

The problem of searching for patterns in data is a fundamental one and has a long and successful history. For instance, the extensive astronomical observations of Tycho Brahe in the $16^{\text {th }}$ century allowed Johannes Kepler to discover the empirical laws of Branetary motion, which in wrovided a springboard for the development of claspical mechanics. Similarly, the discovery of regularities in atomic spectra played a sical mechanics. Similarly, he discovery of reguantum physics in the early twentikey role in the development and verification of quantum physics in the early twentiery of regularities in data through the use of computer algorithms and with the use of these regularities to take actions such as classifying the data into different categories.

Consider the example of recognizing handwritten digits, illustrated in Figure 1.1. Each digit corresponds to a 28×28 pixel image and so can be represented by a vector x comprising 784 real numbers. The goal is to build a machine that will take such a vector \mathbf{x} as input and that will produce the identity of the digit $0, \ldots, 9$ as the output. This is a nontrivial problem due to the wide variability of handwriting. It could be

\square
1 \square

ackled using handcrafted rules or heuristics for distinguishing the digits based on the shapes of the strokes, but in practice such an approach leads to a pror results. rules and of exceptions to the rules and so on, and invariably gies learning approach in Far better results can be obtained by adopting a maching set is used to tune the which a large set of N digits $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ calles of the digits in the training set parameters of an adaptive model. The caing them individually and hand-labelling parameters of advance, typically by inspecting them individualty \mathbf{t}, which represents are kem. We can express the category of a digit using target vecs for representing catethem. We can expresserresponding digit. Suitable techniques for idepres such target gories in terms of vectors will be vector t for each digit image \mathbf{x}.

The result of running the machine learning algorithm can be expressed at a The $\mathbf{y}(\mathbf{x})$ which takes a new digit image x as input and that generates an of the vector y, encoded in the same way as the target vectors. The precise learning function $\mathbf{y}(\mathrm{x})$ is determined during the training phase, adso is trained it can then dephase, on the basis of the training data. Once the moder to comprise a test set. The termine the identity of new digit images, which are saifer from those used for trainability to categorize correctly new examples applications, the variability of the input ing is known as generalization. In practical applicationse only a tiny fraction of all vectors will be such that the training data can comprise goal in pattern recognition. possible input vectors, and so generalization is a centrat goariables are typically pre-

For most practical applications some new space of variables where, it is hoped, the processed to transform them into some new space. For instance, in the digit recognch pattern recognition problem will be easier typically translated and scaled so that each tion problem, the images of the dig a fixed size. This greatly reduces the variabilty digit is contained within a box of a fixed sion and scale of all the digits are now the within each digit class, because the location and scale pattern recognition algorithm same, which makes it mucdifferent classes. This pre-processing stage is sometimes to distinguish between the different classes. test data must be pre-processed using also called feature extraction. Nata.
he same steps as that or performed in order to speed up computation. For,
Pre-processing might also be performed in ore in high-resolution video stream, example, if the goal is real-time numbers of pixels per second, and presenting the computer must handere recognition algorithm may be computationally yet that directly to a complex pattern recognition
ble. Instead, the aim is to find useful features that are fast to compute, and yet tha
also preserve useful discriminatory information enabling faces to be distinguished from non-faces. These features are then used as the inputs to the pattern recognitio algorithm. For instance, the average value of the image intensity over a rectangula subregion can be evaluated extremely efficiently (Viola and Jones, 2004), and a set of such features can prove very effective in fast face detection. Because the number of such features is smaller than the number of pixels, this kind of pre-processing represents a form of dimensionality reduction. Care must be taken during pre-processing because often information is discarded, and if this information is important to the solution of the problem then the overall accuracy of the system can suffer.

