Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

QUESTION SET 11

Exercise 1: Stochastic input

Consider a passive membrane receiving a stochastic input current which is zero for time t < 0 and

$$RI(t) = RI_0 + \xi(t), \text{ for } t > 0,$$
 (1)

where $\xi(t)$ is white noise with

$$\langle \xi(t) \rangle = 0, \tag{2}$$

$$\langle \xi(t)\xi(t')\rangle = \tau_m a^2 \delta(t-t'). \tag{3}$$

The membrane potential obeys the equation

$$\frac{du(t)}{dt} = -(u - u_{rest}) + RI(t), \tag{4}$$

with solution

$$u(t) = u_{rest} + \frac{R}{\tau_m} \int_0^t \exp(-\frac{s}{\tau_m}) I(t-s) ds$$
(5)

1.1 Calculate the expected voltage $\langle u(t) \rangle$, where $\langle \rangle$ is the average over multiple repetitions or over a population of neurons having the same dynamics and inputs.

1.2 Calculate the variance of the potential across multiple repetitions: $Var[u](t) = \langle [u(t) - \langle u(t) \rangle]^2 \rangle$.

Exercise 2: Diffusive noise (stochastic spike arrival)

Consider a passive membrane receiving stochastic synaptic input $S(t) = \sum_f \delta(t - t_k^f)$, where the index f runs over the firing times of a presynaptic neuron. The spike train starts only at t = 0, so that $t_k^f > 0$ for all firing times. The membrane potential obeys the equation:

$$\frac{du}{dt} = -\frac{u - u_{\text{rest}}}{\tau} + \frac{q}{C}S(t).$$
(6)

where q is the charge brought by each spike and C is the capacitance of the membrane. The solution to this equation writes:

$$u(t) = u_{rest} + \frac{qR}{\tau} \int_0^t \exp(-s/\tau) S(t-s) ds$$
(7)

2.1 Calculate the expected voltage $\langle u(t) \rangle$ as a function of t for a constant presynaptic rate $\langle S(t) \rangle = \nu$ for $t \ge 0$ ($\nu = 0$ for t < 0). Where $\langle \rangle$ is the average over multiple repetitions or over a population of

neurons having the same dynamics and inputs.

2.2 Calculate $\langle u(t)^2 \rangle$. Assume that the spike times of the presynaptic neuron are uncorrelated, i.e., $\langle S(t)S(t') \rangle = \nu \delta(t-t') + \nu^2$, and use Eq. 7.

2.3 Calculate the variance of the potential across multiple repetitions: $Var[u](t) = \langle [u(t) - \langle u(t) \rangle]^2 \rangle$.

Homework:

2.4 Calculate the autocorrelation of the voltage $\langle u(t)u(t') \rangle$ in the steady state regime (replace the upper bound of the integral by ∞ in equation 7).

2.5 Suppose that there are two presynaptic neurons which fire independently with rates $\nu_1 = \langle S_1(t) \rangle$ and $\nu_2 = \langle S_2(t) \rangle$, such that the input to the postynaptic neuron is given by $w_1S_1(t) + w_2S_2(t)$ where w_i denote the synaptic weights. Calculate again the mean and autocorrelation of the voltage.

2.6 Redo question 2.5 with correlated spike trains $S_1(t) = S_2(t)$.

Exercise 3: Firing statistics

Consider a stochastic spike generation process in discrete time. The probability of generating a spike in a time Δt is $P_{\Delta t} = \nu \Delta t$. Hence when we take the limit of Δt to 0 the expected value of the quantity $S(t) = \sum_{f} \delta(t - t_k^f)$ is:

$$\langle S(t) \rangle = \lim_{\Delta t \to 0} \frac{P_{\Delta t}(t)}{\Delta t} = \nu \; ; \; \text{for} \; t > 0$$

Consider the probability of having two spikes in different time bins around t and t'. Define $\langle S(t)S(t')\rangle$ in a similar fashion, and show that it is equal to $\nu\delta(t-t') + \nu^2$.

Exercise 4: Renewal process

We consider a neuron with relative refractoriness. Given an output spike at time \hat{t} , the probability of firing is given by

$$\rho(t - \hat{t}) = \begin{cases} 0 & \text{for } t - \hat{t} < t_{\text{abs}} \\ [t - \hat{t} - t_{\text{abs}}] \frac{\rho_0}{2} & \text{for } t_{\text{abs}} < t - \hat{t} < t_{\text{abs}} + 2 \\ \rho_0 & \text{otherwise.} \end{cases}$$
(8)

Calculate the survivor function and the interval distribution.