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lntroduction

The problem of searching for patterns in data is a fundamental one and has a long and

successful history. For instance, the extensive astronomical observations of Tycho

Brahe in the l6tL century allowed Johannes Kepler to discover the empirical laws of
planetary motion, which in turn provided a springboard for the development of clas-

sical mechanics. Similarly, the discovery of regularities in atomic spectra played a

key role in the development and verification of quantum physics in the early twenti-

eth century. The field of pattern recognition is concerned with the automatic discov-

ery of regularities in data through the use of computer algorithms and with the use of
these regularities to take actions such as classifying the data into different categories.

Consider the example of recognizing handwritten digits, illustrated in Figure i . 1 .

Each digit corresponds to a 28 x 28 pixel image and so can be represented by a vector
x comprising 784 real numbers. The goal is to build a machine that will take such a

vector x as input and that will produce the identity of the digit 0, . . . , 9 as the output.

This is a nontrivial problem due to the wide variability of handwriting. It could be
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2 l.INTRODUCTION also preserve useful discriminatory inforrnation enabling faces to be distinguished

from non-faces. These features are then used as the inputs to the pattetn recognition

algorithm. For instance, the average value of the image intensity over a rectangular

subregion can be evaluated extremely efficiently (Viola and Jones, 2004), and a set of
such features can prove very effective in fast face detection. Because the number of
such features is smaller than the number of pixels, this kind of pre-processing repre-

sents a form of dimensionality reduction. Care must be taken during pre-processing

because often information is discarded, and if this information is important to the

solution of the problem then the overall accuracy of the system can suffer.

Applications in which the training data comprises examples of the input vectors

along with their corresponding target vectors are known as supervisecl learning ptob-

lems. Cases such as the digit recognition example, in which the aim is to assign each

input vector to one of a finite number of discrete categories, are called classification

prôble-r. If the desired output consists of one or more continuous variables, then

the task is called regression. An example of a regression problem would be the pre-

diction of the yield in a chemical manufacturing process in which the inputs consist

of the concentrations of reactants, the temperature, and the pressure.

In other pattern recognition problems, the training data consists of a set of input

vectors x without any corresponding target values. The goal in such wtsupervisecl

learning problems may be to discover groups of similar examples within the data,

where it is called clustering, or to determine the distribution of data within the input

space, known as clensity estinmtion, or to project the data from a high-dimensional

space down to two or three dimensions for the pulpose oT visualiz,(ltiott.

Finally, the techniqu e of reinforcement lecu"ning (Sutton and Barto, 1998) is con-

cerned with the problem of finding suitable actions to take in a given situation in

order to maximize a reward. Here the learning algorithm is not given examples of
optimal outputs, in contrast to supervised learning, but must instead discover them

by a process of trial and error. Typically there is a sequence of states and actions in

which the learning algorithm is interacting with its environmettt. In many cases, the

curent action not only affects the immediate reward but also has an impact on the re-

ward at all subsequent time steps. For example, by using appropriate reinforcement

learning techniques a neural network can learn to play the game of backgammon to a

high standard (Tesauro, 1994). Here the network must learn to take a board position

as input, along with the result of a dice throw, and produce a strong move as the

output. This is done by having the network play against a copy of itself for perhaps a

miliion games. A major challenge is that a game of backgammon can involve dozens

of moves, and yet it is only at the end of the game that the reward, in the form of
victory, is achieved. The reward must then be attributed appropriately to all of the

moves that led to it, even though some moves will have been good ones and others

less so. This is an example of a creclit assigrunenl problem. A general feature of re-

inforcement learning is the trade-off between exploration, in which the system tries

out new kinds of actions to see how effective they are, and exploitation, in which
the system makes use of actions that are known to yield a high reward. Too strong

a focus on either exploration or exploitation will yield poor results. Reinforcement
learning continues to be an active area of machine learning fesearch. However', a
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4 l.INTRODUCTION
sin(2nr) and then adding a small level of random noise having a Gaussian distlib-
ution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the coresponding value tn. By generating data in this way. we are

capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted

by random noise. This noise might arise from intrinsically stochastic (i.e. ran'dom)
processes such as radioactive decay but more typically is due to there being sources

of variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value

C of the target variable for some new value â of the input variable. As we shall see

later, this involves implicitly trying to discover the underlying function sin(2trr).
This is intrinsically a difficult problem as we have to generalize from a finite data

set. Furthermore the observed data are corrupted with noise, and so for a given 1
there is uncertainty as to the appropriate value for f. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise

and quantitative manner, and decision theory, discussed in Section 1.5, allows us to

exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a

simple approach based on curve fitting. In particular, we shall fit the data using a

polynomial function of the form

Figure 1.2 Plot of a training data set o{ ly' :
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1.1. ExamP le: PolYnomial Curve Fitting

where 1rz1 is the orcler of the polynomial, and zr denotes r raised to the power of j.
The polynomial coefficients tus,. . .,'tD^r are collectively denoted by the vector w.
Note that, although the polynomial function a@,w) is a nonlinear function of r, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
moclels and will be discussed extensively in Chapters 3 atd 4.

The values of the coefficients will be determined by fitting the polynomial to the

training data. This can be done by minimizing an error function that measures the

misfit between the function g(r,w), for any given value of w, and the training set

data points. One simple choice of enor function, which is widely used, is given by
the sum of the squares of the errors between the predictions 3t(r', w) for each data

point r, and the corresponding target values l* so that we minimize

rN
E(w) : iD,{vt"",*) - tn}' Q.2)

n:1

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zerc if, and only if, the

o
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Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in

Figure 1.2.