Applications in which the training data comprises examples of the input vectors along with their corresponding target vectors are known as supervised learning problems. Cases such as the digit recognition example, in which the aim is to assign each input vector to one of a finite number of discrete categories, are called classification problems. If the desired output consists of one or more continuous variables, then the task is called regression. An example of a regression problem would be the prediction of the yield in a chemical manufacturing process in which the inputs consist of the concentrations of reactants, the temperature, and the pressure

In other pattern recognition problems, the training data consists of a set of input vectors x without any corresponding target values. The goal in such unsupervised learning problems may be to discover groups of similar examples within the data, where it is called clustering, or to determine the distribution of data within the input space, known as density estimation, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of visualization

Finally, the technique of reinforcement learning (Sutton and Barto, 1998) is conerned with the problem of finding suitable actions to take in a given situation in order to maximize a reward. Here the learning algorithm is not given examples of optimal outputs, in contrast to supervised learning, but must instead discover them by a process of trial and error. Typically there is a sequence of states and actions in which the learning algorithm is interacting with its environment. In many cases, the current action not only affects the immediate reward but also has an impact on the reward at all subsequent time steps. For example, by using appropriate reinforcement learning techniques a neural network can learn to play the game of backgammon to a high standard (Tesauro, 1994). Here the network must learn to take a board position as input, along with the result of a dice throw, and produce a strong move as the output. This is done by having the network play against a copy of itself for perhaps a million games. A major challenge is that a game of backgammon can involve dozens of moves, and yet it is only at the end of the game that the reward, in the form of victory, is achieved. The reward must then be attributed appropriately to all of the moves that led to it, even though some moves will have been good ones and others less so. This is an example of a credit assignment problem. A general feature of reinforcement learning is the trade-off between exploration, in which the system tries out new kinds of actions to see how effective they are, and exploitation, in which the system makes use of actions that are known to yield a high reward. Too strong a focus on either exploration or exploitation will yield poor results. Reinforcement learning continues to be an active area of machine learning research. However, a

Figure 1.2 Plot of a training data set of $N=$ 10 points, shown as blue circles each comprising an observation of the input variable x along with the corresponding target variable nction $\sin (2 \pi x)$ used to gene te the data. Our goal is to pre dict the value of t for some new value of x, without knowledge of the green curve.

detailed treatment lies beyond the scope of this book. Although each of theseds needs its own tools and techniques, many of the deas that underpin the main key ideas hat underpin the mal several of the most goals of this chapter is to introduce, in a relate them using simple examples. Later in important of these concepts and to ideas re-emerge in the context of more sophistithe book we shall see these same ical-world pattern recognition applications. This cated models that are applicable to real-world pation to three important tools that will chapter also provides a self amely probability theory, decision theory, and inforbe used throughout the book, namely probabil like daunting topics, they are in fact mation theory. Although these might sound them is essential if machine learning straightforward, and a clear to best effect in practical applications.
1.1. Example: Polynomial Curve Fitting

We regression problem, which we shall use as a runWe begin by introducing a simple regression proble a number of key concepts. Supning example throughout this chapter to mote x and we wish to use this observation to pose we observe a real-valued ind target variable t. For the present purposes, it is inpredict the value of a real-vificial example using synthetically generated data becauny structive to consider an artan process that generated the data for comparison against we then know the precise process example is generated from the function $\sin (2 \pi x)$. learned model. The data for in the target values, as described in detail in Appendix A. with random noise included are given a training set comprising N observations of ℓ,
Now suppose that we Now suppose that we are given a rian corresponding observations of the values written $\mathbf{X} \equiv\left(x_{1}, \ldots, x_{N}\right)^{\mathrm{T}}$, together with 1.2 shows a plot of a training set comprising of t, denoted $\mathbf{t} \equiv\left(t_{1}, \ldots\right.$. The input data set \mathbf{x} in Figure 1.2 was generated by
$N=10$ data points. $N=10$ data points. The input dat
ing values of x_{n}, for $n=1, \ldots, N$, spaced uniformly in range $[0,1]$, and the targel ing values of x_{n}, for $n=1, \ldots$,
$\sin (2 \pi x)$ and then adding a small level of random noise having a Gaussian distribution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in order to obtain the corresponding value t_{n}. By generating data in this way, we are capturing a property of many real data sets, namely that they possess an underlying regularity, which we wish to learn, but that individual observations are corrupted by random noise. This noise might arise from intrinsically stochastic (i.e. random) processes such as radioactive decay but more typically is due to there being sources of variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value t of the target variable for some new value \widehat{x} of the input variable. As we shall see later, this involves implicitly trying to discover the underlying function $\sin (2 \pi x)$ This is intrinsically a difficult problem as we have to generalize from a finite data set. Furthermore the observed data are corrupted with noise, and so for a given \widehat{x} there is uncertainty as to the appropriate value for \widehat{t}. Probability theory, discussed in Section 1.2, provides a framework for expressing such uncertainty in a precise and quantitative manner, and decision theory, discussed in Section 1.5 , allows us to exploit this probabilistic representation in order to make predictions that are optima according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a simple approach based on curve fitting. In particular, we shall fit the data using a polynomial function of the form

