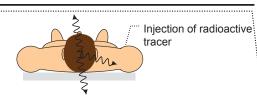
5: Emission (Computed) Tomography

- 1. What is a tracer?
- 2. Why is collimation necessary and what are its consequences?
- 3. How are the effects of attenuation taken into account?
- 4. What is the principle of x-ray detection? scintillation
- 5. How are scintillation photons converted to an electrical signal?
- 6. How can scattered photons be eliminated ?

After this course you

- 1. Understand the reason for collimation in imaging γ -emitting tracers and its implication on resolution/sensitivity
- 2. Understand the implications of x-ray absorption on emission tomography
- 3. Understand the basic principle of radiation measurement using scintillation
- 4. Are familiar with the principle/limitations of photomultiplier tube amplification
- 5. Understand the use of energy discrimination for scatter correction


Fund Biolmag 2019

5_1

What is Emission Computed Tomography?

Until now: CT and x-ray imaging measure attenuation of incident x-ray

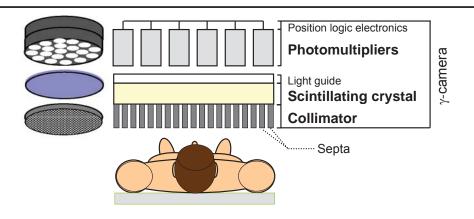
Emission tomography: X-rays emitted by exogenous substance (tracer) in body are measured

Two issues:

- How to determine directionality of x-rays?
- 2. Absorption is undesirable

What is a tracer?

Exogenously administered substance (infused into blood vessel) that

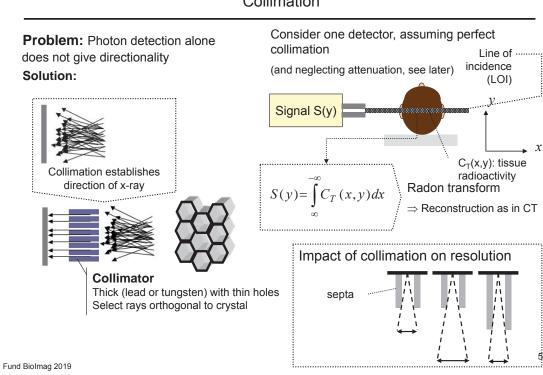

- (a) alters image contrast (CT, MRI)
- (b) has a unique signal (γ **emitting**)
- -> Emission computed tomography

Typical tracers for emission tomography half-life and photon energies

	[h]	[keV]
^{99m} Tc	6	140
²⁰¹ TI	73	70
123	13	159
¹³³ Xe	0.08	81

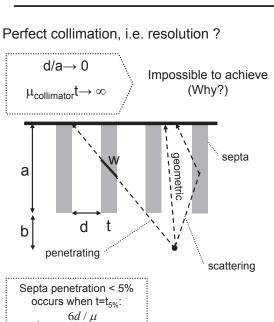
5-4

What are the basic elements needed for γ -emitter imaging ?

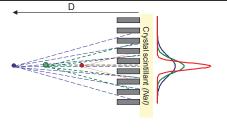


Fund Biolmag 2019

5-2. How can directionality of x-rays be established?


5-5

Collimation



How does collimation affect resolution?

It's never perfect ...

Signal measured from a homogeneous

Collimator resolution:

Two objects have to be separated by distance >R

$$R = \frac{d(a_e + b)}{a_e}$$

$$a_e = a - 2 / \mu$$
(a_e: imperfect septal absorption)

Price of collimation (resolution)? Sensitivity!

