape noise. The advantage of the escape noise as a noise model is that we have an explicit mathematical formula for the likelihood of a spike train, given a model. 2) Knowing the input current and past spike times, the model makes a prediction for the difference between voltage and threshold at each moment in time, which gives the intensity $\rho(t)$ and the likelihood of a spike train

-linear filters -escape rate \rightarrow likelihood of observed spike train

we now use this framework for parameter optimization of neuron model

Week 12 - Parameter estimation I What is a good neuron model?

Biological Modeling of Neural Networks:

Week 12 – Optimizing Neuron Models $\sqrt{4}$ For Coding and Decoding

Wulfram Gerstner EPFL, Lausanne, Switzerland

- Models and data
- **2** AdEx model
 - Firing patterns and adaptation
- **3** Spike Response Model (SRM)
 - Integral formulation
 - 4 Generalized Linear Model
 - Adding noise to the SRM
 - **5** Parameter Estimation
 - Quadratic and convex optimization
 - 6. Modeling in vitro data
 - how long lasts the effect of a spike?

5. Parameter estimation: voltage

Spike Response Model (SRM) Generalized Lin. Model (GLM)

Subthreshold potential

$u(t) = \int \frac{\eta(s)S(t-s)}{1}$

known spike train

 $\kappa(s)$

Linear filters/linear in parameters

$$\int_{0}^{\infty} \kappa(s) I(t-s) ds + u_{rest}$$

known input

5 Extracted parameters: filter shape extracted from voltage trace

5. Summary: voltage modeling

Subthreshold $u(t) = \int_0^\infty \frac{\kappa(s)I(t-s)}{\kappa(s)I(t-s)}$

- on (known) external input and (known) past spikes - EXPERIMENT: Subthreshold potential is measurable
- \rightarrow Modify filters κ and η so as to minimize the mean-squared
- \rightarrow 'optimal filter' κ is found to be exponential
- \rightarrow 'optimal filter η is found to be non-trivial

$$S)ds + u_{rest} + \int \eta(s)S(t-s)ds$$

MODEL: Subthreshold potential between spikes depends

error between model voltage and experimental voltage

Week 12 - Parameter estimation I What is a good neuron model?

Biological Modeling of Neural Networks:

Week 12 – Optimizing Neuron Models $\sqrt{4}$ For Coding and Decoding 5

Wulfram Gerstner EPFL, Lausanne, Switzerland

- Models and data
- **2** AdEx model
 - Firing patterns and adaptation
- **3** Spike Response Model (SRM)
 - Integral formulation
 - 4 Generalized Linear Model
 - Adding noise to the SRM
 - **5** Parameter Estimation
 - Quadratic and convex optimization
 - 6. Modeling in vitro data
 - how long lasts the effect of a spike?

5. Fitting models to data: so far 'subthreshol

5. Fit Threshold parameters: Predict spike times

Idea:

- use subthreshold voltage to extract filters κ and η \rightarrow previous section
- Use spike times of experimental neuron to extract threshold filters θ
- To do so, maximize likelihood that observed spikes could have been generated by the model \rightarrow now

5. Threshold: Predicting spike times

threshold $\vartheta(t) = \theta_0 + \int \theta_1(s)S(t-s)ds$

firing intensity $\rho(t) = f(u(t) - \vartheta(t))$

$$p(t^{f}) = -E$$

$$s)ds + \int_{0}^{\infty} \frac{\kappa(s)I(t-s)ds}{I(t-s)ds} + \frac{1}{2} \frac{(s)S(t-s)ds}{-g(t)}$$

5 GLM: Log-Likelihood induces a concave error function

$$ds + \int_0^\infty \kappa(s) I(t-s) ds + u_{rest}$$

5. quadratic and convex/concave optimization

Voltage/subthreshold - linear in parameters → quadratic error function

Spike times

- nonlinear, but GLM,
- negative loglikihood of spikes
 - \rightarrow convex error function

Negative Log-likelihood of spike times is
 convex as a function of threshold parameters
 → Parameters are easy to extract

Quiz NOW : $\eta(s)$ What are the units of

threshold $\vartheta(t) = \theta_0 + \int \theta_1(s)S(t-s)ds$ firing intensity $\rho(t) = f(u(t) - \vartheta(t))$

Quiz NOW:

potential
$$C \frac{d}{dt} u(t) = -\frac{(u - u_{rest})}{R} + \int \underline{\eta}(s)$$

threshold $\mathcal{P}(t) = \Theta_0 + \int \Theta_1(s) S(t)$
firing intensity $\rho(t) = f(u(t) - t)$

S(t-s)ds + I(t-s)

-s)ds

Week 12 - Modeling in vitro data I What is a good neuron model?

Biological Modeling of Neural Networks:

Week 12 – Optimizing Neuron Models 4 For Coding and Decoding

Wulfram Gerstner EPFL, Lausanne, Switzerland

- Models and data
- **2** AdEx model
 - Firing patterns and adaptation
- **3** Spike Response Model (SRM)
 - Integral formulation
 - 4 Generalized Linear Model
 - Adding noise to the SRM
- **5** Parameter Estimation
 - Quadratic and convex optimization
 - 6. Modeling in vitro data
 - how long lasts the effect of a spike?