$$
\begin{equation*}
y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j} \tag{1.1}
\end{equation*}
$$

where M is the order of the polynomial, and x^{j} denotes x raised to the power of j The polynomial coefficients w_{0}, \ldots, w_{M} are collectively denoted by the vector w Note that, although the polynomial function $y(x, \mathbf{w})$ is a nonlinear function of x, it a linear function of the coefficients w. Functions, such as the polynomial, which re linear in the unknown parameters have important properties and are called linear nodels and will be discussed extensively in Chapters 3 and 4

The values of the coefficients will be determined by fitting the polynomial to the training data. This can be done by minimizing an error function that measures the misfit between the function $y(x, \mathbf{w})$, for any given value of \mathbf{w}, and the training set data points. One simple choice of error function, which is widely used, is given by the sum of the squares of the errors between the predictions $y\left(x_{n}, \mathbf{w}\right)$ for each data point x_{n} and the corresponding target values t_{n}, so that we minimize

$$
\begin{equation*}
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2} \tag{1.2}
\end{equation*}
$$

where the factor of $1 / 2$ is included for later convenience. We shall discuss the mo fivation for this choice of error function later in this chapter. For the moment we simply note that it is a nonnegative quantity that would be zero if, and only if, the

1. INTRODUCTION

Figure 1.3 The error function (1.2) corresponds to (one half of) the sum of sponds to (ones of the displacements shown by the vertical green bars) each data point from the function $y(x, \mathbf{w})$.

function $y(x, \mathbf{w})$ were to pass exactly through each training data point. The geomet function $y(x, \mathbf{w})$ were to
rical interpretation of the sum-of-square

We can solve the curve fitting problem by choosing the value of w for which We can solve as possible. Because the error function is a quadratic function of (w) is aficients \mathbf{w}, its derivatives with respect to he coefficients, and so the minimization of the error function has a lements of \mathbf{w}, and so the minimiz denoted by \mathbf{w}^{\star}, which can be
There remains the problem of choosing the order M of the polynomial, and as There remains we sharison or model selection. In Figure 1.4, we shown in comparison or modelals having orders $M=0,1,3$, and 9 to the data set show Figure 1.2.

We notice that the constant $(M=0)$ and first order $(M=1)$ polynomials We notice that the constant ($M=$ and consequently rather poor representations of the give rather poor fits to the dara order $(M=3)$ polynomial seems to give the best fit function $\sin (2 \pi x)$. The of the examples shown in Figure 1.4. When we go to a to the function $(M=9)$, we obtain an excellent fit to $E\left(\mathrm{w}^{\star}\right)=0$. much highar the polynomial passes exactly through each data point and data. In fact, he poly curve oscillates wildly and gives a very poorting
However, $\operatorname{thn} \sin (2 \pi x)$. This latter behaviour is known as over-furg.
As we have noted earlier, the goal is to achieve good generalizationsight into the
As we have noted earlier, the accurate pred of the generalization performance on M by considering a separace used dependence of the gena prising 100 data points generated using exactly the same procedure values set comprising 100 data pots points but with new choices for the random noise valual 10 generate the trairget values. For each choice of M, we can then evaluatuate $E\left(w^{*}\right)$ nclue of $E\left(\mathbf{w}^{*}\right)$ given by (1.2) for the training data, and alue ${ }^{2}\left(w^{*}\right)$. It is sometimes more convenient to use the root-mean-sq

