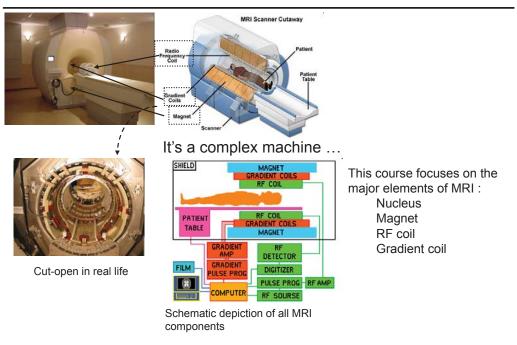
8: Introduction to Magnetic Resonance


- 1. What are the components of an MR scanner ?
- 2. What is the basis of the MR signal ?
- 3. How is nuclear magnetization affected by an external magnetic field ?
- 4. What affects the equilibrium magnetization ?
- 5. How do we best describe the motion of magnetization (in the rotating frame of reference) ?

After this week you

- 1. Are familiar with the prerequisites for nuclear spin
- 2. know the factors determining nuclear magnetization
- 3. Can compare magnetizations for different nuclei and magnetic field
- 4. Know the equation of motion for magnetization
- 5. Are able to describe the motion of magnetization in lab and rotating frame
- 6. Understand that MRI has complex mechanisms

Fund BioImag 2019

8-1. What are the essential components of an MRI scanner ?

Fund BioImag 2019

8-1

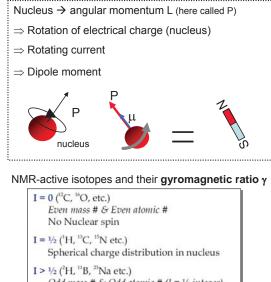
What are the risks of the scanner being never off ?

Superconducting wires cooled to IHe temperature (4K)

Current stays for 1000 years ...

It's a powerful magnet ...

Magnetic field B₀ [unit: Tesla, T]


Earth's magnetic field ~ 5 10⁻⁵ T Electromagnets < 1.5 T MRI 1-7 T

Fund Biolmag 2019

8-6

8-2. What is the basis of Nuclear Magnetism ?

Classical and quantum-mechanical view

Odd mass # & Odd atomic # (I = ½ integer) Even mass # & Odd atomic # (I=whole integer) Ellipsoidal charge distribution in nucleus gives quadrapolar electric field

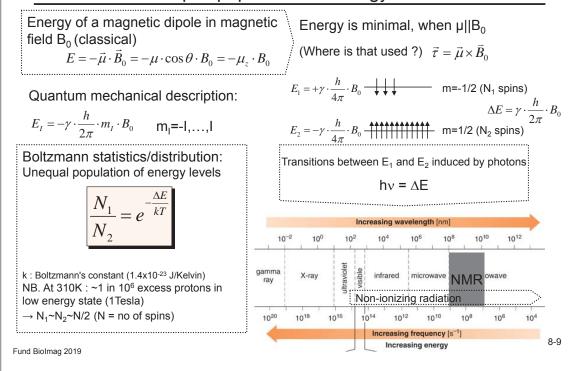
Fund BioImag 2019

Magnetic moment μ of individual spin in induction field $\mathsf{B}_{\mathsf{o}}\ \vec{\mu}=\gamma\vec{P}$

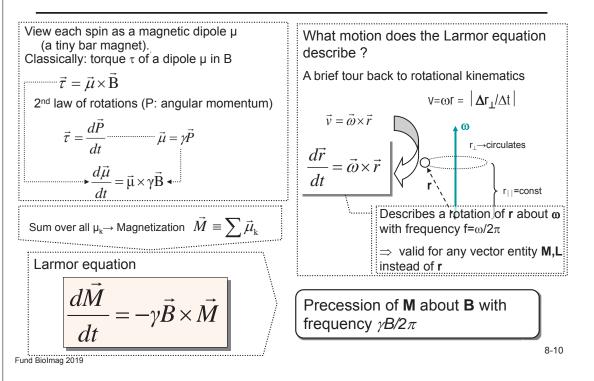
γ: gyromagnetic ratio (empirical constant)

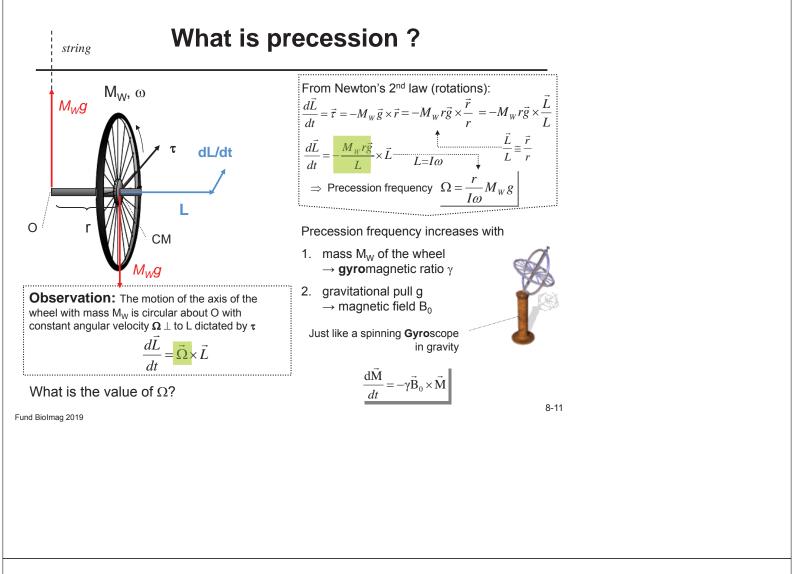
The angular momentum P of a nucleus is quantized: -I, -I+1, ... I-1, I D, has 2L is 4 unless (m)