6. Review: Models and Data

comparison model-data

Predict -Subthreshold voltage -Spike times
6. Review: GLM/SRM with escape noise

threshold $\vartheta(t) = \theta_0 + \int \theta_1(s)S(t-s)ds$ firing intensity $\rho(t) = f(u(t) - \vartheta(t))$

6. Result: GLM/SRM predict subthreshold voltage and (jittered) spike times

6. Conclusion: GLM/SRM predict neuronal behavior

Subthreshold voltage → prediction very close to measurements on NEW DATA, not used for parameter optimization

2) Spike times → remaining jitter in model very close to jitter in experimental data

6. GLM/SRM predict spike times: Moving threshold is important

Role of moving threshold

6. How long does the effect of a spike last?

A single spike has a measurable effect more than 10 seconds later!

6: Conclustion: Models and in vitro Data

The SRM/GLM framework is able to

Predict spike times (plus jitter)
Predict subthreshold voltage
Easy to interpret (not a 'black box')
optimize parameters systematically
account forfiring patterns and adaptation

BUT so far limited to in vitro

Week 12 - Helping Humans EPFL

Biological Modeling of Neural Networks:

Week 12 – Optimizing Neuron Models $\sqrt{\frac{4}{5}}$

Wulfram Gerstner EPFL, Lausanne, Switzerland

1 What is a good neuron model?

- Models and data
- **2** AdEx model
 - Firing patterns and adaptation
- **3** Spike Response Model (SRM)
 - Integral formulation
 - 4 Generalized Linear Model
 - Adding noise to the SRM
- **5** Parameter Estimation
 - Quadratic and convex optimization
- 6 Modeling in vitro data
 - how long lasts the effect of a spike?
 - 7 Helping Humans: in vivo data

7. Model of ENCODING

A) Predict spike times, given stimulus
B) Predict subthreshold voltage
C) Easy to interpret (not a 'black box') Model of 'Encoding'
D) Flexible enough to account for a variety of phenomena
E) Systematic procedure to 'optimize' parameters

7. Model of DECODING

Predict stimulus!

Model of 'Decoding': predict stimulus, given spike times

7. ENCODING and Decoding

Model of 'Encoding'

- Generalized Linear Model (GLM) - flexible model
 - systematic optimization of parameters

Model of 'Decoding'

- The same GLM works!
 - flexible model
 - systematic optimization of parameters

7.Helping Humans **Application: Neuroprosthetics** frontal motor cortex cortex

Predict intended arm movement, given Spike Times

Many groups world wide work on this problem!

Model of **'Decoding'**

7. Basic neuroprosthetics

Application: Neuroprosthetics Decode the intended arm movement Hand velocity

Figure: Neuronal Dynamics, Cambridge Univ. Press; See Truccolo et al. 2005

Fig. 11.12: Decoding had velocity from spiking activity in area MI of cortex. The real hand velocity (thin black line) is compared to the decoded velocity (thick black line) for the x - (top) and the y-components (bottom). Modified from Truccolo et al. (2005).

7. Conclusion: Basic neuroprosthetics

Complicated math

- Spike Response Model
- Nonlinear Model!
- Survivor Function
- Stochastic Processes
- Likelihood of a spike train

Is all this worth the trouble? \rightarrow yes, because it is used in Important Applications!

Suggested Reading/selected references

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: from single neurons to networks and models of cognition. Ch. 6,10,11: Cambridge, 2014

Nonlinear and adaptive IF

Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike J. Neuroscience, 23:11628-11640. Badel, L., et al. (2008a). Extracting nonlinear integrate-and-fire, *Biol. Cybernetics*, 99:361-370. Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire J. Neurophysiol., 94:3637-3642. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans Neural Netw, 14:1569-1572. Gerstner, W. (2008). Spike-response model. Scholarpedia, 3(12):1343.

Optimization methods for neuron models, max likelihood, and GLM -Brillinger, D. R. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biol. Cybern., 59:189-200. -Truccolo, et al. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93:1074-1089.

- Paninski, L. (2004). Maximum likelihood estimation of ... Network: Computation in Neural Systems, 15:243-262. - Paninski, L., Pillow, J., and Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In Cisek, P., et al., Comput. Neuroscience: Theoretical Insights into Brain Function. Elsevier Science. Pillow, J., ET AL. (2008). Spatio-temporal correlations and visual signalling.... Nature, 454:995-999. Encoding and Decoding

Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1997). Spikes - Exploring the neural code. MIT Press, Keat, J., Reinagel, P., Reid, R., and Meister, M. (2001). Predicting every spike ... Neuron, 30:803-817. Mensi, S., et al. (2012). Parameter extraction and classication J. Neurophys., 107:1756-1775. Pozzorini, C., Naud, R., Mensi, S., and Gerstner, W. (2013). Temporal whitening by . Nat. Neuroscience, Georgopoulos, A. P., Schwartz, A., Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233:1416-1419. Donoghue, J. (2002). Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci., 5:1085-1088.