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in Figure 1.2.
(RMS) error defined by

$$
\begin{equation*}
E_{\mathrm{RMS}}=\sqrt{2 E\left(\mathbf{w}^{\star}\right) / N} \tag{1.3}
\end{equation*}
$$

in which the division by N allows us to compare different sizes of data sets on an equal footing, and the square root ensures that $E_{\text {RMS }}$ is measured on the same scale (and in the same units) as the target variable t. Graphs of the training and test set RMS errors are shown, for various values of M, in Figure 1.5. The test set error is a measure of how well we are doing in predicting the values of t for new data observations of x. We note from Figure 1.5 that small values of M give relatively large values of the test set error, and this can be attributed to the fact that the corresponding polynomials are rather inflexible and are incapable of capturing the oscillations in the function $\sin (2 \pi x)$. Values of M in the range $3 \leqslant M \leqslant 8$ give small values for the test set error, and these also give reasonable representations of the generating function $\sin (2 \pi x)$, as can be seen, for the case of $M=3$, from Figure 1.4. error, defined by (1.3), evaluated error, defined bet and on an inde
on the training set ndent test set for various values of M.

- 0 zero, as we might expect because F polynomial contains 10 degrees of freedom corresponding to the 10 coefficient this polynomial contains 10 degrees exactly to the 10 data points in the training set. w_{0}, \ldots, w_{9}, and so can ere has become very large and, as we saw in Figur
However, the test set error has However, the test

This may seem paradoxical because a polynomial of given order contains all
This may seem paradoxical because a polyn $M=9$ polynomial is therefore capalower order polynomials as special cased as the $M=3$ polynomial. Furthermore, we ble of generating results at least as good as new data would be the function $\sin (2 \pi x)$ might suppose that the best predictor (and we shall see later that this is indeed the from which the data was generated (and expansion of the function $\sin (2 \pi x)$ contains case). We know that a power series expat results should improve monotonically as terms of all M

We can gain some insight into the problem by examining the values of the coWe can gain some insight into the proble various order, as shown in Table 1.1. fficients \mathbf{w} obtainen We see that, as $M=9$ polynomial, the coefficients have become finely tune In particular for the $M=9$ polynomia, he negative values so that the correspondto the data by developing

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{8}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				-5042400.18
w_{8}^{\star}				125201.49
w_{9}^{\star}				

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the $M=9$ polynomial for $N=15$ data points (left plot) and $N=100$ data points (right plot). We see that increasing the polyn of the data set reduces the over-fitting problem.
ing polynomial function matches each of the data points exacty, but between da points (particularly near the ends of the range) the function exhibits the large oscilla tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible polynomials with larger values of M are becoming increasingly tuned to the random noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the data set is varied, as shown in Figure 1.6. We see that, for a given model complexity, the over-fitting problem become less severe as the size of the data set increases. Another way to say this is that the larger the data set, the more complex (in other words more flexible) the model that we can afford to fit to the data. One rough heuristic that is sometimes advocated is that the number of data points should be no less than some multiple (say 5 or 10) of the number of adaptive parameters in the model. However, as we shall see in Chapter 3, the number of parameters is not necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of parameters in a model according to the size of the available training set. It would seem more reasonable to choose the complexity of the model according to the complexity of the problem being solved. We shall see that the least squares approach to finding the model parameters represents a specific case of maximum likelihood discussed in Section 1.2.5), and that the over-fitting problem can be understood as general property of maximum likelihood. By adopting a Bayesian approach, the over-fitting problem can be avoided. We shall see that there is no difficulty from Bayesian perspective in employing models for which the number of parameters greatly exceeds the number of data points. Indeed, in a Bayesian model the effective greamber of parameters adapts automatically to the size of the data set.
For the moment, however, it is instructive to continue with the current approach and to consider how in practice we can apply it to data sets of limited size where we

