Final exam—Financial Econometrics Professor: Florian Pelgrin _{June 2014}

LAST, first name:

Hereby I confirm that during the exam I complied with the EPFL honor code

Signature:_____

- Write as clearly as possible. Short and precise answers are preferred.
- The percentage for each exercise (grading) is just an indication.
- Hand in the exam in 3 hours.
- The exam is closed book, closed notes.
- Scientific calculators are not allowed.
- You must turn in all sheets at the end of the exam, including any scratch paper. All exam questions must be returned.
- Do not hesitate to use intermediate results!

Exercise 1: Multiple questions ($\simeq 25\%$ -30%)

Answer the following questions. All questions must be justified.

1. A strongly stationary stochastic process is always a weakly stationary stochastic process: <u>Answer</u>:

 \Box TRUE \Box FALSE

 2. The first partial autocorrelation coefficient of a fundamental AR(p) stochastic process equals the first autocorrelation.
 Answer :

 \Box TRUE \Box FALSE

3. Let $(X_t)_{t\geq 0}$ denote the stochastic process defined by:

$$X_t = X_{t-1} + \epsilon_t$$

where ϵ_t is a weak white noise $(0, \sigma_{\epsilon}^2)$, and X_0 is a (real-valued) random variable that is uncorrelated with $\epsilon_1, \dots, \epsilon_t$ (for t > 0). Determine $\mathbb{C}ov(X_t, X_s)$.

 $\underline{\text{Answer}}$:

- $\Box \ \mathbb{C}ov(X_t, X_s) = \mathbb{V}(X_0) + t\sigma_{\epsilon}^2 \text{ for all } (t, s)$ $\Box \ \mathbb{C}ov(X_t, X_s) = \mathbb{V}(X_0) + s\sigma_{\epsilon}^2 \text{ for all } (t, s)$ $\Box \ \mathbb{C}ov(X_t, X_s) = \mathbb{V}(X_0) + (t s)\sigma_{\epsilon}^2 \text{ for all } (t, s)$ $\Box \ \mathbb{C}ov(X_t, X_s) = \mathbb{V}(X_0) + (s t)\sigma_{\epsilon}^2 \text{ for all } (t, s)$
- \Box None: What is the solution?
- 4. Suppose that one observes the daily returns of some financial assets. What are the main stylized facts on financial markets for daily returns? Explain carefully.

5. A weak white noise process (ϵ_t) is defined by

- (i) $\mathbb{E}[\epsilon_t] = 0$ for all t;
- (ii) $\mathbb{V}[\epsilon_t] = \sigma_{\epsilon}^2 < +\infty$ for all t;
- (iii) $\mathbb{E}[\epsilon_t \epsilon_{t+k}] = 0$ for k > 0 and t is fixed.

 $\underline{\text{Answer}}$:

\Box TRUE \Box FALSE

- 6. How can one define historical conditional volatility? Provide definition(s) and comment.
- 7. Consider the following ARCH(2) specification

$$r_t = \mu + \epsilon_t$$

$$\epsilon_t = \sigma_t Z_t$$

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2$$

where r_t is the daily return of a given asset and $Z_t \sim \text{i.i.d.} \mathcal{N}(0, 1)$.

- (i) Comment the different equations.
- (ii) Determine the equivalent (weak) ARMA(p,q) representation for (ϵ_t^2) .
- (iii) Find the conditional variance and unconditional variance of r_t .
- 8. The daily volatility can be characterized by r_t^2 and $|r_t|$. The two series have the same statistical properties:

$$\Box$$
 TRUE \Box FALSE

- 9. One considers a portfolio with n assets with expected returns $(\mathbb{E}(R_1), \cdots, \mathbb{E}(R_n))^{\top}$ and variance-covariance matrix Σ . The vector of weights is given by $w = (w_1, \cdots, w_n)^{\top}$.
 - Write the standard mean-variance portfolio problem.
 - How many inputs does one need to solve the problem? Explain carefully.
 - How can one reduce the number of inputs? Provide a detailed example.

10. Consider three returns (SP&500, DAX and FT) at different frequencies (daily, weekly and monthly). For each return, a GARCH(1,1) model is estimated and Table 1 reports the results. Comment Table 1 (significance of coefficients, adequation with frequency, etc).

