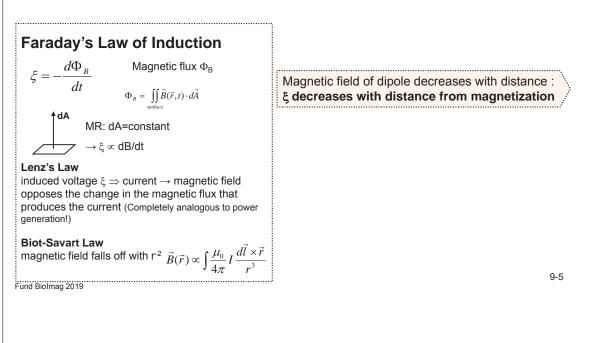
9: Relaxation of nuclear magnetization

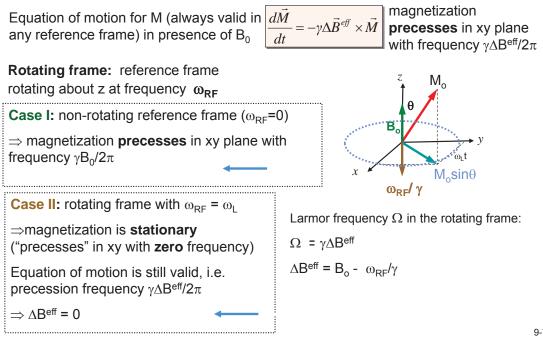
- 1. How is the MR signal detected ?
- 2. What is the quantum-mechanical equivalent of the rotating frame ?
- 3. What is the rotating frame description good for ?
- 4. How can the return of the magnetization to thermodynamic equilibrium described ?
- 5. How is the time-dependent change of magnetization described mathematically ?

After this course you

- 1. Can describe the principle of MR detection and excitation
- 2. Can explain how MR excitation is frequency selective (resonance)
- 3. Understand the principle of relaxation to the equilibrium magnetization
- 4. Know what are the major relaxation times and how they phenomenologically affect magnetization in biological tissue, in particular that of water.
- 5. Can explain the elements of the Bloch equations and FID
- 6. Understand the MR contrast strongly depends on experimental parameters


9_1

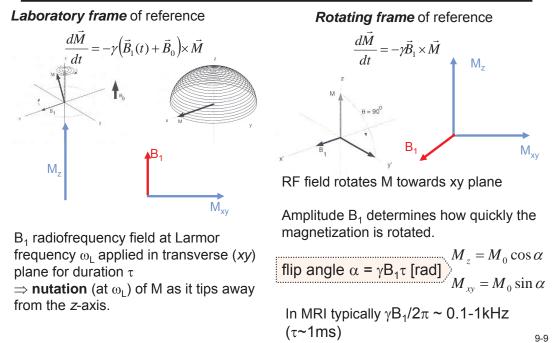
Fund BioImag 2019


What do we know about MR so far ?

Need:	Get:
Nucleus with non-zero spin	Nuclear (equilibrium) magnetization M_0
Magnetic field B ₀	(Magnitude dictated by Boltzmann distribution)
	M ₀ increases with
	1. Number of spins in voxel
	2. Magnetic field B ₀
	3. Gyromagnetic ratio γ
	Imaging ¹ H in H ₂ O is most sensitive
Thermodynamic equilibrium magnetization M_0 is B_0	$\frac{d\vec{M}_0}{dt} = \vec{M}_0 \times \gamma \vec{B}_0 = 0 \qquad M_0 \text{ does not precess}$
All this doe	s not generate a measurable signal
Fund Biolmag 2019	9-4

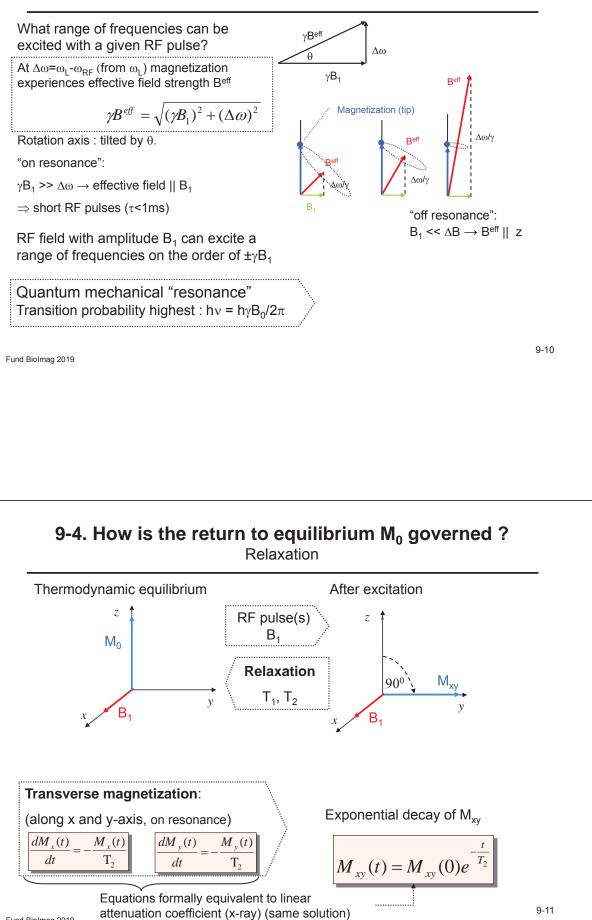
9-1. How is the MR signal detected ?