set shown in Figure 1.2 using the regularized error Figure 1.7 Plots of $M=9$ polynomials fitted to the data set corresponding to $\ln \lambda=-18$ and $\ln \lambda=0$. The function (1.4) for two values of the regularization parameter λ correspown at the bottom right of Figure 1 . case of no regularizer, i.e., $\lambda=0$, corresponding to $\ln \lambda$
may wish to use relatively complex and flexible models. One technique thalarization, used to control the over-fitting phenomenon in such cases (1.2) in order to discourage which involves adding a penalty term to the error simplest such penalty term takes the the coefficients from reaching large values. The simplest to a modified error function form of a sum of squares of all of the of the form

$$
\begin{equation*}
\widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2} \tag{1.4}
\end{equation*}
$$

where $\|\mathbf{w}\|^{2} \equiv \mathbf{w}^{\mathrm{T}} \mathbf{w}=w_{0}^{2}+w_{1}^{2}+\ldots+w_{M}^{2}$, and the coefficient λ governs the rel where $\|\mathbf{w}\|^{2} \equiv \mathbf{w}^{\mathrm{T}} \mathbf{w}=w_{0}^{2}+w_{1}^{2}+\ldots+w_{M}$, ,mpared with the sum-of-squares error ative importance of the regularizatien w_{0} is omitted from the regularizer because its term. Note that often the coefficend on the choice of origin for the target variable inclusion causes (he , or it may be included but with its own regularization coefficion (Hastie et al., 2001), or thic in more detail in Section 5.5.1). Again, the error functionn (we shall discuss can be minimized exactly in closed form. Techniques such as this are known in (1.4) can be miterature as shrinkage methods because they reduce the value ores in the statistics The particular case of a quadratic regularizer is called ris approach is sion (Hoerl and Kennard, 1970). In the context of neural networs known as weight decay.

Figure 17 shows the results of fitting the polynomial of order M = by (1.4). Figure 1.7 shows the now using the regularized error function given by (1.4). same data set as before but $\ln \lambda=-18$, the over-fitting has been suppressed and. If, We see that, for a value oser representation of the underlying function $\sin (2 \pi x)$. now obtain a much co large a value for λ then we again obtain a poor fit, as showials Figure 1.7 for $\ln \lambda=0$. The corresponding coefficients from the fited pof of reducing igure in Table 1.2, showing that regularization has the desired effect of redur

Table 1.2 Table of the coefficients \mathbf{w}^{\star} for $M=$ 9 polynomials with various values for
the regularization parameter λ. Note the regularization parameter λ. Note
that $\ln \lambda=-\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Fig ure 1.4. We see that, as the value of λ the coefficients gets smaller the coefficients gets smaller.

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
$w_{ \pm}^{\star}$	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by plotting the value of the RMS error (1.3) for both training and test sets against $\ln \lambda$ as shown in Figure 1.8. We see that in effect λ now controls the effective complexity of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at length in Section 1.3. Here we simply note that, if we were trying to solve a practical application using this approach of minimizing an error function, we would have find a way to determine a suitable value for the moderplexit. The resuls abo suggest a simple way of achieving this, namely by taking the available data and partitioning it into a training set, used to determine the coefficients w, and a separit validation set, also called a hold-out set, used ooptize he model complexily (either M. λ). Th M Cass, hower, valuable training data, and we have to seek more sophisticated approache

So far our discussion of polynomial curve fitting has appealed largely to intuition. We now seek a more principled approach to solving problems in paten recognition by foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square error (1.3) versus $\ln \lambda$ for the $M=9$ polynomial

ive us some important insights into the concepts we have introduced in the conall situations.
1.2. Probability Theory

