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In the previous chapter, we explored a class of regression models having particularly
simple analytical and computational properties. we now discuss an analogous class
of models for solving classification piobiems. The goal in classification is to take aninputvectorx and to assign it to one of r{ discrete crasses cl"where k: r,...,K.
In the most common scenario, the classes are taken to be disjoint, so that each input is
assigned to one and only one class. The input space is thereuy iluia"o into decision
regions whose boundaries are called deciiion boundaries oi decision surfaces. Inthis chapter, we consider linear models for classification, by which we mean that thedecision surfaces are linear functions of the input u".to. * and hence are definedby (D - l)-dimensional hyperplanes within th! D-dimensionai infut space. Data
sets whose classes can be separated exactly by linear decision surfaces are said to belinearly separable.

, _to,r 
t"*ression problems, the target variable t was simply the vector of real num-oers whose values we wish to predict. In the case of classification, there are various
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180 4. LINEAR MODELS FOR CLASSIFICATION

p(Cul*) :

ways of using target values to represent class labels. For probabilistic models, the

most convenient, in the case of two-class problems, is the binary representation in

which there is a single target variable 
' 

€ i0, 1] such rhat t : 1 represents class Cr

und t :0 representi clasr Cr. We can inteipret the value of f as the probability that

the class is cr, with the value-s of probability taking only the extreme values of 0 and

1. For K ) 2 classes, it is convenient to use a l-of-K coding scheme in which t is

a vector of length K such that if the class is ci, then all.elements tt of t are zeto

"^""pt "t"-"nit7, 
which takes the value 1. Foiinstance, if we have K : 5 classes,

then a pattern from class 2 would be given the target vector

t : (0, 1,0,0,0)T. (4.1)

Again, we can intetpret the value of f 6 as the probability llu-t the class is Cr' For

no'nprobabilistic moiels, alternative choices of target variable representation will

sometimes Prove convenient.
In chapter 1, we identifred three distinct approaches to the classification prob-

lem. The simplest involves constructing a cliscriminant function that directly assigns

eachvectorxtoaspecificclass.Amorepowerfulapproach'however,modelsthe
conditional probabitity distribution p(cnl") in an inference stage, and then subse-

quently uses this distiibution to make optimal decisions. By separating inference

and decision, we gain numerous benefits, as discussed in section i.5.4' There are

two different approaches to determining the conditional probabilities p(C6lx)' One

technique is to model them directly, forixample by representing them as parametlic

models and then optimizing the parameters using a training set. Alternatively, we

can adopt u g"n".uiiu" uppiouchin which we model the class-conditional densities

gr*" uv p(icn),togethei with the prior probabilities p(cr) for the classes, and then

i"" 
"o*poi" 

itre'requiteA posterior probabilities using Bayes' theorem
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used

for regression, they are no longer linear in the parameters due to the presence of the

nonlinear function /(.). This will lead to more complex analytical and computa-

tional properties than for linear regression models. Nevertheless, these models are

still relatively simple compared to the more general nonlinear models that will be

studied in subsequent chapters. 1

The algorithms discussed in this chapter will be equally applicable if we first

make a fixed nonlinear transformation of the input variables using a vector of basis

functions @(x) as we did for regression models in Chapter 3. We begin by consider-

ing classification directly in the original input space x, while in Section 4.3 we shall

find it convenient to switch to a notation involving basis functions for consistency

with later chapters.

4"X. Discriminant Functions

p("1 ,^1pQu) (4 2)

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted C6. In this chapter, we shall restrict attention to linear discriminants,

namely those for which the decision surfaces are hyperplanes. To simplify the dis-

cussion, we consider first the case of two classes and then investigate the extension

loK>2classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

g(x) : wrx f tue (4.4)

where w is called a weight vector, and tus is a bias (not to be confused with bias in

the statistical sense). The negative of the bias is sometimes called a threshold' An

input vector x is assigned to class C1 if g(x) ) 0 and to class C2 otherwise. The cor'
reiponding decision boundary is therefore defined by the relation y(x) : 0, which

corresponds to a (D - 1)-dimensional hyperplane within the D-dimensional input

space. Consider two points x6 and xs both of which lie on the decision surface.

B".uur" g(xA) : g(xB) : 0, we have *t(*a - *u) : 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the

orientation of the decision surface. Similarly, if x is a point on the decision surface,

then g(x) : 0, and so the normal distance from the origin to the decision surface is

given by

p(")

Weshalldiscussexamplesofallthreeapproachesinthischapter.
In the linear regression models considered in chapter 3, the model prediction

y(x, w) was given 6y a linear function of the parameters w' ln the simplest case'

the model is also tlnear in the input variables and therefore takes the form y(x) :

wTx * rus, So that y is a real number' For classification problems' however' we wish

to predict discrete class labels, or more generally posterior prob.abilities that lie in

the range (0, 1). To achieve this, we 
"onrid",. 

a geniralization of this model in which

we transform the linear function of w using a nonlinear function /( ' ) so that

y(x) :/(*r**r,,'0) . @3)

In the machine learning literature /( . ) It known as at activation fwrtction' whereas

its inverse is callecl a linkfuttctiort in the statistics literature' The decision sut'faces

correspond to y(x) : ;;;:;;;;, so thaiwrx-* ?,o - ;o"stant and hence the deci-

sion surfaces are linear functions of x, even if the function /( ) is nonlinear' For this

reason, rhe class of models described by (4.3i;; ;;lled leieralizecl linectr rnodels

wTx wg (4.s)

We therefore see that the bias parameter tue determines the location of the decision

surface. These properties are illustrated for the case of D :2 in Figure 4.1.

Furthermore, we note that the value of g(x) gives a signed measure of the per-

pendicular distance r of the point x from the decision surface. To see this, consider
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