+3/2

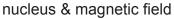

+1/2

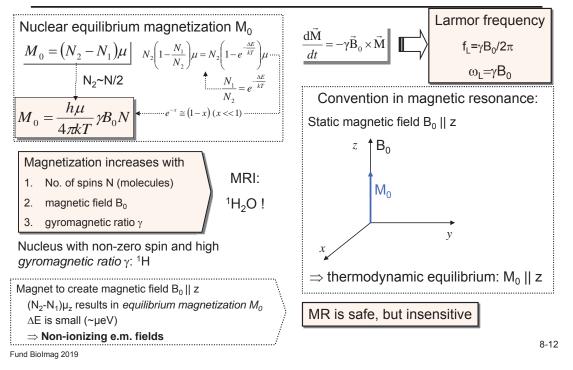
$$P_z$$
 has $z_1 + 1$ values (iii).
 $P_z = \frac{h}{2\pi} \cdot m_I$

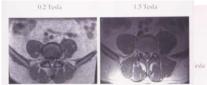

$$\vec{P} = \frac{h}{2\pi} \cdot \sqrt{I \cdot (I+1)}$$

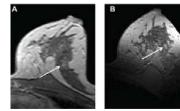

Isotope	Net Spin (I)	gyromagnetic ratio γ/2π [MHz T ⁻¹]	Abundance / %	
¹ H	1/2	42.58	99.98	
² H	1	6.54	0.015	
³¹ P	1/2	17.25	100.0	
²³ Na	3/2	11.27	100.0	
¹⁵ N	1/2	4.31	0.37	
¹³ C	1/2	10.71	1.108	
¹⁹ F	1/2	40.08	100.0	8-8

What is the basis for nuclear magnetization ? Unequal population of Energy levels




8-3. How to classically describe the motion of magnetization ?


8-4. What are the essentials of Magnetic Resonance ?

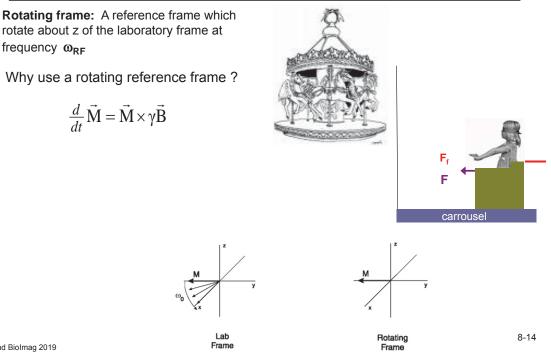

How can the sensitivity be increased ?

magnetic field strength B₀

MRI of the lower abdomen

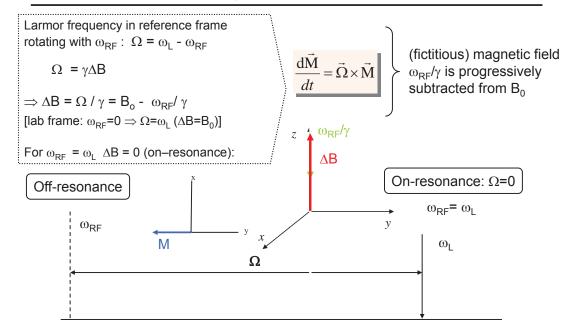
MRI of the spine

MRI of the breast (1.5 vs 3 Tesla)

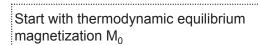

http://medicalphysicsweb.org/cws/arti cle/research/38414

maximum possible MR signal: determined by equilibrium nuclear magnetization M₀

8-13


Fund Biolmag 2019

8-5. Why use a Rotating frame of reference to describe the motion of magnetization ?


What is the equation of motion for magnetization in the rotating reference frame ?

Fund Biolmag 2019

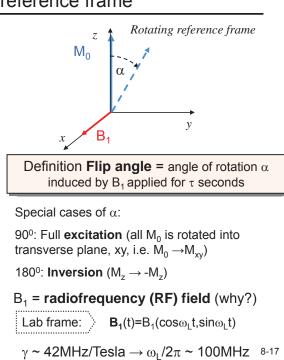
8-16

Ex. Flipping magnetization over in the rotating reference frame

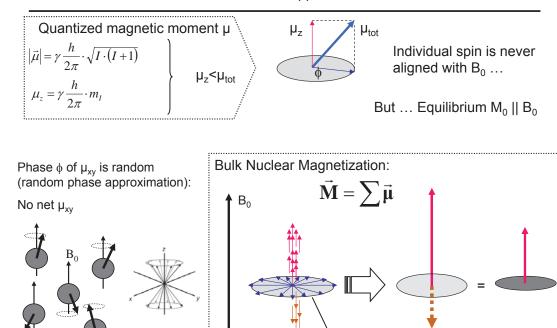
Reference frame rotating with ω_L (on-resonance)

Apply *additional,* constant magnetic field with magnitude B_1 (in xy plane) for time τ

What motion can be observed for M?


 $\frac{dM}{dt} = -\gamma \vec{B}_1 \times \vec{M}$ M₀ precesses about B₁

Magnetization rotates about B_1 with angular velocity γB_1


Frequency $\gamma B_1/2\pi$

 \rightarrow period T = $2\pi/\gamma B_1$

Fund Biolmag 2019

Supplement: Why there is only equilibrium magnetization along B₀ ? Random Phase approximation

Phase of μ_{xy}

8-18

Fund Biolmag 2019