10: (N)MR spectroscopy

- How can the Bloch equations be used to describe the 1. effect of T_1 on the magnetization ?
- How can sensitivity be optimized ? 2.
- 3. What nuclear property allows to distinguish the signal from different molecules ?
- How is chemical shift measured? 4.
- What can MR spectroscopy measure ? 5.

After this week you

- 1. can calculate the effect of multiple RF pulses on longitudinal magnetization
- 2. know the definition of Ernst angle
- 3. Understand the two basic mechanisms by which electrons influence the precession frequency of nuclear magnetization
- 4. Know the definition of chemical shift
- 5. Know how and under what molecular conditions NMR spectroscopy can provide non-invasive biochemical information

10-1

Fund Biolmag 2019

10-1. What is the effect of relaxation on M(t)? Bloch equations revisited

Fund BioImag 2019

What are the optimal conditions to measure T₁? Inversion recovery

10-2. When is SNR (sensitivity) optimal ?

Fund Biolmag 2019

How does the signal depend on TR, T_1 and flip angle ? Ernst Angle α_{E}

10-3. What role does the chemical environment play? Chemical shift: Effect of B₀ on e-cloud

How is chemical shift δ linked to electronegativity ? Example: Protons

10-4. How can we measure chemical shift ? MR spectroscopy

Ex. illustration of chemical proximity (triplet & quartet)

Fund Biolmag 2019

10-5. What can MR spectroscopy measure ?

Induced emf ζ depends on RF coil size (Lesson 9) 10-13

Fund Biolmag 2019

How can the huge water signal be suppressed in ¹H NMR ?

Ex. Proton spectroscopy of the brain

Biochemical compounds detectable in vivo

How can biochemical compounds be measured in vivo ? Analysis of ¹H NMR spectroscopy of the brain