(RMS) error defined by

2E(w.)lN (1.3)

in which the division by l/ allows us to compare different sizes of data sets on

an equal footing, and the square root ensures that .Epys is measured on the same

scale (and in the same units) as the target variable t. Graphs of the training and

test set RMS errors are shown, for various values of M, in Figure 1.5. The test

set error is a measure of how well we are doing in predicting the values of f for
new data observations of r. We note from Figure 1.5 that small values of M give

relatively large values of the test set error, and this can be attributed to the fact that

the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2trr). Values of M in the range 3 < M < B

give small values for the test set error, and these also give reasonable representations

of the generating function sin(2n'r), as can be seen, for the case of M : 3, fuom
Figure 1.4.
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tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible

polynomials with larger values of AI arc becorning increasingly tuned to the random

noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the

data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,

the over-fitting problem become less severe as the size of the data set increases.

Another way to say this is that the larger the data set, the more complex (in other

words more flexible) the model that we can afford to fit to the data. One rough

heuristic that is sometimes advocated is that the number of data points should be

no less than some multiple (say 5 or 10) of the number of adaptive parameters in

the model. However, as we shall see in Chapter 3, the number of parameters is not

necessarily the most appropriate measure of model complexity.

Also, there is something lather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would

seem more leasonable to choose the complexity of the model according to the com-

plexity of the problem being solved. We shall see that the least squares approach

to finding the model parameters represents a specific case of rnaximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problern can be understood as

a general property of maximum likelihood. By adopting a Bayesian approach, the

over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the ffictive
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we

I
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Table 1.2 Table of the coefficients w* for M :
9 polynomials with various values for
the regularization parameter À. Note
that lnÀ : -oo corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
À increases, the typical magnitude of
the coefficients gets smaller.

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln À for lhe M : 9
polynomial.
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The impact of the regularization term on the generalization error can be seen by
plotting the value of the RMS enor (1.3) for both training and test sets against In À,

as shown in Figure 1.8. We see that in effect À now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at

length in Section 1 .3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an effor function, we would have to
find a way to determine a suitable value for the model complexity. The results above

suggest a simple way of achieving this, namely by taking the available data and

partitioning it into a training set, used to determine the coefficients w, and a separate

validation set, also called a hold-out set, used to optimize the model complexity
(either M or À). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattem

recognition by turning to a discussion of probability theory. As well as providing the

foundation for nearly all of the subsequent developments in this book, it will also

T
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12 l..INTRODUCTION
Figure 1 .10 We can derive the sum and product rules of probability by

considering two random variables, X, which takes the values {zi} where

i = 7,...,M, and Y, which takes the values {g7} where j : 7,...,L.
ln this illustration we have M : 5 and L : 3. lf we consider a total

number ly' of instances of these variables, then we denote the number

of instances where X : ui and Y : Aj by noi, which is the number of g7

ooints in the corresponding cell of the array. The number of points in

bolumn i, corresponding to X : rr, is denoted by c;, and the number of

points in row i, corresponding to Y : gr3, is denoted by r3'

c.i

siveussomeimportantinsightsintotheconceptswehaveintroducedinthecon-
îext or polvnomial '"'JJîiîi;;*l 

*iil dl";îi;';*'"no tt'"'" to more complex

situatrons
'uz.l )",

1.2. Probabil ity TheorY
fr1

Fiqure1.9 We use a simple example'of i*|
coloured boxes each containinq 1t:jt

dPPl"; shown in green and or-

eu 
j l,:ï"x" ii 

":'Jifl 
;]" fïilli:

o o
@
@

and the probability of selecting the blue box is 6/10. We write these probabilities

as p(B - r) : 4170 and p(B : b) : 6ltO. Note that, by definition, probabilities

must lie in the interval 10,1]. Also, if the events are mutually exclusive and if they

include all possible outcomes (for instance, in this example the box must be either

red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: "what is the overall probability that the se-

lection procedure will pick an apple?", or "given that we have chosen an orange,

what is the probability that the box we chose was the blue one?". We can answer

questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-

ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-

ample shown in Figure 1.10 involving two random variables X and Y (which could

for instance be the Box and Fruit variables considered above). We shall suppose that

X can take any of the values zi where 'i : 1, . ' . , M, andY can take the values y7

where j - 1,...,tr. Consider a total of N trials in which we sample both of the

variables X andY, andlet the number of such trials in which X : {rt andY : Ui
be nii. Also, let the number of trials in which X takes the value 12 (irrespective

of the value thatY takes) be denoted by ci, and similarly let the number of trials in

which Y takes the value yi be denoted by r7.
The probability that X will take the value 14 and Y will take the value 3ty is

written p(X : tri,Y : yi) and is called the joint probability of X : 16 and

Y : U j.It is given by the number of points falling in the cell 'i,j as a fraction of the

total number of points, and hence

p(X:tri.,y:ù:ff (1.5)

Here we are implicitly considering the limit ly' --- oo. Similarly, the probability that

X takes the value ri irrespective of the value of Y is written as p(X : rt) and is
given by the fraction of the total number of points that fall in column i, so that

p(X : *r): ?. (1.6)
,A/'

Because the number of instances in column z in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci : D j nii and therefore,

@ @ @

@ @ o G