5-7

5-3. How to deal with attenuation of the emitted x-rays? result of x-ray absorption in tissue

Attenuation T sphere $(C_T(x,y)=constant)$ 1.depends on object dimension and source location (D=f(object)) Intensity distortion: Cause? $n(D) = N_0 e^{-\mu D}$ Consider point source: T=0.46 Attenuation depends on D

2. Photon energy

 $\mu = f(E_v)$

location of source in tissue

Fund Biolmag 2019

^{99m}Tc in H₂O

 $\mu_{water}\overline{(140\overline{keV})} = 0.16\,cm^{-1}$

 $\vdots HVL = 0.693/\mu \cong 4.5cm$

Fund Biolmag 2019

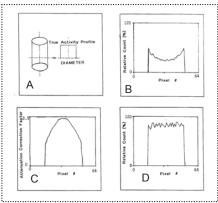
What are the basic steps in attenuation correction?

correction

Corrected image

Attenuation correction procedure

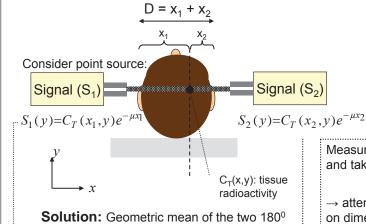
- A. Estimated object geometry and estimated $\mu(x,y)$ or measured $\mu(x,y)$
- B. Transmission loss : $T(projection) = f(\mu(object), projection)$
- C. Attenuation correction A(x,y)=1/T(x,y)
- D. Corrected $C_{corr}(x,y)=A(x,y) C(x,y)$


Problem is prior knowledge needed for A (i.e. $\mu(x,y)$)

applied!

Attenuation correction rarely

A(x,y) of thorax



Fund Biolmag 2019

How to simplify attenuation correction?

by measuring at 1800 using geometric mean

Problem: Spatial dependence of correction

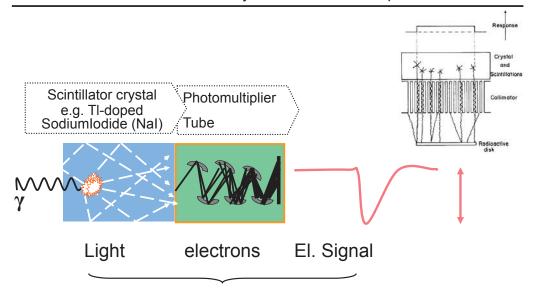
emission tomography for focal uptake (i.e. uptake limited to a specific region)

Measure at 180^o simultaneously and take the geometric mean

→ attenuation correction depends only on dimension of object along the measured Radon transform

$$\sqrt{S_1 \cdot S_2} = \sqrt{C_T(x_1, y)e^{-\mu x_1}C_T(x_2, y)e^{-\mu x_2}}$$

$$=C_T(x,y)\sqrt{e^{-\mu(x_1+x_2)}} = C_T(x,y)\sqrt{e^{-\mu D}}$$
 (D = x₁ + x₂)


Fund Biolmag 2019

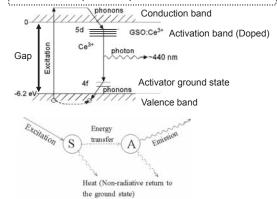
opposite signals:

5-10

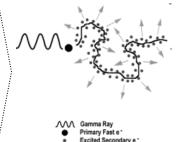
5-4. What is the principle of x-ray detection?

Collimation, followed by scintillation and amplification

γ-energy ∞ # scintillation photons ∞ Signal


Fund Biolmag 2019

5-11


What is Scintillation?

Sequence of events in scintillation crystal

- 1. Atom ionized by Compton interaction \rightarrow Electron-hole pair
- 2. Hole ionizes activator, electron falls into activator
- Activator is deactivated by emission of Photons (10⁻⁷ sec)

Fund Biolmag 2019

Efficiency of scintillators

 $\eta \equiv \frac{\text{energy of scintillation light}}{\text{energy deposited}} \propto \frac{Tq_a}{W_{e-h}}$

T = energy transfer efficiency from excited ion to luminescence centre

q_A= quantum efficiency of luminescence centre

W_{e-h} = energy required to create one electron-hole pair

. 5-12

What elements characterize scintillation materials?