A key concept in fer of uncertainty. It arises both
 through noise on measurements, as fremework for the quantification and manipula ability theory provides a consister of the central foundations for pattern recognition. tion of uncertainty and forms one orry, discussed in Section 1.5, it allows us to make When combined with decision theory, discussed ailable to us, even though that inforoptimal predictions given all he iguous.
mation may be inconple considering a sim-
We will introduce the basic concepts of probed and one blue, and in the red box ple example. Imagine we have two boxes, oble box we have 3 apples and 1 orange. we have 2 apples and 6 oranges, and in the blue box we homly pick one of the boxes This is illustrated in Figure 1.9. Now suppose of fruit, and having observed which and from that box we randomly select an from which it came. We could imagine sort of fruit it is we replace it in the bex us suppose that in so doing we pick the red repeating this process many times. Let blue box 60% of the time, and that when we box 40% of the time and we pick the blue box remove an item of
of fruit in the box.
In this example, the identity of the box that will be chosen is a randomo possible which we shall denote by B. This random variable can (corresponding to the blue values, namely r (corresponding to the red box) or box). Similarly, the identity of the fruit a (for apple) or o (for orange).
by F. It can take either of the values a (for appleility of an event to be the fraction
To begin with, we shall define the probabiler of trials, in the limit that the total of times that event occurs out of the total number of trials, in the red box is $4 / 10$ number of trials goes to infinity. Thus the probabity

Figure 1.10 We can derive the sum and product rules of probability by considering two random variables, X, which takes the values $\left\{x_{i}\right\}$ where $i=1, \ldots, M$, and Y, which takes the values $\left\{y_{j}\right\}$ where $j=1$ number N of instances of these variables, then we denote the number of instances where $X=x_{i}$ and $Y=y_{j}$ by $n_{i j}$, which is the number of points in the corresponding cell of the array. The number of points in column i, corresponding to $X=x_{i}$, is denoted by c_{i}, and the number of points in row j, corresponding to $Y=y_{j}$, is denoted by r_{j}.

and the probability of selecting the blue box is $6 / 10$. We write these probabilities as $p(B=r)=4 / 10$ and $p(B=b)=6 / 10$. Note that, by definition, probabilities must lie in the interval $[0,1]$. Also, if the events are mutually exclusive and if they include all possible outcomes (for instance, in this example the box must be eithe red or blue), then we see that the probabilities for those events must sum to one

We can now ask questions such as: "what is the overall probability that the se ection procedure will pick an apple?", or "given that we have chosen an orange what is the probability that the box we chose was the blue one?". We can an with questions such as these, and indeed much more complex questions associated with problems in pattern recognition, once we have equipped ouselves whe Havin

In
In order to derive the rules of probability, consider the slightly more general ex for instance be the Box and Fruit variables considered above). We shall suppose that for instance be the Box and Fruit variables considered above). We shall suppose the X can take any of the values x_{i} where $i=1, \ldots, M$, and Y can take the values y_{j}
where $j=1, \ldots, L$. Consider a total of N trials in which we sample both of the where $j=1, \ldots, L$. Consider a total of N trials in which we sample both of X and Y, and let the number of such trials in which $X=x_{i}$ and $Y=y$ variables X and Y, and let the number of such trials in which $X=x_{i}$ and $Y=y_{j}$ be $n_{i j}$. Also, let the number of trials in which X takes the value x_{i} (irrespective which Y takes the value y_{j} be denoted by r_{j}.

The probability that X will take the value x_{i} and Y will take the value y_{j} is written $p\left(X=x_{i}, Y=y_{j}\right)$ and is called the joint probability of $X=x_{i}$ and $Y=y_{j}$. It is given by the number of points falling in the cell i, j as a fraction of the total number of points, and hence

$$
\begin{equation*}
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N} . \tag{1.5}
\end{equation*}
$$

Here we are implicitly considering the limit $N \rightarrow \infty$. Similarly, the probability that X takes the value x_{i} irrespective of the value of Y is written as $p\left(X=x_{i}\right)$ and is given by the fraction of the total number of points that fall in column i, so that

$$
\begin{equation*}
p\left(X=x_{i}\right)=\frac{c_{i}}{N} . \tag{1.6}
\end{equation*}
$$

Because the number of instances in column i in Figure 1.10 is just the sum of the number of instances in each cell of that column, we have $c_{i}=\sum_{j} n_{i j}$ and therefore,

