1: Introduction to the course

- How is the course organized ?
- 1. What is Bio-imaging ?
- 2. How can SNR and CNR be optimized ?
- 3. What is the importance of biomedical imaging ?
- 4. Examples
- Tour of the Imaging Centre (CIBM)

After this course you

- 1. know the course organization and coverage of topics;
- 2. know the contribution of bio-imaging to life science and why it is an interdisciplinary effort.
- 3. know the main elements required for bio imaging;
- 4. are able to perform contrast to noise and signal to noise calculations;
- 5. are familiar with noise error propagation calculations

Fund Biolmag 2019

1-1

How is the course organized ?

Course **web site** (moodle, physics, master): moodle.epfl.ch/course/view.php?id=250 If you are not enrolled yet : Enrollment key = bioimaging19 **Copies** of parts of the presentation Will be provided on moodle (pdf) Please take notes during lecture !!

Exercises (Fri 15:15 CE 104):

Handed out by assistant on day of lecture Available on moodle Solution of selected problems of prior week

If you miss a course ...

The course given was filmed and is available on youtube the link is provided on moodle for each lecture

Fund BioImag 2019

What is the content of this course ?

Theme	Elements	
Introduction (Lectures 1-2)	Definition and importance of bio-imagir Ultrasound imaging Basis of x-ray imaging	ng
X-ray imaging (Lectures 3-7)	Interactions of photons with matter/Rad X-ray imaging (computed tomography) Emission computed tomography Positron emission tomography Tracer dynamics	dioprotection Links Life science @ EPFL Systems and signals
Magnetic resonance I Basics (Lectures 8-10)	Basis of magnetic resonance effect T_1 and T_2 relaxation Spectroscopy Echo formation	Image processing Mathematical and computational models in biology Physics
Magnetic resonance II Advanced topics and contrast mechanisms (Lectures 11-13)	Elements of image formation Biophysics of BOLD Contrast agents Diffusion tensor imaging	Neural networks and biological modeling Classical electrodynamics

Fund Biolmag 2019

What supplemental reading/material is

recommended ?

I will provide pdf versions of the lecture on moodle

Handouts without your personal notes will not be complete.

To complete the Handouts

- 1. personal notes during course
- 2. incorporate insights gained during exos

Course text:

Andrew Webb

"Introduction to biomedical imaging" (250p. ~EUR 110, available as ebook at the library EPFL)

USD 60+ on amazon.com

- Is more complete on MRI
- Excellent reference text for later use

Fund BioImag 2019

For a shorter text: Penelope Allisy-Roberts, Jerry Williams "Farr's Physics for Medical Imaging" (200p., small, ~EUR 50)

USD 30+ on amazon.com

A lot of focus on simple x-ray (not covered in the course)

Other Text books

- Zhang-Hee Cho, Joie J. Jones, Manbir Singh "Foundations of Medical Imaging"
- William R. Hendee, E. Russel Ritenour "Medical Imaging Physics"
- Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholt, John M. Boone
 "The Essential Physics of Medical Imaging"

1-3

1-1. What is Biomedical Imaging ?

What is the difference between signal-to-noise and contrast-to-noise ratio ?

To obtain good measurements (not only in imaging) we need good signal to noise ratio

Definition

Signal-to-noise ratio (SNR)

S: signal (or measurement variable)

 $\sigma{:}$ standard deviation of its measurement (either determined experimentally (how?) or estimated quantitatively)

$$SNR = \frac{S}{\sigma}$$

SNR provides a means to estimate the precision with which the signal S is measured

It is possible to have excellent SNR but no CNR (when?)

Fund Biolmag 2019

To discriminate two signals S_1 and S_2 we need more than just good signal to noise ratio. The ability to discriminate the two is assessed using the contrast to noise ratio

Definition

Contrast-to-noise ratio (CNR)

 ${\rm S}_1$ and ${\rm S}_2$: two signals (or measurement variable) of two different tissues,

 σ : standard deviation of their measurement (see left, assumed here to be identical and statistically independent)

$$CNR = \frac{S_1 - S_2}{\sigma}$$

CNR provides a means to estimate the precision with which the signal $S^{}_{\rm 1}$ can be discriminated from $S^{}_{\rm 2}$

1-2. How can we optimize SNR ?

It is possible to optimize SNR by performing N repeated measurements S_i .

The precision of the average $\langle S \rangle = \sum S_i / N$ depends on the **square root law** (4 measurements improve the precision by twofold):

 $S_i = S + \varepsilon_i$

where $<\varepsilon_i^2 >= \sigma^2$, $<\varepsilon_i >= 0$.

S is the true signal (unknown)

<S>=ΣS_i/N=S+Σε_i/N

$$\Delta S \equiv \langle S \rangle - S = \frac{\sum \varepsilon_i}{N} \int \Delta S^2 = \frac{\left(\sum \varepsilon_i\right)^2}{N^2} \dots$$

 $\langle \varepsilon_{i}\varepsilon_{j}\rangle = 0, \ i\neq j$ $\Delta S^{2} = \frac{\left(\sum_{i}\varepsilon_{i}^{2}\right)}{N^{2}} + \frac{\left(\sum_{i\neq j}\varepsilon_{i}\varepsilon_{j}\right)}{N^{2}}$ $\left\langle \Delta S^{2}\right\rangle = \frac{\sum\left\langle \varepsilon_{i}^{2}\right\rangle}{N^{2}} = \frac{N\sigma^{2}}{N^{2}} = \frac{\sigma^{2}}{N}$

 $\left<\Delta S\right> = \frac{\sigma}{\sqrt{N}}$

This is well-known from statistics (SEM) \Rightarrow results in increased measurement time

Fund Biolmag 2019

1-8

How can we optimize CNR?

1-3. What is the importance of Bio-Imaging ?

Life Sciences are unthinkable without Bio-Imaging

Assessment of biological processes with minimal perturbation of the system

What are essential ingredients of bio-imaging ?

Fund BioImag 2019

What is the perfect imaging modality ?

Fund Biolmag 2019

1-13

What are the distinct advantages of Bio-imaging compared to tissue analysis ?

Imaging advantages

relative to histology or invasive tissue analysis

1.Rapid acquisition of the information

2.Non-destructive, i.e. minimal perturbation

- 3.In situ or in vivo
- 4.Repetitive (longitudinal) studies possible

1-14

Examples: Biomedical Imaging

http://nobelprize.org/educational_games/physics/imaginglife/narratives.html

3D rendering of tumor for surgical planning (MRI)

fMRI of whole brain activation

Fund Biolmag 2019

Metastasis localization (PET)