Overview of some crystals

			:					
Scintillator	Density (g/cm³)	Attenuation Coefficient (cm ⁻¹ @ 511 keV)	Light yield ph/keV	λ (nm)	τ (ns)	Z _{eff}	Refr. Index	Yield
CdWO ₄	7.90	0.886	19	495	~104			
$Bi_4Ge_3O_{12}$	7.13	0.964	8,	480	300	73	2.15	13%
(Y,Gd)2O3:Eu,Pr	5.9	0.503 - 0.637	19	610	$\sim 10^{6}$			
Gd ₂ O ₂ S:Pr,Ce,F	7.34	0.786	40	510	$\sim 10^{3}$			
NaI:T1	3.67	0.343	40	415	230	51	1.85	100%
Gd ₂ SiO ₅ :Ce	6.71	0.704	7,	430	300	59		
Lu₂SiO₅:Ce	7.4	0.869	30	420	40	66		79%
LuAlO3:Ce	8.34	0.956	11	365	~17			
LuPO ₄ :Ce	6.53	0.735	17	360	25			

Requirements for scintillator

High yield

Good linearity

Small time constant τ

Transparent for scintillation light λ

good mechanical properties

Refraction index close to 1.5

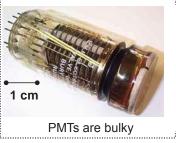
Fund Biolmag 2019

Most of the energy of the x-ray is lost as heat (to lattice), see

e.g. Nal(140keV)=40·140

=5600 photons at λ≅400nm

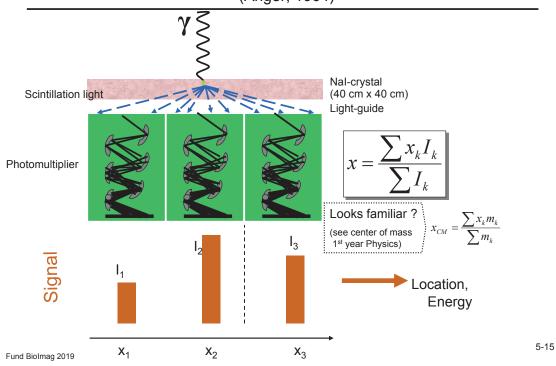
 E_{400nm} [keV]=hc/ λ = 1.2/ λ [nm] =1.2/400 keV=3eV


<20keV

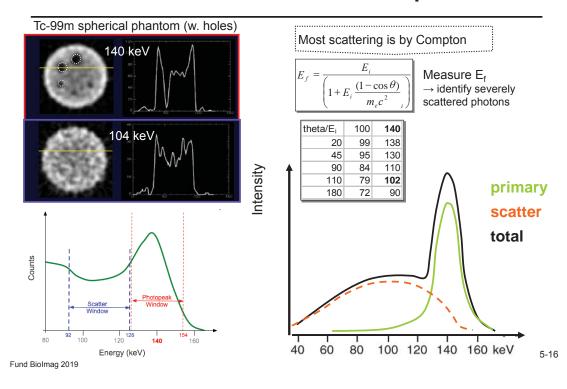
or <120eV/keV

5-13

5-5. How is the scintillation light converted to an electrical signal? Photomultiplier tube (PMT) -Noiseless amplification

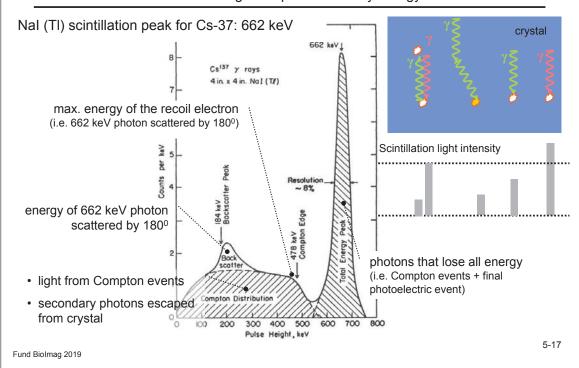

How to increase resolution beyond PMT dimensions?

Scintillator crystal


Fund Biolmag 2019

How to improve the spatial resolution of PMT?

(Anger, 1964)



5-6. How to discriminate scattered photons?

What processes contribute to the Scintillation light spectrum?

scintillation signal depends on x-ray energy

SPECT summary

Single Photon Emission Computed Tomography

- Measurement of single photon emitters injected into subject
- Collimation ensures x-ray directionality (⇒ backprojection)
- 3. Absorption is undesirable
- 4. Photon energies comparable to CT
 - \Rightarrow SPECT-CT