9-2. Rotating frame revisited


Fund BioImag 2019

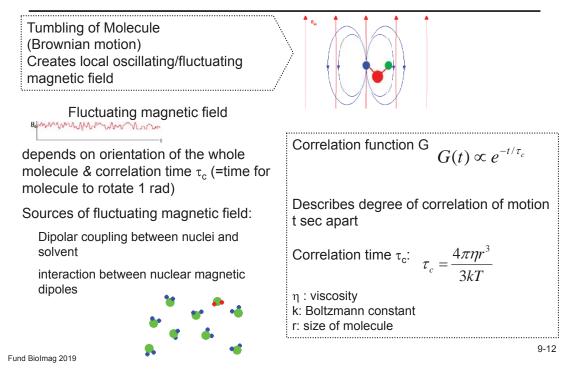
Supplement: Rotating frame What are the quantum-mechanical equivalencies ?

Schrödinger representation:

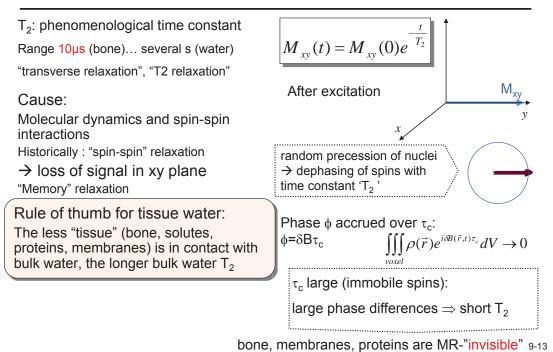

$$i\hbar \frac{d}{dt} |\psi_{s}(t)\rangle = H_{s} |\psi_{s}(t)\rangle$$
If H_s=const in t: $|\psi_{s}(t)\rangle = e^{-iH_{s}t/\hbar}$
NB. $\langle I_{z}\rangle \equiv \langle \psi_{s}(t)|I_{z}|\psi_{s}(t)\rangle$
How to determine $$ etc ?
 \Rightarrow Split H_s into time-invariant and -dependent terms: $i\hbar \frac{d}{dt} |\psi_{s}(t)\rangle = [H_{s}^{0} + V(t)]\psi_{s}(t)\rangle$
Interaction representation
(Higher order perturbation theory)
 $|\psi_{I}(t)\rangle \equiv e^{iH_{s}^{0}t/\hbar}|\psi_{s}(t)\rangle$
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}$
Furd Bloimag 2019
Schrödinger representation:
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}$
Further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}$
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}$
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}$
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = e^{iH_{s}^{0}/\hbar}V_{s}(t)e^{-iH_{s}^{0}/\hbar}$
 $i\hbar \frac{d}{dt} |\psi_{I}(t)\rangle = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t) = V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t)|\psi_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t)|\psi_{I}(t)|\psi_{I}(t)\rangle$
 $further determine 2V_{I}(t)|\psi_$

9-3. What is the motion of magnetization when an RF field induces a flip angle ?