	S&P500		DA	AX	FT All Shares	
	statistic	std error	statistic	std error	statistic	std error
Daily returns						
ω	0.0074	0.0012	0.0248	0.0031	0.0166	0.0024
α	0.0513	0.0039	0.0910	0.0065	0.0860	0.0063
β	0.9422	0.0042	0.8954	0.0069	0.8996	0.0069
weekly returns						
ω	0.0829	0.0292	0.2369	0.0634	0.1955	0.0557
α	0.1015	0.0165	0.1091	0.0165	0.1063	0.0177
β	0.8872	0.0174	0.8642	0.0195	0.8570	0.0229
Monthly returns						
ω	0.6531	0.4497	3.4344	1.8789	1.5123	1.0000
α	0.1297	0.0419	0.1276	0.0487	0.1217	0.0466
β	0.8444	0.0505	0.7837	0.0817	0.8101	0.0765

Table 1 : Estimation of GARCH models

Exercise 2: Approximations ($\simeq 15\%$ -20%)

Consider the geometric Brownian motion:

$$dX(t) = \theta_1 X(t) dt + \theta_2 X(t) dW(t)$$
$$X(0) = x_0$$

where (W(t)) is a standard Wiener process. Consider *n* observations in the interval [0, T] equally spaced at intervals $h \equiv T/n$.

- 1. Determine the Euler discretization for this stochastic process. Explain carefully.
- 2. Determine the Milstein discretization for this stochastic process. Explain carefully.
- 3. Write a Matlab code for the Euler approximation. Explain.

Exercise 3: Modeling a spread ($\simeq 15\%$ -20%)

Let (spread_t) denote the (monthly) spread between BAA and AAA corporate bonds over the period 1986m4-2007m4 (Figure 1). Let (dspread_t) denote the first difference of the "spread" variable (Figure 2).

Figure 1:

Figure 2:

The autocorrelation function (respectively, partial autocorrelation function) of the variable "spread" is displayed in Figure 3 (respectively, Figure 4) whereas the autocorrelation function (respectively, partial autocorrelation function) of the variable "dspread" is displayed in Figure 5 (respectively, Figure 6). The grey area represents the 95% confidence bands (under the null hypothesis that the (partial) autocorrelation is zero).

Figure 3:

Figure 4:

Figure 5:

Table 2: ACF and PACF of the variable "spread"										
LAGS	1	2	3	4	5	6	7	8	9	10
ACF	0.949	0.893	0.841	0.796	0.753	0.714	0.673	0.630	0.590	0.556
PACF	0.949	-0.160	0.024	0.119	0.048	-0.069	0.032	-0.022	0.075	-0.036
LAGS	11	12	13	14	15	16	17	18	19	20
ACF	0.522	0.489	0.460	0.429	0.399	0.371	0.345	0.319	0.292	0.265
PACF	-0.05	0.018	0.037	-0.090	0.039	-0.003	-0.025	-0.002	-0.039	0.054

Table 2: ACF and PACF of the variable "spread"

- 1. Explain the different steps of the Box-Jenkins methodology.
- 2. Using Figures 1-6 and Table 2, one can conclude that the variable "spread" is nonstationary.

<u>Answer</u>:

 \Box TRUE \Box FALSE

3. Table 3 (respectively, Table 4) provides the information criteria (AIC and SBIC) in the case of the variable "spread" (respectively, "dspread").

23 $\mathbf{p} \setminus \mathbf{q}$ 0 1 4 5Panel A. AIC 0 -21.18-290.11-432.83-518.92-559.83-584.07-654.58-651.32-656.05-654.88-655.09-653.311 2-656.18-654.23-653.02-653.89-655.27-651.453 -654.32-653.82-655.83-653.86-652.24-656.224 -655.96-654.23-653.85-654.45-652.76-650.785-654.53-655.78-652.33-652.75-650.79-648.95Panel B. SBIC 0 -279.51-538.63-559.34-14.11 -418.70-501.251 -640.72-641.91 -636.91-633.68 -630.36 -625.042-642.04-636.57-631.82-629.15-627.00 -619.653 -636.65-632.62-631.10-625.59-620.44-620.88-634.76-629.49-625.59-622.65-617.434 -611.91 5-629.80-627.51-620.53-617.42-611.93-606.55

Table 3: Information criteria for the variable "spread"

$\mathbf{p} \setminus \mathbf{q}$	0	1	2	3	4	5				
	Panel A. AIC									
0	-650.72	-655.30	-653.39	-655.32	-657.58	-655.63				
1	-655.09	-653.32	-651.75	-655.86	-656.90	-656.15				
2	-653.73	-655.79	-656.54	-654.97	-654.08	-654.62				
3	-657.06	-655.90	-654.85	-655.25	-654.45	-654.20				
4	-656.49	-657.36	-655.85	-654.28	-654.56	-652.62				
5	-655.50	-655.93	-655.59	-652.49	-652.62	-650.70				
	Panel B. SBIC									
0	-643.65	-644.70	-639.25	-637.66	-636.38	-630.90				
1	-644.49	-639.19	-634.08	-634.66	-632.17	-627.88				
2	-639.60	-638.12	-635.34	-630.23	-625.81	-622.82				
3	-639.39	-634.70	-630.12	-626.98	-622.65	-622.40				
4	-635.29	-632.63	-627.58	-622.48	-619.23	-613.75				
5	-630.77	-627.66	-623.79	-617.16	-613.75	-608.30				

Table 4: Information criteria for the variable "dspread"

- (i) What ie the intuition behind information criteria? What are the main properties of these two information criteria?
- (ii) The information criteria of Table 3 and Table 4 can be compared to each other. Justify your answer.
 <u>Answer</u>:

\Box TRUE \Box FALSE

- (iii) Which model(s) can be selected? (your answer must be consistent with previous questions).
- 4. Propose a model for the estimation. How can it be improved using the information provided in the exercise? Justify all of your answers.