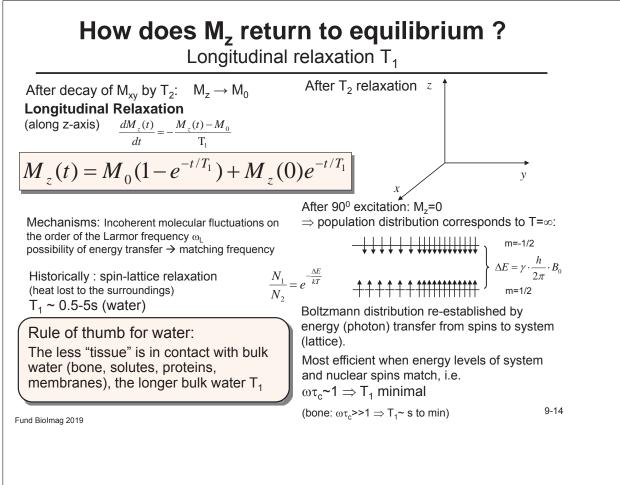
Fund Biolmag 2019



Fund Biolmag 2019

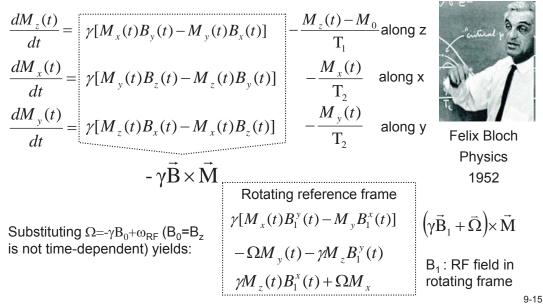

9-11

What are the mechanisms of relaxation ?



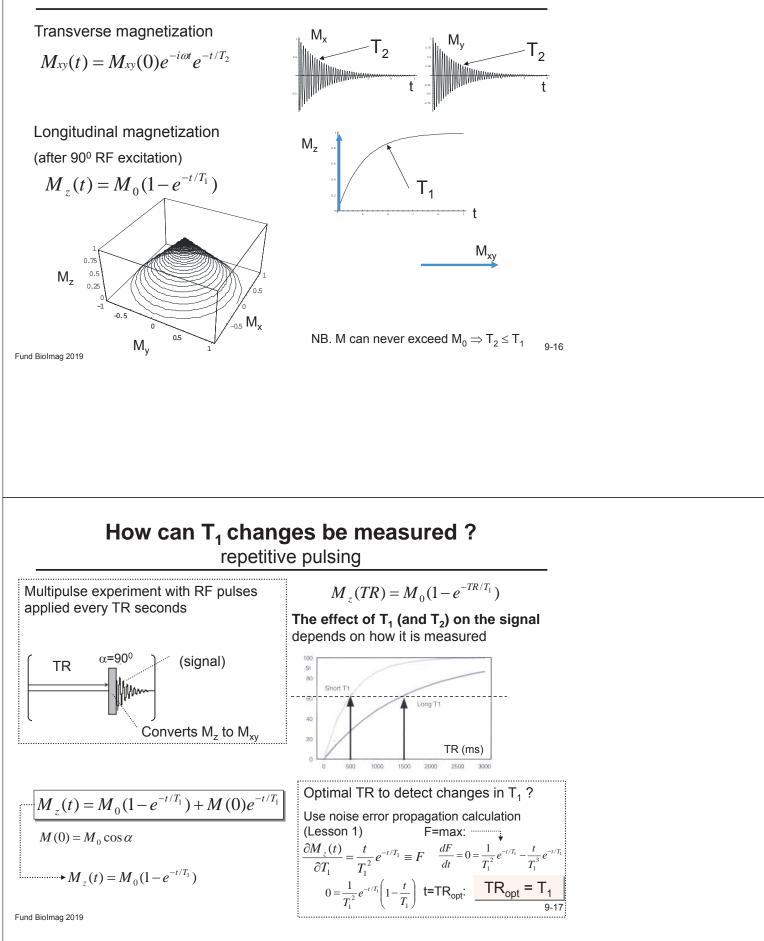
What is the cause of loss of transverse Magnetization ?

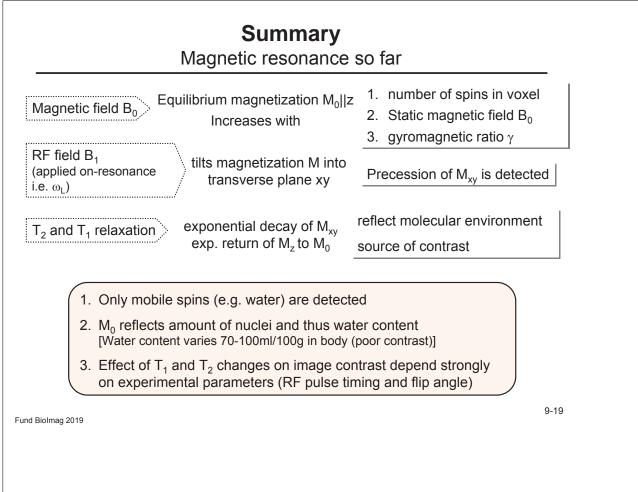
fluctuating microscopic magnetic fields δB



Fund BioImag 2019

9-5. What equations describe the change in magnetization ? Bloch Equations


add relaxation terms (T_1, T_2) to the fundamental Eq of motion of magnetization:



Fund BioImag 2019

What characterizes the basic MR signal ?

Free induction decay: Precession and relaxation (after RF pulse)