Exercise 4: Estimation of a continuous stochastic process $(\simeq 30\%-35\%)$

Consider the following trending Ornstein-Uhlenbeck process:

$$dP(t) = (-\theta(P(t) - \mu t) + \mu)dt + \sigma dW(t)$$

where $\theta \ge 0$, $P(0) = p_0$, $t \in [0, +\infty)$, and (W(t)) is a Wiener process. This stochastic differential equation can be rewritten:

$$d(P(t) - \mu t) = -\theta(P(t) - \mu t)dt + \sigma dW(t).$$

Its explicit solution is defined to be:

$$P(t) = \mu t + \exp(-\theta t)p_0 + \sigma \int_0^t \exp(-\theta(t-s))dW(s).$$
(1)

Part I

1. Consider *n* observations in the interval [0,T] equally spaced at intervals $h \equiv T/n$ and let $p_0 = 0$. Let P_k denote P(kh) for $k = 0, \dots, n$. Let ρ denote $\rho = exp(-\theta h)$. Show that Eq. 1 or 1 can be written as:

$$P_k - \rho P_{k-1} - \mu h \left(k - \rho(k-1)\right) = \sigma_\epsilon \varepsilon_k \tag{2}$$

where $\varepsilon_k \sim \text{i.i.d.} \mathcal{N}(0, 1)$ and

$$\sigma_{\varepsilon}^{2} \equiv \mathbb{V}\left[\sigma \int_{(k-1)h}^{kh} \exp(-\theta(kh-s)) dW(s)\right] = \frac{\sigma^{2}}{2\theta} \left(1 - \exp(-2\theta h)\right).$$

- Taking the maximum likelihood estimator of μ, ρ and σ_ε² (say, μ̂, ρ̂ and σ_ε²), How can we obtain the maximum likelihood estimate of θ and σ²? Explain carefully. Hint: Remember the definition of ρ.
- 3. We are now interested in the maximum likelihood estimator of $(\mu, \rho, \sigma_{\varepsilon}^2)^{\top}$. Using Eq. 2, write the likelihood function and then the log-likelihood function.

- 4. Write the necessary first-order conditions.
- 5. Provide a solution for $(\hat{\mu}, \hat{\rho}, \hat{\sigma}_{\varepsilon}^2)^{\top}$. Remark: The estimate of one parameter might depend on the other estimates. For instance, $\hat{\mu}$ might depend on $\hat{\rho}$.
- **Part II** Suppose now that the trend μ is known exactly.
 - 6. Propose an estimate of $(\hat{\rho}, \hat{\sigma}_{\varepsilon}^2)^{\top}$.
 - 7. Determine the second-order conditions.
 - 8. Determine the asymptotic variance-covariance matrix. Notably show that

$$\lim_{n \to \infty} - \mathbb{E} \left[\frac{1}{n} \left. \frac{\partial^2 \ell}{\partial \rho \partial \sigma_{\varepsilon}^2} (.) \right|_{(\hat{\rho}, \widehat{\sigma}_{\varepsilon}^2)} \right] = 0$$

where ℓ is the log-likelihood function.

9. Using the previous question, show that

$$\sqrt{n} \left(\hat{\rho} - \rho \right) \stackrel{d}{\to} \mathcal{N}(0, 1 - \exp(-2\theta h))$$
$$\sqrt{n} \left(\widehat{\sigma}_{\varepsilon}^2 - \sigma_{\varepsilon}^2 \right) \stackrel{d}{\to} \mathcal{N}(0, 2\sigma_{\varepsilon}^4).$$

10. Conclude that (using Questions 2 and 9):

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0,\frac{1}{h^2}\left(\exp(2\theta h)-1\right)\right).$$

Part III Suppose now that $\mu = 0$.

- 11. Show that the estimator of ρ and thus θ can be found by minimizing a quadratic function.
- 12. Show that the corresponding estimator of θ is defined to be:

$$\hat{\theta} = -\frac{1}{h} \ln \left(\frac{\sum_{k} P_{k-1} P_k}{\sum_{k} P_{k-1}^2} \right).$$